
Mechanics of Static Analysis

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Escuela’03 III / 1

Outline

1. Small-step semantics: trace generation

2. State generation and collecting semantics

3. Data-flow analysis

4. Ensuring termination

5. Typing rules and big-step semantics

6. Interprocedural analysis

Escuela’03 III / 2

Static analysis

A static analysis of a program is a sound, finite, and approximate

calculation of the program’s execution semantics.

Approximate: not exact — computes properties or aspects of the

execution semantics, such as pre- or post-conditions, invariants, data

types, patterns of trace, or ranges-of-values.

Sound: consistent with the concrete, execution semantics — a sound

overapproximation describes a superset of the program’s executions

(safe descriptions); a sound underapproximation describes a subset

of the program’s executions (live descriptions). We will focus on

overapproximations.

Finite: regardless of the program and its approximate semantics, the

analysis terminates.

Escuela’03 III / 3

The most basic static analysis is trace generation

p2 :

p0 :

p4 :

p1 :

p3 :

exit

while (x != 1) {
if Even(x)

then x = x div2;
else x = 3*x + 1;

}

p0, 4
p1, 4
p2, 4

p0, 2
p1, 2
p2, 2

p0, 1
p4, 1

p0, 6
p1, 6
p2, 6

p0, 3
p1, 3
p2, 3

p0, 10

p4, 1

· · ·

Two concrete traces:

Note: pi, v abbreviates pi, 〈x : v〉

p1, even

p2, even

p0, any

p4, odd p1, any

p3, odd

p0, even

Abstract overapproximating trace:

The abstract tree (abstract

model) is a static analysis of

those concrete executions that

use an even-valued input.

Escuela’03 III / 4

Each concrete transition, pi, s → pj, fi(s), is reproduced by a
corresponding abstract transition, pi, a → pj, f

#
i (a), where s ∈ γ(a).

(f#i = α ◦ fi ◦ γ.)

The traces embedded in the abstract trace tree simulate all the
concrete traces, e.g., this concrete trace,

p0, 4 → p1, 4 → p2, 4 → p0, 2 → p1, 2 → p2, 2 → p0, 1 → p4, 1

is simulated by this abstract trace, which is extracted from the abstract
computation tree:

p0, even → p1, even → p2, even → p0, even → p1, even → p2, even →
p0, odd → p4, odd

because we used a Galois connection to justify the soundness of the
transition steps in the abstract trace tree.

In this fashion, a static analysis can generate an abstract test or
abstract model, which covers a range of concrete inputs.

Escuela’03 III / 5

State reachability and collecting semantics

If we are interested only in the reachable states and not their

orderings in the trace, we compute the program’s collecting semantics

as a nondecreasing sequence of sets of program states. The

collecting semantics is an abstraction of trace-generation semantics.

Collecting semantics, concrete and abstract:

{p0, 4}

{p0, 4; p1, 4}

{p0, 4; p1, 4; p2, 4}

{p0, 4; p1, 4; p2, 4; p0, 2}

...

{p0, 4; p1, 4; p2, 4; p0, 2;

p1, 2; p2, 2; p0, 1; p4, 1}

{p0, even}

{p0, even; p4, even; p1, even}

{p0, even; p4, even; p1, even; p2, even}

{p0, even; p4, even; p1, even; p2, even;

p0, any}

...

{p0, even; p4, even; p1, even; p2, even;

p0, any; p4, any; p1, any; p3, odd}

Escuela’03 III / 6

“Sticky” collecting semantics

A semantics of form, ℘(ProgramPoint×AbsStore), is “attaching”
AbsStore values to each program point — the isomorphic
representation, ProgramPoint → ℘(AbsStore), is called the
(relational) “sticky” collecting semantics:

[p0 7→ {even, any}; p1 7→ {even, any}; p2 7→ {even};

p3 7→ {odd}; p4 7→ {even, any}]

The above can be abstracted to a function in
ProgramPoint → AbsStore, the independent-attribute semantics:

[p0 7→ any; p1 7→ any; p2 7→ even; p3 7→ odd; p4 7→ any]

which is based on this abstraction mapping:

α : ℘(AbsStore) → AbsStore

α(S) = 〈i :
⊔

s∈S s(i)〉i∈Identifier

Escuela’03 III / 7

Notice that the independent-attribute semantics is less precise than

its relational ancestor; for example, variables x and y might have

these values at program point pi:

[...pi 7→ {〈x : even, y : even〉, 〈x : odd, y : odd〉}...]

meaning that x + y computes to even at pi.

But the independent-attribute abstraction,

[...pi 7→ 〈x : any, y : any〉...]

makes x + y compute to any, losing precision.

Note also that we could define a collecting version of a

trace-generation semantics, which generates an analysis of form

ProgramPoint → ℘(Trace).

Escuela’03 III / 8

Formalizing the “small steps”: transfer functions

A trace’s transitions, ppi, s −→ ppi, s
′, are computed with a

control-flow graph annotated with transfer functions.

p0 :

p4 :

p1 :
p2 :
p3 :

exit

y = 1;
while Even(x) {

y = y * x;
x = x div2;

}

p0

p1
1tf1ff

p4 p2

p3

f3
f0

f2

Concrete transfer functions: 〈u, v〉 abbreviates 〈x : u, y : v〉

f0〈u, v〉 = 〈u, 1〉

f1t(s) =





s if s = 〈2u, v〉

⊥ otherwise
f1f(s) =





s if s = 〈2u + 1, v〉

⊥ otherwise

f2〈u, v〉 = 〈u, v ∗ u〉

f3〈u, v〉 = 〈u/2, v〉

Important: configurations of form, pi,⊥, cannot appear in a trace.

Escuela’03 III / 9

The abstract transfer functions are derived as f#=α ◦ f ◦ γ
p0 :

p4 :

p1 :
p2 :
p3 :

exit

y = 1;
while Even(x) {

y = y * x;
x = x div2;

}

p0

p1
1tf1ff

p4 p2

p3

f3
f0

f2

=

=

none

even

any

odd

Parity

As usual, 〈u, v〉 abbreviates 〈x : u, y : v〉

Note: all f# are totally strict: f#〈u,⊥〉 = f#〈⊥, v〉 = 〈⊥,⊥〉

f
#

0 〈u, v〉 = 〈u, odd〉

f
#

1ts = s u 〈even,>〉 f
#

1fs = s u 〈odd,>〉

f
#

2 〈u, v〉 = 〈u, w〉, where w =






even if u = even or v = even, else

odd if u = odd and v = odd, else

>

f
#

3 〈u, v〉 = 〈>, v〉

Note: 〈a, b〉 u 〈a ′, b ′〉=〈a u a ′, b u b ′〉.

Escuela’03 III / 10

Flow equations calculate the (sticky, collecting)
independent-attribute semantics

The value “attached” to program point pi is defined by the equational
pattern,

piStore =
⊔

pj∈pred(pi)

f
#
j (pjStore)

The collecting semantics of pi is the join of the answers computed by
pi’s predecessor transfer functions.

Flow equations for previous example:
p0

p1
1tf1ff

p4 p2

p3

f3
f0

f2

p0Store = 〈x : >, y : >〉

p1Store = f
#
0 (p0Store) t f

#
3 (p3Store)

p2Store = f
#
1t(p1Store)

p3Store = f
#
2 (p2Store)

p4Store = f
#
1f(p1Store)

Escuela’03 III / 11

We solve the flow equations by calculating approximate solutions in
stages until the least fixed point is reached.

Note: u, v abbreviates 〈x : u, y : v〉.

stage p0Store p1Store p2Store p3Store p4Store

0 ⊥,⊥ ⊥,⊥ ⊥,⊥ ⊥,⊥ ⊥,⊥

1 >,> ⊥,⊥ ⊥,⊥ ⊥,⊥ ⊥,⊥

2 >,> >, odd ⊥,⊥ ⊥,⊥ ⊥,⊥

3 >,> >, odd even, odd ⊥,⊥ odd, odd

4 >,> >, odd even, odd even, even odd, odd

· · ·

8 >,> >,> even,> even, even odd,>

9 >,> >,> even,> even, even odd,>

A faster algorithm uses a worklist that remembers exactly which
equations should be recalculated at each stage.

Escuela’03 III / 12

To summarize, we annotate the control-flow graph with the non-⊥
values that arrive at the program points:

p1 : while Even(x)

p2 : y = y * x;

p3 : x = x div2;

p0 : y = 1;

p4 : exit
even odd, even , even ,

even , even

,odd ,even ,

odd ,odd

,

odd ,
odd ,

The analysis approximates the stores that arrive at the program
points.

The equational format is called data-flow analysis. It is the most
popular static analysis format.

Escuela’03 III / 13

Variants of data-flow analysis

We might vary whether the “data flow” goes forwards or backwards;

we might also vary whether information is “joined” (t) or “met” (u):

Forwards-possibly:
piStore = tpj∈pred(pi)fj(pjStore)

Forwards-necessarily:
piStore = upj∈pred(pi)fj(pjStore)

Backwards-possibly:
piStore = f−1

i (∪pj∈succ(pi)pjStore)

Backwards-necessarily:
piStore = f−1

i (∩pj∈succ(pi)pjStore)

The backwards analyses almost always compute sets of values,

hence the use of ∪ and ∩.

Escuela’03 III / 14

A forwards analysis computes “histories” that arrive at a point:

forwards analysis = postcondition semantics

piStore = a approximates the set of traces of the form

p0, s0 → p1, s1 → · · · → pi, si (where si ∈ γ(a))

A backwards analysis computes the “futures” from a program point:

backwards analysis = precondition semantics

piStore = a approximates the set of traces of the form

pi, si → · · · → pexit, sfinal (where si ∈ γ(a))

A possibly analysis predicts a “superset” of the actual computations: if

piStore = a, then for all concrete values, c vC γ(a), that arrive at pi,

we have c vC γ(a) — all possibilities are predicted.

A necessarily analysis predicts a “subset” of the actual computations:

if piStore = a, then there exists some c vC γ(a), that arrives at pi.

Escuela’03 III / 15

The data-flow example developed earlier in this Lecture computed

answers of the form,
piStore = a

which asserted, if store s arrives at program point pi, then s ∈ γ(a).

But there are data-flow analyses where piStore = a means that
all execution traces that arrive at pi contain some pattern of
program points and stores, described by a.

We will develop the Galois-connection formalities in the next Lecture,

but just now we study two examples, used by compilers for improving

register allocation in target code. These examples compute sets of

program phrases that describe patterns within execution traces.

The examples show variations of the forwards/backwards and

possibly/necessarily forms of data-flow analysis.

Escuela’03 III / 16

Forwards-necessarily-reaching definitions:
which assignments must reach their successors

inReachpi=
⋂

pj∈pred(pi)
outReachpj

outReachpi=f
#
i (inReachpi)=(inReachpi − killi) ∪ geni

(the transfer function computes a set of assignment statements)

for pi : x = e,





killi = {pj | pj : x = ...}

geni = {pi}
for pi : if e,





killi = {}

geni = {}

Sample analysis: p1 : if ...

p3 : y = x
p0{ } p0{ }

p2{ } p0 p3{ , }

p4 : exit
{ }

p0{ }
p0 : x = 0

{ }

p2 : x = x + 1
p3= outReach

= inReach p3

= inReach p4

Escuela’03 III / 17

Explanation:

If p ′ ∈ inReachpi, where p ′ labels the assignment, p ′ : v = e, then

all traces from p0 to pi must possess the pattern,

p0 → · · · → p ′ → · · · → pi

and no assignment, v = e’, occurs between p ′ and pi in the trace.

If p ′ ∈ inReachpi holds, then the assignment at p ′ should save its

right-hand-side value in a register for quick access by pi.

Escuela’03 III / 18

Backwards-possibly-live variables: which
variables might be referenced in the future

outLivepi=
⋃

pj∈succ(pi)
inLivepj

inLivepi=f
#
i (outLivepi)=(outLivepi − killi) ∪ geni

(the transfer function computes a set of variable names)

for pi : x = e





killi = {x}

geni = {v | v in e}
for

print e

pi : while e





killi = {}

geni = {v | v in e}

Sample analysis:
p1 : while Even(x)

p2 : y = 2 * x;

p3 : x = x div2;

p4 : print y

{x ,y}

{x}

{x ,y}

{y}

{x ,y}

p0 : y = 1;

{x} = inLive p0

p0= outLive p1= inLive

{ }

Escuela’03 III / 19

Explanation:

If there is a concrete execution trace containing the pattern,

pi → · · · → p ′ → · · · → pexit

such that p ′ references variable v and no assignment to v appears

between pi and p ′, then v ∈ outLivepi.

If v 6∈ outLivepi holds, then v’s value should be removed from all

registers upon completion of pi’s execution — v is a “dead variable”

after pi.

Escuela’03 III / 20

Termination: Constant propagation reviewed

p1 :
p2 :

p3 :

p0 :

x = x + 1;
}

while (x < y + z) {
x = 1; y = 2;

exit

0 1−1 2 ...
var holds

var holds

...

Const
multiple values

this value only

(dead code)
var holds no value

where m + n is interpreted

k1 + k2 −→ sum(k1, k2),

> 6= ki 6= ⊥, i ∈ 1..2

> + k −→ >

k + > −→ >

p0, 〈>,>,>〉
p1, 〈1, 2,>〉

p2, 〈1, 2,>〉
p1, 〈2, 2,>〉

p2, 〈2, 2,>〉
p1, 〈3, 2,>〉

p3, 〈1, 2,>〉

p3, 〈2, 2,>〉

...
...

Abstract trace:

The naive trace does not terminate.

Escuela’03 III / 21

Finite-height and
⊔

give termination

p0

p1 p3

, ,

1,2,
2,2,

p2

1,2,

1,2,
,2,

,2,

,2,

stage p0Store p1Store p2Store p3Store

1 >,>,> ⊥,⊥,⊥ ⊥,⊥,⊥ ⊥,⊥,⊥

2 >,>,> 1, 2,> ⊥,⊥,⊥ ⊥,⊥,⊥

3 >,>,> 1, 2,> 1, 2,> 1, 2,>

4 >,>,> >, 2,> 1, 2,> 1, 2,>

5 >,>,> >, 2,> >, 2,> >, 2,>

6 >,>,> >, 2,> >, 2,> >, 2,>

Termination is guaranteed because the transfer functions and
⊔

are

monotonic (each stage has values not smaller than its predecessors)

and the abstract domain, Const, has finite height — there are no

infinitely ascending sequences (the stages cannot increase forever).

(Indeed, the longest seqence in Const goes: ⊥ v k v >.)

Escuela’03 III / 22

Termination: Array-bounds checking reviewed

Integer variables receive values from the interval domain,

I = {[i, j] | i, j ∈ Int ∪ {−∞,+∞}}.

We define [a, b] t [a ′, b ′] = [min(a, a ′),max(b, b ′)].

oo[− ,9]
oo[− ,9]

i = [0,0] = [0,0]
i = [0,0] [1,1] = [0,1]

i = [1,1]
i = [1,1] [2,2] = [1,2]

1p

p2

... a[i] ...
while (i < 10) {
i = 0;
int a = new int[10];

i = i + 1;
}

i = [0,0]

...

...

This example terminates: i’s ranges are
at p1 : [0..9]

at p2 : [1..10]

at loop exit : [1..10] u [10, +∞] = [10, 10]

Escuela’03 III / 23

But others might not, because the domain is not finite height:

oo][0, +
i = [0,0] [1,1] [2, 2] ...

infinite limit is

i = [] (dead code)

while true {
i = 0;

i = i + 1;
...

}

i = [0,0]

The analysis generates the infinite sequence of stages,
[0, 0], [0, 1], ..., [0, i], ... as i’s value in the loop’s body.

The domain of intervals, where [i, j] v [i ′, j ′] iff i ≤ j and j ≤ j ′, has
infinitely ascending chains.

To forcefully terminate the analysis, we can replace the t operation by
∇, called a widening operator:

[]∇[i, j] = [i, j] [i, j]∇[i ′, j ′] =
[if i ′ < i then − ∞ else i,

if j ′ > j then + ∞ else j]

Escuela’03 III / 24

The widening operator, which guarantees finite convergence for all

increasing sequences on the interval domain, quickly terminates the

example:

oo][0, +i = [0,0] [1,1]

∆

=

i = [] (dead code)

while true {
i = 0;

i = i + 1;
...

}

i = [0,0]

but in general, it can lose much precision:

... a[i]
while (i < 10) {
i = 0;
int a = new int[10];

i = i + 1;
}

oo][0, +i = [0,0] [1,1]

∆

=

oo[10, +]i =

i = [0,0]

Escuela’03 III / 25

For this reason, a complementary operation, 4, called a narrowing

operation, can be used after ∇ gives convergence to recover some

precision and retain a fixed-point solution.

We will not develop 4 here, but for the interval domain, a suitable 4

tries to reduce −∞ and +∞ to finite values. For the last example, the

convergent value, [0,+∞], in the loop body would be narrowed to

[0, 10], making i’s value on loop exit [10, 10].

Another approach is to use multiple “thresholds” for widening, e.g.

−∞, (2−31 − 1), 0, etc. for lower limits, and (231 − 1) and +∞ for upper

limits.

Escuela’03 III / 26

Structured (big-step) static analysis

Given a block of statements, B, we might wish to calculate the values

that “enter” and “exit” from B. If B is coded in a structured language,

we can define the static analysis to compute a structured transfer

function for B:

C ::= p : x = E | C1; C2 | if E C1 C2 | while E C

A sample structured analysis that ignores tests: [[C]] : Ain → Aout

[[p : x = E]]in = f
#
p (in) (the transfer function for p)

[[C1; C2]]in = [[C2]]([[C1]]in)

[[if E C1 C2]]in = [[C1]]in t [[C2]]in

[[while E C]]in = in t outC,

where outC =
⊔

i≥0 outi,

and out0 = ⊥A and outi+1 = [[C]](in t outi)

Escuela’03 III / 27

We can annotate a syntax tree with the in-and out-data — here is a
forwards-possibly reaching definitions analysis, which computes sets
of assignments that might reach future program points:

[[p : x = E]]in = in − killx ∪ {p}

[[C1; C2]]in = [[C2]]([[C1]]in)

[[if E C1 C2]]in = [[C1]]in ∪ [[C2]]in

[[while E C]]in = in ∪
S

i≥0
outi,

where out0 = {}

and outi+1 = [[C]](in ∪ outi)

{ }

{ } { p1} { p1} { p2}

{ p1}

p1}{ XU

{ p1,p3}

{ p1,p2,p3}

{ p1,p2,p3}

{ p3 }=X = X2{ p3 }=X1{ }=X0

p1: y = 1 ; (if y>x (p2: y = x) (while y!=x (p3: y = y+1)))

EC C E C

C

C

C

X

p1{ }

Escuela’03 III / 28

The analysis calculates a “local” least-fixed point at each while-loop,

in contrast to a data-flow analysis, which calculates a single “global”

least-fixed point for the entire program. (It is straightforward to prove

that both techniques compute the same answer.)

The structured, equational style is based on denotational semantics.

The structured analysis is no more precise than the iterative,

data-flow analysis (that is, a sticky, collecting semantics); indeed,

[[C]] : Ain → Aout is an abstraction of the data-flow analysis of C in the

sense that [[C]] “forgets” the flow information of C’s subphrases and

returns only C’s output.

Escuela’03 III / 29

Structured analysis in inference-rule format

The style of the previous example suggests that a structured analysis

pairs each phrase, C, with its input and outputs, inc and outc.

We might write relational “assertions” in the formats

inc C outc or C : inc → outc.

The first format is used in Hoare-logics, the second in data-typing.

The semantics equations inspire us to write these inference rules:

` p : x = E : in → f
#
p (in)

` C1 : in → out ` C2 : out → out ′

` C1; C2 : in → out ′

` C1 : in → out1 ` C2 : in → out2
` if E C1 C2 : in → out1 t out2

` C : in t out → out
` while E C : in → out

We use the rules to derive a program’s analysis as a “proof.”

Escuela’03 III / 30

Reaching definitions, repeated:

in p : x = E in − killx ∪ {p}
in C1 out out C2 out ′

in C1; C2 out ′

in C1 out1 in C2 out2

in if E C1 C2 out1 ∪ out2

in ∪ out C out
in while E C out

The (inverted) proof resembles the annotated syntax tree:

{ p1} { p1,p3}while y!=x ...

{ p1} { p1,p2,p3}if y>x ...

{ } { p1,p2,p3}p1: y = 1 ; if y>x ...

{ } { p1}p1: y = 1

{ p1} { p2}p2: y = x

{ p1,p3} { p3}p3: y = y+1

Unlike the denotational-semantics version, the while-rule does not

calculate a least-fixed point: A “guess” or “inference” of an invariant

assertion is made to obtain a proof of in ∪ outCout that is used to

prove inwhile E Cout. The program analysis is done in one pass.

Escuela’03 III / 31

The example suggests that data-typing systems defined as

“inference-rule sets” are one-pass, structured static analyses:

π ` x : π(x)
π⊕ [x 7→ τ1] ` E : τ2

π ` λx.E : τ1 → τ2

π ` E1 : τ1 → τ2 π ` E2 : τ1
π ` E1 E2 : τ2

These data-typing rules, which underlie the ML languages, analyze a

program in one pass and predict the range of values (data type) that

the program’s phrases will produce when executed:

γ(bool) = Bool = {true, false}

γ(int) = Int = {... − 1, 0, 1, ...}

γ(τ1 → τ2) = {f : Val | for all a ∈ γ(τ1), f(a) ∈ γ(τ2)}

where Val =
S

i≥0
Vi, such that V0 = {} and Vi+1 = Bool ∪ Int ∪ (Vi → Vi).

A guess is needed for τ1 in the hypotheis of the second typing rule. A

typical implementation of the rules uses first-order unification to

calculate an intelligent guess.

Escuela’03 III / 32

Big-step (natural) semantics is a multi-pass analysis

σ` p : x = E⇓ fp(σ)

σ` C1⇓ σ1 σ1` C2⇓ σ2

σ` C1; C2⇓ σ2

fEt(σ)` C1⇓ σ1 fEf(σ)` C2⇓ σ2

σ` if E C1 C2⇓ σ1 t σ2

fEt(σ)` C⇓ σ ′ σ ′` while E C⇓ σ ′′

σ` while E C⇓ fEf(σ) t σ ′′ ⊥` C⇓ ⊥

Recall that fp is a transfer function and that fEt and fEf ”filter” the store, e.g.,

fx>2t〈x : 4, y : 3〉 = 〈x : 4, y : 3〉, whereas fx>2t〈x : 0, y : 3〉 = ⊥.

An example: if Even(x) (x=0) (while x 6=3 (x = x+1))

⊥` x = 0⇓ ⊥

〈x:1〉` x = x + 1⇓ 〈x:2〉 〈x:2〉` while x 6= 3...⇓ ⊥ t 〈x:3〉

〈x:3〉` while x 6= 3...⇓ 〈x:3〉 t ⊥ = 〈x:3〉〈x:2〉` x = x + 1⇓ 〈x:3〉

〈x:1〉` while x 6= 3...⇓ ⊥ t 〈x:3〉

〈x:1〉` if Even(x) (x = 0) (while x 6= 3 (x = x + 1))⇓ ⊥ t 〈x:3〉 = 〈x:3〉

⊥` while x 6= 3...⇓ ⊥⊥` x = x + 1⇓ ⊥

Escuela’03 III / 33

An abstract big-step tree: using the same inference rules but with

abstract transfer functions for Parity = {⊥, even, odd,>}, we generate

an abstract tree that is infinite but regular:

〈x:odd〉` x = x + 1⇓ 〈x:even〉 〈x:even〉` while x 6= 3...⇓ ⊥ t X

〈x:odd〉` while x 6= 3...⇓ X

⊥` x = 0⇓ ⊥

〈x:odd〉` if Even(x) (x = 0) (while x 6= 3 (x = x + 1))⇓ ⊥ t X

· · ·

〈x:even〉` x = x + 1⇓ 〈x:odd〉

〈x:odd〉` while x 6= 3...⇓ 〈x:odd〉 t X = X

Variable X denotes the answer from the repeated loop subderivation:

X = 〈x:odd〉 t X

The least solution sets X = 〈x:odd〉.

Escuela’03 III / 34

Big-step semantics naturally supports
interprocedural analysis

func f(x) local y; C. [x 7→ [[E]]σ][y 7→ ⊥]` C⇓ σ ′

σ` z = f(E)⇓ σ[z 7→ σ ′(y)]

where [[E]]σ denotes E’s value with σ, and x 7→ v assigns v to x.

Example: func g(x) local z; z = x+1.

a = g(2); b = g(a); a = a*b

〈a:⊥, b:⊥〉` a = g(2); b = g(a); a = a ∗ b⇓ 〈a:even, b:even〉

〈a:⊥, b:⊥〉` a = g(2)⇓ 〈a:odd, b:⊥〉

〈x:even, z:⊥〉` z = x + 1⇓ 〈x:even, z:odd〉

〈a:odd, b:⊥〉` b = g(a); a = a ∗ b⇓ 〈a:even, b:even〉

〈a:odd, b:even〉` a = a ∗ b⇓ 〈a:even, b:even〉

〈a:odd, b:⊥〉` b = g(a);⇓ 〈a:odd, b:even〉

〈x:odd, z:⊥〉` z = x + 1⇓ 〈x:odd, z:even〉

The derivation tree naturally separates the calling contexts.

Escuela’03 III / 35

Recursions (*) force accelerated termination (!):

func fac(a) local b; if a = 0 (b = 1) (b = fac(a − 1); b = a ∗ b)

c = fac(3)

〈>, X.b〉` b = a ∗ b⇓ 〈>,> ∗ X.b〉

〈c : ⊥〉` c = fac(3)⇓ 〈c : >〉

〈3,⊥〉` if a = 0 (b = 1)(b = fac(a − 1); b = a ∗ b)⇓ ⊥t〈>,>〉 = 〈>,>〉

〈3,⊥〉` b = fac(a − 1); b = a ∗ b⇓ 〈>,>〉

〈3,⊥〉` b = fac(a − 1)⇓ 〈3,>〉 3,>` b = a ∗ b⇓ >,>

〈3,⊥〉t〈2,⊥〉 = 〈>,⊥〉` if a = 0 ...⇓ 〈0, 1〉t〈>,> ∗ X.b〉 = X = 〈>,>〉

〈0,⊥〉` b = 1⇓ 〈0, 1〉

⊥` b = 1⇓ ⊥

〈>,⊥〉` b = fac(a − 1)⇓ 〈>, X.b〉

〈>,⊥〉` if a = 0 ...⇓ X

〈>,⊥〉` b = fac(a − 1); b = a ∗ b⇓ 〈>,> ∗ X.b〉

*

*

*!

X = 〈0, 1〉t〈>,> ∗ X.b〉 The least solution sets X = 〈>,>〉.

Escuela’03 III / 36

The traditional data-flow implementation uses call strings:

¨ Each procedure has its own control-flow graph, as does the main

program. Each procedure invocation and return is drawn as a

“goto” arc in the graph for the entire program.

¨ When the program is analyzed, the store is accompanied by a

calling history, called the call string. (E.g., main calls p — the call

string is "main::p".)

¨ A finite bound, k, is placed on the call string’s length — only the

the k most recent invocations are remembered.

¨ Say that the call string is S, execution is in p, and p calls q. The

call string is revised to S ′ = (S :: p) ↓ k, and q’s activation record

labelled S ′ is used to execute q. At conclusion, control returns to

S.last — p — and the call string is shortened. (If the call string is

empty, then the return “gos to” all possible return points!)

Escuela’03 III / 37

References

¨ A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools,
Chapter 10. Addison Wesley, 1986.

¨ P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs. ACM POPL 1977.

¨ P. Cousot and R. Cousot. Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992,
Springer LNCS 631.

¨ Neil Jones and Flemming Nielson. Abstract Interpretation: a Semantics-Based
Tool for Program Analysis. In Handbook of Logic in Computer Science, Vol. 4,
Oxford University Press, 1994.

¨ H.R. Nielson, F. Nielson. Semantics with Applications. Wiley, 1992. Available
from www.imm.dtu.dk/~riis.

¨ H.R. Nielson, F. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

¨ D. Schmidt. Trace-Based Abstract Interpretation of Operational Semantics. J.
Lisp and Symbolic Computation 10 (1998).

Escuela’03 III / 38

