Foundations of Abstract Interpretation

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Escuela'03 II / 1

Outline

- 1. Lattices and continuous functions
- 2. Galois connections, closures, and Moore families
- 3. Soundness and completeness of operations on abstract data
- 4. Soundness and completeness of execution trace computation

Data sets are complete lattices

A complete lattice is a partially ordered set, with unique minimal and maximal elements, and with greatest-lower-bound and least-upper-bound operations:

 $\Box \{notpos, notneg\} = zero$ $\sqcup \{zero, notpos, notneg\} = all$ $\Box \{ \} = all$ $\sqcup \{ \} = none$

Here is a more precise definition: A *complete lattice*, $\mathcal{L} = \langle D, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$, consists of

- a set, D, and a partial ordering, \sqsubseteq , on D
- ♦ a smallest element, \bot (such that $\bot \sqsubseteq d$, for all $d \in D$) and a greatest element, \top (such that $d \sqsubseteq \top$, for all $d \in D$)
- a *least upper bound* operation, ⊥, such that, for all S ⊆ D, d ⊑ ⊥S, for all d ∈ S, and for all other upper bounds, c ∈ D, such that d ⊑ c, for all d ∈ S, we have that ⊥S ⊑ c
- a greatest lower bound operation, □, defined dually to the above:
 □S ⊆ d, for all d ∈ S, and when c ⊆ d, for all d ∈ S, we have that
 c ⊆ □S

The first example is the complete lattice, $\langle g(Int), \subseteq, \{ \}, Int, \bigcup, \bigcap \rangle$; the next two are abstractions of it:

Monotonic and chain-continuous functions

Given complete lattices, \mathcal{A} and \mathcal{B} , we say that a function, $f : A \to B$, is *monotonic* iff

```
for all a, a' \in A, a \sqsubseteq_A a' implies f(a) \sqsubseteq_B f(a')
```

A monotonic function preserves the "precision of information" in its argument.

Say that we have an ω -chain, $a_0 \sqsubseteq_A a_1 \sqsubseteq_A ... \sqsubseteq_A a_i \sqsubseteq_A a_{i+1} \sqsubseteq_A ...$

A function, $f : A \rightarrow B$, is ω -continuous iff

$$\bigsqcup_{i\geq 0} f(a_i) = f(\bigsqcup_{i\geq 0} a_i)$$

An ω -continuous function preserves the "limit of information" in a chain. Conventional computation employs monotonic and ω -continuous functions, so it is no restriction to use only them.

Galois connections

Given a complete lattice of "concrete" (execution) data, C, and a simpler complete lattice of "abstract" data, A, we relate the two by $\alpha : C \to A$ that will act like a *homomorphism* when we study the operations on C.

It will be useful that α have an "inverse,", γ :

Definition: For complete lattices C and A, and monotonic functions, $\alpha : C \to A, \gamma : A \to C$, the pair, $\langle \alpha, \gamma \rangle$ form a *Galois connection*, written $C\langle \alpha, \gamma \rangle A$, iff $c \sqsubseteq_C \gamma \circ \alpha(c)$ and $\alpha \circ \gamma(a) \sqsubseteq_A a$.

The maps α and γ are inverse maps on each other's image:

That is, for all $c \in \gamma[A]$, $c = \gamma \circ \alpha(c)$; for all $a \in \alpha[C]$, $a = \alpha \circ \gamma(a)$.

 α is ω -continuous (and even preserves \sqcup for arbitrary sets in C); γ preserves \sqcap for arbitrary sets in A. Each map uniquely defines the other:

 $\gamma(a) = \sqcup \{ c \mid \alpha(c) \sqsubseteq_A a \} \text{ and } \alpha(c) = \sqcap \{ a \mid c \sqsubseteq_C \gamma(a) \}$

The previous fact suggests this alternative characterization of Galois connection:

Proposition: For complete lattices C and A, the pair,

 $\langle \alpha : C \to A, \gamma : A \to C \rangle$, is a Galois connection when, for all $c \in C$ and $a \in A$, $c \sqsubseteq_C \gamma(a)$ iff $\alpha(c) \sqsubseteq_A a$.

From this definition, we can prove that both α and γ are monotonic, that $c \sqsubseteq_C \gamma \circ \alpha(c)$, and that $\alpha \circ \gamma(a) \sqsubseteq_A a$.

Galois connections are closed under composition, product, and so on:

If $\mathcal{C}\langle \alpha, \gamma \rangle \mathcal{D}$ and $\mathcal{D}\langle \alpha', \gamma' \rangle \mathcal{E}$ are Galois connections, then so is $\mathcal{C}\langle \alpha' \circ \alpha, \gamma \circ \gamma' \rangle \mathcal{E}$

If $C_i \langle \alpha_i, \gamma_i \rangle D_i$ is a Galois connection, for all $i \in I$, then so is $\Pi_{i \in I} C_i \langle \Pi_{i \in I} \alpha_i, \Pi_{i \in I} \gamma_i \rangle \Pi_{i \in I} D_i$.

If $\mathcal{C}\langle \alpha_C, \gamma_C \rangle \mathcal{C}'$ and $\mathcal{D}\langle \alpha_D, \gamma_D \rangle \mathcal{D}'$ are Galois connections, then so is $\mathcal{C} \to \mathcal{D}\langle (\lambda f. \alpha_D \circ f \circ \gamma_C), (\lambda f'. \gamma_D \circ f' \circ \alpha_C) \rangle \mathcal{C}' \to \mathcal{D}'.$

Why do we require the elaborate structure of a Galois connection?

- If we are certain about the precise definition of γ : A → C, we can mechanically synthesize the its adjoint, α(c) = ⊓{a|c ⊑_C γ(a)}.
 (Or, dually, if we are certain about α, we can synthesize γ as γ(a) = ⊔{c|α(c) ⊑_A a}.)
- 2. We obtain many mathematical properties about α , expressed in terms of its adjoint, γ (and vice versa).
- Since we intend to use α : C → A as a "homomorphism" from C to A, we can use α and its adjoint γ to synthesize abstract operations: For each f : C → C, we can synthesize f[#] : A → A, such that α is a "homomorphism" with respect to f and f[#]. (We will see that f[#] = α ∘ f ∘ γ.)

Closure maps

For $\mathcal{C}\langle \alpha, \gamma \rangle \mathcal{A}$, it is common that α is onto. This means \mathcal{A} embeds into \mathcal{C} as a sublattice:

A's elements are mere "tokens" that name distinguished sets in C. **Definition:** $\rho : C \to C$ is a *closure map* if it is (i)*monotonic*; (ii)*extensive:* $c \sqsubseteq_C \rho(c)$, for all $c \in C$; (iii)*idempotent:* $\rho \circ \rho = \rho$.

A closure map defines the embedding:

$$\label{eq:rho} \begin{split} \rho\{0,2\} &= \{0,2,4,\ldots\} \\ \rho\{0,2,4,\ldots\} &= \{0,2,4,\ldots\} \\ \rho\{0,1,\ldots,9\} &= \{0,1,2,\ldots\} \end{split}$$

Every Galois connection, $\mathcal{C}\langle \alpha, \gamma \rangle \mathcal{A}$, defines a closure map, $\gamma \circ \alpha$. Every closure map, $\rho : C \to C$, defines the Galois connection, $\mathcal{C}\langle \rho, id \rangle \rho[C]$.

Moore families

Given C, can we define a closure map on it by choosing some elements of C? The answer is *yes*, if the elements of C we select are closed under greatest-lower-bounds:

Definition: $M \subseteq C$ is a *Moore family* iff for all $S \subseteq M$, $(\Box S) \in M$.

We can define a closure map as $\rho(c) = \Box \{c' \in M \mid c \sqsubseteq_C c'\}.$

For a closure map, $\rho : \mathbb{C} \to \mathbb{C}$, its image, $\rho[\mathbb{C}]$, is a Moore family.

Given C, we can define an abstract interpretation by selecting some $M \subseteq C$ that is a Moore family!

Closed binary relations

Often a Galois connection uses a powerset for its concrete domain, that is, $\wp(\mathcal{D})\langle \alpha, \gamma \rangle \mathcal{A}$. This format yields a simple characterization:

Given unordered set D and complete lattice A, it is natural to relate the elements in D to those in A by a binary relation, $\mathcal{R} \subseteq D \times A$, such that $(d, a) \in \mathcal{R}$ means "d *has property* a." We write this as d \mathcal{R} a or as d $\models_{\mathcal{R}} a$.

Example: D = Int, and

 $A = \{none, neg, pos, zero, nonneg, nonpos, any\}.$

Then, 2 \mathcal{R} nonneg, 2 \mathcal{R} pos, and 2 \mathcal{R} any. (Or we write, $2 \models_{\mathcal{R}}$ nonneg, $2 \models_{\mathcal{R}}$ pos, and $2 \models_{\mathcal{R}}$ any.)

We immediately define the function, $\gamma : A \rightarrow \wp(D)$, as

 $\gamma(a) = \{ d \in D \mid d \mathcal{R} a \}$

For example, $\gamma(nonneg) = \{0, 1, 2, ...\}.$

We can check if γ is the upper adjoint of a Galois connection, say, by showing that $\gamma[A]$ defines a Moore family. But we can check for this directly upon \mathcal{R} :

Proposition: $\mathcal{R} \subseteq D \times A$ defines a Galois connection between $\wp(D)$ and A iff (i) \mathcal{R} is *U-closed*: c \mathcal{R} a and a \sqsubseteq_A a' imply c \mathcal{R} a'; (ii) \mathcal{R} is *G-closed*: c $\mathcal{R} \sqcap \{a \mid c \mathcal{R} \mid a\}$.

If \mathcal{R} defines a Galois connection, then we have this crucial property:

♦ for all $a \in A$ and $C \in ℘(D)$, $C \subseteq γ(a)$ iff $α(C) \sqsubseteq_A a$ iff (c a, for all $c \in C$).

This is of course the definition of a Galois connection, and in this sense, \mathcal{R} "is" a Galois connection.

A recipe for abstract-domain building

Given an unordered set, D, of concrete data values, we might ask, *"What are the properties about* D *that I wish to calculate? Can I relate these properties,* $a \in A$ *, to elements* $d \in D$ *via a UG-closed binary relation,* $\mathcal{R}_D \subseteq D \times A$?" Given a set, A, and relation, $\mathcal{R}_D \subseteq D \times A$,

- 1. Define $\gamma : A \to \wp(D)$ as $\gamma(a) = \{d \mid d \mathcal{R}_D \mid a\}$.
- Define this partial ordering on A: a ⊑ a' iff γ(a) ⊆ γ(a'). (If there are distinct a, a' ∈ A such that γ(a) = γ(a'), then merge them.)
 This forces U-closure.
- Ensure that γ[A] is a Moore family by adding greatest-lower-bound elements to A as needed. This forces G-closure.
- Use the existing machinery to define the Galois connection between
 ^(D) and A.

Example: Abstracting the Program State

The concrete storage vector is a product,

Store = $\Pi_{i \in Identifier} Data$

and the concrete program state is a ProgramPoint × Store pair.

Example: p_1 , $\langle x : 3, y : 4 \rangle$ is a program state.

Say that we have the relation, $\mathcal{R}_{Data} \subseteq Data \times AbsData$, and we have the induced Galois connection,

 $\wp(Data)\langle \alpha_{Data}, \gamma_{Data}\rangle AbsData$. Now, we can build Galois connections that abstract the store and the state.

A concrete store is related to an abstract store:

 $\langle x_i : v_i \rangle_{i \in Id} \mathcal{R}_{Store} \langle x_i : a_i \rangle_{i \in Id}$, iff, for all $i \in Id, v_i \mathcal{R}_{Data} a_i$

Example: $\langle x : 3, y : 4 \rangle \mathcal{R}_{Store} \langle x : any, y : even \rangle$.

This produces a Galois connection, $\wp(Store)\langle \alpha_{Store}, \gamma_{Store} \rangle AbsStore$,

where $AbsStore = \prod_{i \in Identifier} AbsData$ and

$$\begin{split} &\gamma \langle x_i : a_i \rangle_{i \in Id} = \{ \langle x_i : \nu_i \rangle_{i \in Id} \mid \nu_i \in \gamma_{Data}(a_i), \text{ for all } i \in Id \} \\ &\alpha_{Store}(S) = \langle \bigsqcup_{s \in S} \alpha(s(i)) \rangle_{i \in Id} \end{split}$$

For example,

 $\gamma_{\text{Store}}\langle x: \text{even}, y: \text{odd} \rangle = \{ \langle x: 0, y: 1 \rangle, \langle x: 0, y: 3 \rangle, \langle x: 2, y: 1 \rangle, ... \}$

A program point is abstracted to itself: $p \mathcal{R}_{PP} p$, suggesting that the abstract domain of program points might be merely $AbsPP = ProgramPoint \cup \{\bot, \top\}$. (\top and \bot are needed to make AbsPP a complete lattice.)

Finally, we can relate a concrete state to an abstract one:

 $p, s \mathcal{R}_{State} p', \sigma \text{ iff } p \mathcal{R}_{PP} p' \text{ and } s \mathcal{R}_{Store} \sigma$

Hence, $\gamma_{\text{State}}(p_i, \sigma) = \{p_i, s \mid s \in \gamma_{\text{Store}}(\sigma)\}.$

Concrete and abstract operations

Now that we know how to model $c \in C$ by $\alpha(c) \in A$, we must model concrete computation steps, $f : C \to C$, by abstract computation steps, $f^{\#} : A \to A$.

Example: We have concrete domain, Nat, and concrete operation, succ : Nat \rightarrow Nat, defined as succ(n) = n + 1.

We have abstract domain, Parity, and abstract operation, succ[#] : Parity \rightarrow Parity, defined as

> $succ^{\#}(even) = odd, \quad succ^{\#}(odd) = even$ $succ^{\#}(any) = any, \quad succ^{\#}(none) = none$

succ[#] must be consistent (sound) with respect to succ: if n \mathcal{R}_{Nat} a, then succ(n) \mathcal{R}_{Nat} succ[#](a)

where $\mathcal{R} \subseteq \text{Nat} \times \text{Parity}$ relates numbers to their parities (e.g., 2 \mathcal{R}_{Nat} even, 5 \mathcal{R}_{Nat} odd, etc.).

We want soundness: $n \mathcal{R}_{Nat}$ a implies $succ(n) \mathcal{R}_{Nat} succ^{\#}(a)$, for all $n \in Nat$ and $a \in Parity$.

Since we have the Galois connection, $\wp(Nat)\langle \alpha, \gamma \rangle$ Parity, we know that $\gamma(a) = \{n \mid n \mathcal{R}_{Nat} a\}$.

So, soundness is stated equivalently as

for all $a \in A$, for all $n \in \gamma(a)$, succ $(n) \in \gamma(succ^{\#}(a))$

and this is equivalent to saying,

for all $a \in A$, $succ^*(\gamma(a)) \subseteq_{Nat} \gamma(succ^{\#}(a))$ that is, for all $a \in A$, $(succ^* \circ \gamma)(a) \subseteq_{Nat} (\gamma \circ succ^{\#})(a)$

where $succ^* : \wp(Nat) \rightarrow \wp(Nat)$ is $succ^*(S) = \{succ(n) \mid n \in S\}$.

This is interesting, because it states a commutative, "semi-homorphism" property.... **Definition:** For Galois connection, $C\langle \alpha, \gamma \rangle A$, and functions $f : C \to C$, $f^{\#} : A \to A$, $f^{\#}$ is a *sound approximation* of f iff

$$(\alpha \circ f)(c) \sqsubseteq_A (f^{\#} \circ \alpha)(c), \text{ for all } c \in C$$

iff
 $(f \circ \gamma)(\alpha) \sqsubseteq_C (\gamma \circ f^{\#})(\alpha), \text{ for all } \alpha \in A$

This slightly abstract presentation exposes that α is a "semi-homomorphism" with respect to f and f[#]:

Example 1: n \mathcal{R}_{Nat} a implies $succ(n) \mathcal{R}_{Nat} succ^{\#}(a)$

```
Galois connection: \wp(Nat)\langle \alpha, \gamma \rangleParity

succ^* : \wp(Nat) \rightarrow \wp(Nat)

succ^*(S) = \{succ(n) \mid n \in S\}

where succ(n) = n + 1

succ^{\#} : Parity \rightarrow Parity

succ^{\#}(even) = odd, \quad succ^{\#}(odd) = even

succ^{\#}(any) = any, \quad succ^{\#}(none) = none
```

We have that $\alpha \circ \operatorname{succ}^* = \operatorname{succ}^\# \circ \alpha$:

Example 2: n \mathcal{R}_{Nat} a implies div2(n) \mathcal{R}_{Nat} div2[#](a)

```
Galois connection: \wp(Nat)\langle \alpha, \gamma \rangleParity

div2^* : \wp(Nat) \rightarrow \wp(Nat)

div2^*(S) = \{div2(n) \mid n \in S\}

where div2(2n + 1) = div2(2n) = n

div2^\# : Parity \rightarrow Parity

div2^\#(even) = div2^\#(odd) = any

div2^\#(any) = any, \quad div2^\#(none) = none
```

We have that $\alpha \circ \operatorname{div} 2^* \sqsubseteq_{\operatorname{Parity}} \operatorname{div} 2^{\#} \circ \alpha$:

Synthesizing f[#] from f

The previous slides show how α acts as a "semi-homomorphism" between f and f[#].

Given the Galois connection, $\mathcal{C}\langle \alpha, \gamma \rangle \mathcal{A}$, and operation, $f : C \to C$, the most precise $f_{\text{best}}^{\#} : A \to A$ that is sound with respect to f is

 $f_{best}^{\#} = \alpha \circ f \circ \gamma$

Proposition: $f^{\#}$ is sound with respect to f iff $f_{\text{best}}^{\#} \sqsubseteq_{A \to A} f^{\#}$.

(Note: $f \sqsubseteq_{A \to A} g$ iff for all $a \in A$, $f(a) \sqsubseteq_{A} g(a)$.)

Of course, $f_{best}^{\#}$ has a *mathematical* definition — not an algorithmic one — $f_{best}^{\#}$ might not be finitely computable !

Parity example continued:

 $succ_{best}^{\#}(even) = \alpha \circ succ^{*}(\gamma even)$ $= \alpha(succ^{*}\{2n \mid n \ge 0\})$ $= \alpha\{2n + 1 \mid n \ge 0\} = odd$

One more example:

Given $\wp(Nat)\langle \alpha, \gamma \rangle$ Parity and div2 : Nat \rightarrow Nat, we have

 $div2^* : \wp(Nat) \rightarrow \wp(Nat)$ $div2^*(S) = div2[S] = \{div2(n) \mid n \in S\}$

Hence, $\operatorname{div2}_{\operatorname{best}}^{\#} = \alpha \circ \operatorname{div2}^* \circ \gamma$. The operation loses precision: $\alpha(\operatorname{div2}^*\{4\}) = \alpha\{2\} = \operatorname{even}$, but $\operatorname{div2}_{\operatorname{best}}^{\#}(\operatorname{even}) = \alpha(\operatorname{div2}^*(\gamma(\operatorname{even})))$ $= \alpha(\operatorname{div2}^*\{0, 2, 4, ...\})$ $= \alpha\{1, 2, 3, ...\} = \operatorname{any}$

Nonetheless, this is the best we can do, given the crude structure of the abstract domain, **Parity**.

Completeness

Given $\mathcal{C}\langle \alpha, \gamma \rangle \mathcal{A}$, we state soundness of $f^{\#}$ with respect to f as $\alpha \circ f \sqsubseteq_{A \to A} f^{\#} \circ \alpha$ iff $f \circ \gamma \sqsubseteq_{C \to C} \gamma \circ f^{\#}$

Definition: $f^{\#}$ is *forwards* (γ) *complete* with respect to f iff $f \circ \gamma =_{C \to C} \gamma \circ f^{\#}$

Definition: $f^{\#}$ is *backwards (\alpha) complete* with respect to f iff $\alpha \circ f =_{A \to A} f^{\#} \circ \alpha$

The two completeness notions are not equivalent!

For an $f^{\#}$ to be (forwards or backwards) complete, it must equal $f_{best}^{\#} = \alpha \circ f \circ \gamma$. Indeed, the structure of the Galois connection and $f : C \to C$ determines whether $f_{best}^{\#}$ is complete.

Forwards (γ **) completeness:** $f_{best}^{\#}$ is forwards-complete iff f maps image points of γ to image points of $\gamma - f(\gamma[A]) \subseteq \gamma[A]$.

Backwards (α **) completeness:** $f_{best}^{\#}$ is backwards-complete iff f maps all points in the same α -equivalence class to points in the same α -equivalence class $-\alpha(c) = \alpha(c')$ implies $\alpha(f(c)) = \alpha(f(c'))$.

Transfer functions generate computation steps

Each program transition from program point p_i to p_j has an associated *transfer function*, $f_{ij} : C \to C$ (or $f_{ij}^{\#} : A \to A$), which describes the associated computation.

This defines a computation step of the form, $p_i, s \rightarrow p_j, f_{ij}(s)$.

Example: Assignment $p_0 : x = x + 1$; $p_1 : \cdots$ has the transfer function, $f_{01}\langle ...x : n... \rangle = \langle ...x : n + 1... \rangle$. For example, $p_0, \langle x : 3 \rangle \rightarrow p_1, f_{01}\langle x : 3 \rangle = p_1, \langle x : 4 \rangle$.

For modelling multiple transitions in conditional/nondeterministic choice, we attach a transfer function to each possible transition.

 p_0 : cases

Example: For

$$x \le y: p_1: y = y - x;$$

 $y \le x: p_2: x = x - y;$
end

E		we have these functions:	
For			s if $s.x \leq s.y$
$p_0: cases$ $x \le y:$	$p_1: y = y - x;$	$f_{01}(s) = \langle$	\perp otherwise
$y \leq x$:	$p_2: x = x - y;$	$f_{re}(s) = \int$	s if $s.y \le s.x$
end		102(3) - 102(3)	\perp otherwise

For example, p_0 , $\langle x : 5, y : 3 \rangle \rightarrow p_1$, \bot , because $x \not\leq y$, but p_0 , $\langle x : 5, y : 3 \rangle \rightarrow p_2$, $\langle x : 5, y : 3 \rangle$, because $y \leq x$. The transfer functions "filter" the data that arrives at a program point.

We ignore computation steps, $p, s \rightarrow p', \perp$, that produce "no data" (\perp).

An *execution trace* is a (possibly infinite) sequence,

 $p_0, s_0 \rightarrow p_1, s_1 \rightarrow \cdots \rightarrow p_j, s_j \rightarrow \cdots$, such that, for all $i \ge 0$:

- $p_i, s_i \rightarrow p_{succ(i)}, f_{i,succ(i)}(s_i)$
- no s_i equals \perp .

Using the f[#]s to build sound, abstract trace trees

Each concrete transition, $p_i, s \to p_j, f_{ij}(s)$, is reproduced by a corresponding abstract transition, $p_i, a \to p_j, f_{ij}^{\#}(a)$, where $s \in \gamma(a)$.

For example, $p_2 : x = x \operatorname{div2}$ is interpreted *concretely* by $f_{20}(2n) = n = f_{20}(2n + 1)$ and is interpreted *abstractly* by $f_{20}^{\#}(even) = any = f_{20}^{\#}(odd) = f_{20}^{\#}(any)$.

The traces embedded in the abstract trace tree "cover" (*simulate*) the concrete traces, e.g., this concrete trace,

$$p_0, 4 \rightarrow p_1, 4 \rightarrow p_2, 4 \rightarrow p_0, 2 \rightarrow p_1, 2 \rightarrow p_2, 2 \rightarrow p_0, 1 \rightarrow p_4, 1$$

is simulated by this abstract trace, which is extracted from the abstract computation tree:

 $\begin{array}{l} p_{0}, even \rightarrow p_{1}, even \rightarrow p_{2}, even \rightarrow p_{0}, any \rightarrow p_{1}, any \rightarrow p_{2}, even \rightarrow \\ p_{0}, any \rightarrow p_{4}, odd \end{array}$

and indeed, *all* concrete traces starting with p_0 , 2n, $n \ge 0$, are simulated by the abstract tree in this manner.

Proof of soundness of trace construction

For $S \in C$ and $a \in A$, say that $S \mathcal{R}$ a iff $S \sqsubseteq_C \gamma(a)$ iff $\alpha(S) \sqsubseteq_A a$. **Lemma:** $\alpha \circ f \sqsubseteq_{A \to A} f^{\#} \circ \alpha$ iff $f \circ \gamma \sqsubseteq_{C \to C} \gamma \circ f^{\#}$ iff $S \mathcal{R}$ a implies $f(S) \mathcal{R} f^{\#}(a)$.

Theorem: For every concrete trace, $(p_i, s_i)_{i \ge 0}$, there exists an abstract trace, $(p_i, a_i)_{i \ge 0}$, such that for all $i \ge 0$, $\{s_i\} \mathcal{R} a_i$.

Proof: We use the Lemma and induction to assemble this diagram:

$$p_{0}, s_{0} \longrightarrow p_{1}, f_{0}(s_{0}) = p_{1}, s_{1} \longrightarrow p_{2}, f_{1}(s_{1}) = p_{2}, s_{2} \longrightarrow \cdots \longrightarrow p_{i}, s_{i} \longrightarrow \cdots$$

$$\mathcal{R} \mid \mathcal{R} \mid$$

(Note: each s_i in the diagram is more precisely stated as $\{s_i\}$, because $C = \wp(Store)$.) Due to imprecision of the $f^{\#}s$, the abstract trace tree may possess many traces that begin with p_0 , a_0 , but there is always one trace in the tree that simulates the concrete trace. When all the operations, $f_{ij}^{\#}$, are complete with respect to the f_{ij} s, the previous result is strengthened:

Say that S \mathcal{R} a iff $\alpha(S) = \alpha$. (Similarly, say that S \mathcal{R} a iff $S = \gamma(\alpha)$.)

In both cases, the lemma holds:

Lemma: $\alpha \circ f =_{A \to A} f^{\#} \circ \alpha$ iff $S \mathcal{R}$ a implies $f(S) \mathcal{R} f^{\#}(a)$. (Similarly, $f \circ \gamma =_{C \to C} \gamma \circ f^{\#}$ iff $S \mathcal{R}$ a implies $f(S) \mathcal{R} f^{\#}(a)$.)

Theorem (α -completeness): When S \mathcal{R} a iff $\alpha(S) = a$, then for every concrete trace, $(p_i, s_i)_{i \ge 0}$, there exists an abstract trace, $(p_i, a_i)_{i \ge 0}$, such that for all $i \ge 0$, $\{s_i\} \mathcal{R} a_i$.

Theorem (γ -completeness): When S \mathcal{R} a iff $\gamma(a) = S$, S \subseteq Store, then for every trace on *sets of stores*, $(p_i, S_i)_{i \ge 0}$, there exists an abstract trace, $(p_i, a_i)_{i \ge 0}$, such that for all $i \ge 0$, $S_i \mathcal{R} a_i$.

References

- P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. ACM POPL 1977.
- P. Cousot and R. Cousot. Systematic design of program analysis frameworks. ACM POPL, 1979.
- P. Cousot. Slides for invited lecture at VMCAI 2003, New York City. www.di.ens.fr/~cousot
- R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. Journal ACM 47(2) 2000.
- R. Giacobazzi and E. Quinterelli. Incompleteness, counterexamples, and refi nements in abstract model-checking. SAS 2001, Springer LNCS 2126.
- D. Schmidt. Structure-preserving binary relations for program abstraction. In The Essence of Computation: Complexity, Analysis, Transformation. Springer LNCS 2566, 2002.