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Dennis Dams’s mixed transition systems

� � ��� � � � � � � � 	


 � � �� � � � � � � �� � � � � � � �� � � � � � 	

c0

c1

c2

Approximating the states: Note:  and � omitted for brevity.

� ��� � 	 � � � , � ��� � 	 � � � � � � ��� � 	 � � ��� � � � � 	

Over-approximation transitions (“may” : � � ) for safety properties:

� � � � � � � � � � 	


�� � � � � � � � � � � � � � � � � � � � � 	 a0 a12

Under-approximation transitions (“must” : � � ) for liveness

properties:

� � � � � � � � � � 	


�� � � � � � � � � � � 	

a0 a12

A mixed transition system is � � � � 
�� � 
�� � .
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Note that the � � -definition of under-approximation is not the only
candidate:

� � ��� � � � � � � � 	


 � � �� � � � � � � �� � � � � � 	

c0

c1

c2

State abstraction:

� ��� � 	 � � � , � ��� � 	 � � � � � � ��� � 	 � � ��� � � � � 	

The � � -over-approximation remains the same: a0 a12

Under-approximation transitions ( � � ):

� � � � � � � � � � 	


� � � � � � � � � � � 	

a0 a12

Under-approximation transitions ( � � ):

� � � � � � � � � � 	


�� � � 	

a0 a12
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From Galois connection, � ��� � � � � � �� , Dams defines this simulation
relation: � � � iff� � � � � � . For 
 	 � 
 � , he defines

� 
� �� iff �� � � � �� �� � �� � � ��� � � 
�� � � � � � � � � � � 	 	

� 
� �� iff �� � � � �� �� � �� � � ��� � � 
�� � � � � � � � � � � 	 	

and he proves 
 � � 
� : 
� � -simulates 



� � ��� � 
 : 
� is � -simulated by 


This gives him soundness for � ( � 
 ) and � ( � 
 ): If

� � � � � iff for all �� , � 
� �� implies �� � � �

� � � � � iff there exists �� such that � 
� �� and �� � � �

then, � � � � and� � � imply� � � � .

And with lots of hard work, he proves “best precision”: Of all the � -,

� � -simulations of 
 , 
� and 
� preserve the most � � -properties.

��� � �"!



Can we prove the over- and under-approximation
results directly from Galois-connection theory?

Yes — we treat 
 	 � 
 � as 
 � � � � � � � .
Then, 
� � � � � � � , where � � is a lower powerset ( 	 ) constructor.

We “lift” the Galois connection, � � � � � � � � �� , on the states to a
higher-order Galois connection on transition relations:

� � � � � � � � � � �� � � � �so that

1. 
 � � 
� iff 
� � � � � � � 
�

2. soundness of � � � � follows from 1.

3. 
� ��� 	 � � � � 
� �

And we do similar but harder work for 
� � � � � 
 � , where � 
 is an
upper powerset ( � ) constructor.

And there are interesting choices for � � , � � , � � , � � , and � 
 ....
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Let �� � � .
How do we concretize a set � � � ?

Given Galois connection, � � � � � � � � �� � , say� � � � iff� � � � � � :

� is approximated by � .

Choice 1: let� � � � � � and � � � � � :

P 
L
τ

ρP(C)
P (A)L

. . a . .

. c . .

=T

S=

� is over-approximated by � iff for every� � � , there exists some

� � � such that� is approximated by � :

� � � 	 
 � � � iff for every� � � , there exists � � � such that� � � �

Then,

� � 	 � � � � � � ��� � � � � 	 � � 	 � ��� � exists � � � � � � � � 	

When � ��� �� equals � � , then � �� is half of the Egli-Milner ordering and freely

generates the lower (“Hoare”) powerdomain.

��� � ���



Choice 2: The concrete domain might be � � � � � � � � : sets of sets of
states. Intuition: if abstract state � � � � concretizes to a set of states, �� � � � � ,

then set � �� 	 � � should concretize to a set of sets.

We have this relationship:

. . .
. . . . . . P 

L
τ

ρ

. . . . .

P ALS =

PCPL = T

That is,

�
� � � � � � � � � � is over-approximated by � � � � � � if for every

set� �
�

� ,� � � 	 
 � � � .

This makes � 	� 	 � � � � � ��� � � � � 	 � � 	
This definition is the “same” as the one on the previous slide in the
sense that � 	� 	 � � � � � � � 	 � � � � .

Either can be used to define a sound and best 
� � � � � � � � .

��� � ��




But we define the under-approximation, 
� � � � � 
 � with Choice 2,
mapping sets � � � 
 � to sets of sets in � � � � 
 � � :

.. c0 .. .. c1 ..
.. ci ..

P 
U

τ
ρ

.. a ..

P AUS =

P CP UL = T

That is,

�
� is approximated by � iff for every set� �

�
� ,� is

under-approximated by � , written as� � � � 
 � � � , where

� � � � 
 � � � iff for every � � � , there exists some� � � such that� � � � .

This makes � 	� �� � � � � � ��� � � � � � � � 	
which has a different significance than � � �� � � � � � � 	� � � � � � � !

Choice 2 gives us a useful, sound 
� � � � � 
 � .

When � ��� �� is � � , then � � � is the other half of the Egli-Milner ordering and

freely generates the upper (“Smyth”) powerdomain.
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Example: Let � �� be the set of natural numbers and let complete
lattice � �� �� �� � � � � � �� �� �� � � � � � � � � � 	 .

Define � � � �� 
 � �� �� �� � in the obvious way: 	 �� �� � , 	 � � � � ,


 � � � � , etc.

We define a Galois connection on � � � �� � and � � � �� �� � and lift it:
� � � � � �� �� �� � � � � � � � � �� �� � �

��� � all subsets of nats

�
�� �� �� � nonempty subsets of nats

�
�� �� �� �� � � � �� �� � all sets with

1+ even and 1+ odd �

�� �� �� � �� �� � all sets with 1+ even

�
�� � � � � � empty set

{any}

{ }

{even,odd,any}

{even,any}

{none,even,odd,any}

{odd,any}

P Polarity

�� � � � �



Our results from reworking Dams’s constructions

1. Starting from approximation relations, � 	 � 
 � , we generate
Galois connections from such U-GLB-L-LUB-closed relations cf.

[Mycroft-Jones 86, Cousot-Cousot JLC 92].

2. We define lower and upper powerset constructions, weaker forms
of powerdomain but strong enough for abstraction studies. The

former are the join completions of [Cousot-Cousot ICCL 94].

3. We use the powerset types in a family of logical relations, show
how the family preserves the closure properties in 1., and prove
that a simulation proof is an instance of proof via logical relations.
We obtain Dams’s most-precise simulation results “for free.” We

compare to earlier attempts by [Loiseaux, et al. 95, Backhouse-Backhouse 98].

4. We extract validation and refutation logics from the logical
relations, state their resemblance to Hennessy-Milner logic (and
description logic), and obtain easy proofs of soundness.

�� � � � �



Closed relations
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Closed relations and Galois connections

Let � and� be complete lattices, and let � 	 � 
 � .

�  � means that � is modelled/approximated by �

Definition: For all� � � � � � , � � � � � � , for � 	 � 
 � , � is

1. U-closed iff� � � , � � �� imply� � ��

2. GLB-closed iff� � � � � � � � � 	
3. L-closed iff� � � ,� � � � imply� � � �
4. LUB-closed iff � ��� � � � � 	 � �

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986

(LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998

�� � � � �



ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Proposition: For L-U-LUB-GLB-closed � 	 � 
 � , � � � � � � � �� is a
Galois connection, where

� � � �� � � � � � � � � � 	

� � � � � � � � ��� � � � � 	

Intuition: U-closed makes � � mono; L-closed makes � � mono;

GLB-closed ensures � � selects the most precise sound answer;

LUB-closed ensures � � selects the most general sound answer.

Note that� � � iff� � � � � � iff � � � � � � . Backhouse� :  is a pair algebra.

Proposition: For Galois connection, � � � � � �� , define �� � 	 � 
 �

as � �� � � � � � � � � 	 . Then,

� � � is L-U-LUB-GLB-closed and � � �� � � � � � � � � � � � � � .

�� � � � �



“Completing” U-GLB-closed � � � into a
Galois connection between � � � and

Here is a standard technique: Let � be a (discretely ordered) set and

let� be a complete lattice.

Theorem: If � 	 � 
 � is U-GLB-closed, then � � � � � � 	� � � 	� �� is a

Galois connection, where

� � 	� � � � � ��� � � � � 	

� � 	� �� � � � � � � � 	 � 	� � 	

Note that� � � iff� � � 	� � iff � 	� ��� 	 � � .

The proof comes from this construction, which “completes” � to

� � :

For � 	 � 
 � , define

� � 	 � � � � 
 � as� � � � iff for all� � � ,� � � .

Lemma: If � is U-GLB-closed, then� � is L-U-GLB-LUB-closed, and

� 	� � � � ��� � � � � � 	 � ��� � � � � 	 . because � � �� � � � and � � �� � � 	 .

�� � � � !



Example: Let � � � be the discretely ordered set of integers:
� 	 � � � 
 � � � �

� � � �� �

� �� � � �

� � � � ��

� � � � �

{ m | m < 0 }
ρ

neg zero pos

all

none

SignP(Int)

� is U-GLB-(and trivially, L-)closed but not LUB-closed, so it is

completed to

� � 	 � � � � � � 
 � � � � , giving us a Galois connection,

� � � � � � � � 	� � � 	� � � � � � .
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Powersets
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Powersets

When � is a partially ordered, we have choices for the “powerset” of

� , but we should build a complete lattice with singleton and union
operations: ��� � � � � �� �� 	 � � � � �� � � 
 � � � � .

Down-set (order-ideal) completion [Cousot-Cousot ICCL94]: For

� � � ,� 	 � , define � � � �� � � � � � � 	 and � � � � � � � � � � � 	 .

Define � � � � � � � � � � 	 � 	 � 	 � � � � � — all down-closed subsets of �

Join completion [Cousot-Cousot ICCL94] — sublattices of � � � :

� � 	 � � � � � � , where 	 � � � � � 	 � 	 is a Moore family (closed
under 	 ). (Note that � � � � � � � � 	 � 	 � � � �� � 
 � is isomorphic to � .)

For every monotone � � � � � , we define �� � � � � � � � � � as

� � � � � �� � � � � �� � � � � .

Join completions “add new joins to � ”: For� � � � �� � � � � , we build� � � � ��� � � � �� 	 � ,

where� 	 � is a join completion,� � � ��� � � � , and �� � � � � �� � 	 � � .

�� � � � 




Here is� � � � and its order-ideal completion:

Sign

neg

all

zero pos

none

{zero,pos,none}

allP (Sign)

{neg,none}

{neg,pos,none}{neg,zero,none}

{zero,none} {pos,none}

{neg,zero,pos,none}

{none}

�� � � � �



There is a dual construction:

Up-set (filter) completion: For � � � and� 	 � , define

� � � �� � � � � � � 	 and � � � � � � � � � � � 	 .

Define � � � � � � � � � � 	 � 	 � � � � � � � — all up-closed subsets of �

For every monotone � � � � � , define � � � � � � � � � � � as

� � � � � �� � � � � �� � � � � .

As noted in [Cousot-Cousot ICCL94], there is no obvious application of�
�
� to

enriching � : Given� � � � �� � � � � , we build� � � � ��� � � � ��
�

� , where� � � ��� � � � and we

see that �� � � � � � � � �
� � — no “new meets” are added to � .

Fortunately, we have another use for�
�
� .

�� � � � �



Lower powerdomains via Hennessy-Plotkin

Definition: For complete lattice, � , A powerset of � is

� � � ��� � � � � �� �� 	 � � � � � � � � 
 � � � � , such that

� �� � � � � is a complete lattice

� �� �� 	 is monotone

� � is monotone, absorptive, commutative, and associative

� For every monotone � � � � � , there is a monotone

� � � � � � � � � � such that � � � � � �� �� 	 � � � � � , for all � � � .

For powerset � � , � � � and� � � � , define � �� � iff �� �� 	� � � � .

Definition: Powerset � � � � �� � � � � �� �� 	 � � � is a

� lower powerset iff (( for all �

�� � � , there exists �
�� � � such that

� � � � ) implies� � � � � � ).

� strongly lower powerset iff implies is replaced by iff.

�� � � � �



Proposition: For a lower powerset, � � � , we have that� � � iff � � �

is strongly lower.

Every join completion is a strongly lower powerset, and every strongly
lower powerset, � � � , is order-isomorphic to its trivial join-completion,

� � � 
 � � � � � � � 	 � 	 � � 
� �� �� 	 � � 
 � � 
 � .

For a join completion, � �� � iff � � � .

Definition: A strongly lower powerset, � � � , is a lower powerdomain
iff for every monotone � � � � � , where � is itself a strongly lower
powerset, � � � � � � � � � � � preserves unions (binary joins):

� � � � � �� � � 	 
 � � � � � � � � � �� � � � �� � � � �� � � .

When � � � � � is unique, then the powerdomain is initial.

Lower powerdomains are stronger than what we will need, but a lower powerdomain

� 	 � has the precision expected of a “all subsets of � ” construction. For example, if

we define ��� � � �� � � � � � �
�� �� � � , then union-preservation is implied by � �� � � � � iff

� �� � or � �� � � .

�� � � � �



Upper powersets

As [Plotkin Pisa] notes, the definitions of upper powerset and strongly

upper powerset coincide, so

Definition: Powerset � 
 � � ��� � � � � �� �� 	 �� � is an upper powerset iff

(� � � � � � iff for all �
�� � � , there exists �

�� � � such that � � � � ).

� � � is an upper powerset.

Proposition: For an upper powerset,� � � .

Definition: An upper powerset, � 
 � , is an upper powerdomain iff for

every monotone � � � � � , where � is itself an upper powerset,

� � � � � � � 
 � � � preserves unions:

� � � � � �� � � � 
 � � � � � � � � � �� � � � � � � � � �� � � .

For example, if we define ��� � � �� � � � � � �
�� �� � � , then union-preservation is implied

by � �� � � � � iff � �� � or � �� � � .

�� � � � �



Logical relations
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Logical relations

We now attach typings to the relations. Given this grammar of types,

� � ��� � � � ��� � � �	� � � � � 
 � �



�

We will see that ��� � � � � � � � comes from  � ��� � �

let� � be a complete lattice of the appropriate form (e.g.,� � �� � � is a
domain of monotone functions,� � � � is an upper powerset, etc.)

We define this family of logical relations, � � 	 � � 
 � � :

� � is given

� � � �  � � �� iff for all� � � � � � � � � � � � � � � � � implies � �� � � � � �� � � �

� � � 	 � � iff for all�
�� � � there exists �
�� � such that� � � �

� � � � � � iff for all �
�� � � there exists�
�� � such that� � � �

� � 	� � iff for all� � � � � � � �

and use it to generate Galois connections inductively.

�� � � � !



Simulation relations are just logical relations

Binary relations are the key component in simulation proofs:

For � 	 � 
 � , transition relations, 
 	 � 
 � , 
�� 	 � 
 � ,

Definition: 
�� simulates 
 (or, 
�� overapproximates 
 ), written


 � � 
�� , iff for all� � � � � � � � � � ,

� � � and� 
 � � imply there exists �� � � such that � 
� �� and� � � � � .

Say that we represent 
 and 
� as multi-functions, 
 � � � � � � and


�� � � � � � � :

Theorem: 
 � �� 
�� iff 
 � �  � 	 � 
�� . The proof assumes that � and ���

behave monotonically, which is not a restriction, given that� is typically discretely

ordered and ��� must be monotone to be computed with the standard techniques.

The dual simulation, 
� � � � �
�


 , is characterized as 
 � �  � � � 
� . ( 
�

underapproximates 
 .)

�� � � � �



The results that follow

1. Every (U-GLB-...-closed) family of logical relations, � � 	 � � 
 � � ,

inductively lift to a family of Galois connections whose targets are

� � . Specifically, simulation is an instance of an “inductively

defined” Galois connection.

2. Dams’s best simulations coincide with the best abstract transition

functions defined by the Galois connections.

3. The family of logical relations define a validation logic, such that

� � � � � and � � � � imply� � � � � , as well as a dual refutation logic

(explained later). Thus, description logic and Hennessy-Milner

logic are instances of the validation logic.
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Related results from [Loiseaux, et al. 95]

For sets � and� and � 	 � 
 � , � ��� � � � �� � � � � �
�

� � � � � � � � �� � is a
Galois connection.

Note that

�
��� ��  � � � � �� � � � �  � �� is  “reduced” to an underapproximation function.

� � �	 �  � � � � �� � � exists � � � � �  �� . � ’s partial ordering, if any, is forgotten.

For 
 	 � 
 � , 
� 	 � 
 � , simulation is equivalently defined


 is � -simulated by 
�� iff 
  � � � 	 � � � 
�� �
 �

Treating 
  � and � 
� �
 � as functions, define soundness as

� 
� �
 � is a sound overapproximation for 
  � with respect to � iff

� � � � 
 �� � � � 
� � � 
 � � � � � � � � 
� �

For � , 
 , 
�� , Loiseaux, et al. prove

� 
 is � -simulated by 
� iff � 
� �
 � is sound for 
  � w.r.t.

�
� � � � � � .

� and so, � � � � � � � � � implies� � � � , for� � � .

�� � � � 




Base types, � : manufacturing �� � �

When starting from a (discretely ordered) set � , of type � , and a

complete lattice� , it is highly unlikely that � � 	 � 
 � is LUB-closed

(because � has no lubs for distinct elements).

LUB-closure means that each � � � has a best concretization in� . To have this, we

usually must “complete”� .

Complete the relation to � 	� 	 � � � � 
 � , giving � � � � � � �� � � � �� � �� ,

where, for� � � and � � � ,� � � � iff � �� � ��� 	 � � .

Even when� is a complete lattice, it is difficult to define a LUB-closed � � � � �

(generally, �  � � and �
�  � � do not imply � � �
�  � � ). For example,� � � � 	�� � ,

� � � �� �� �� � � �  � �� , �  �� �� and �  �� �� , but 	 � �  �� �� � .

�� � � � �



Preview of closure properties on relations of
compound type

� � � � � � �� iff for all � �� � � � � � � � � � � � � � implies �� � �  � � �� � � �

� � �� � iff for all �
�� � � there exists � �� � such that � � �

� � � � � iff for all � �� � � there exists �
�� � such that �  � �

�  �� � iff for all � � � � �  � �
For � � 	 � 
 � and for � ��� � � � � � � � � � � � � � 
 � �

�
� 	 ,

If � � is L-closed, then so is � � � � � .

If � � is U-closed, then so is � � � � � .

If � � is U-GLB-closed, then so are � � � � , � 	� , and � � 	 � .

If � � is L-LUB-closed, then so are � � � � and � � � � .

�� � � � �



Relation to [Backhouse � 1998]

A relational formulation of [Hartmanis and Stearns 1964] and [Abramsky 1990]:

� 	 � 
 � is a pair algebra iff exist � � � � � and � � � � � s.t.
� �� � � � � � � � � � 	 � � � � �� � � � � � � � � � 	

For the category, � , of partially ordered sets (objects) and binary
relations (morphisms), if an endofunctor, � � � � � , is also

1. monotonic: for relations, 
 � � 	 � 
 � � , 
 	 � implies � 
 	 � �

2. invertible: for all relations, 
 	 � 
 � � , � � 
 �
 � � � � 
  � � ,

then � maps pair algebras to pair algebras, that is, � is a unary type
constructor that “lifts” a Galois connection between � and� to one
between � � and � � .

The result generalizes to � -ary functors and applies to the standard
functors, � 
 � , � � � , � �� � � � � , etc.

But the result does not apply to � � � nor � 
 � — invertibility (2) fails.

�� � � � �



Function spaces: from �� � � � � � and
�� � � � � � to �� ��� � � � � � � � � � � � � �

For abstract complete lattices,� � and� � , let Let� � � � � denote the
complete lattice of monotone (not necessarily Scott-continuous)

functions with the usual pointwise ordering.

Let � � � 	 � � � 
 � � � , � �� � � 	 , be U-GLB-L-LUB-closed. Recall that

� � � � � � �� iff for all� � � � � � � � � � � � � � � � � implies � �� � � � � �� � � � .

Proposition: For � � � � � � � � � , �� � � � � � � � � ,

� � � �	 � � �� iff � �� �� � � � � � � �� � � �� �

�� � �� 	 � � � � � �� �� �� � �� � � � � �� � � � � ��� � � � � � � 	 � � � � �� 	

We can generate higher-order Galois connections of form

� �	 � � �� � � � � � 	 � � and� 
� � �	 � � � ��� � �� � � � 	 � �

from � � � � � and � �
� � � � , respectively. See [Cousot-Cousot-ICCL94].

�� � � � �



Completed sets: from �� � � to ���� � � �

We have � � 	 � 
 � . Recall, for join completion � � � and

� 	� 	 � � � 
 � , that� � 	� � iff for all� � � � � � � � .

Proposition: � 	� is U-closed when � � is; it is GLB-closed when � � is

U-GLB-closed; and it is L-closed when � � is.

When � � 	 � 
 � is U-GLB-L-closed, then � 	� 	 � � � 
 � is

U-GLB-L-LUB-closed.

Sometimes LUB-closure of � 	� comes from a weaker join completion:

Proposition: For � � � , let � � � ��� � � � � � � � 	� � 	 . If (i) � � is

L-LUB-closed, and (ii) for all� � � � � , there is some� � 	 � � � such

that� � � � � , then � 	� is LUB-closed.

Item (ii) says that every element, � � � � � , is a join of elements that are related to � .

By L-LUB closure of  � , we get �  � � . This idea reappears for lower powersets.

�� � � � �



Lower powersets: from � � � � to
�� �� � � � �

Let � � be a powerset for � and let � � � be a strongly lower powerset

for� . Let � � 	 � 
 � .

Recall, for� � � � , � � � � � , that� � � 	 � � iff for all�
�� � , there exists

�
�� � such that� � � � . — Every �

�� � is approximated by some � �� � .

Proposition: � � 	 � is U-closed if � � is; it is GLB-closed if � � is; it is

L-closed if � � is a strongly lower powerset.

Proposition: For all � and� , � � 	 � 	 � � � 
 � � � is L-LUB-closed.

because � � 	 .

So, we can always begin play with a U-GLB closed � � 	 � 
 � and lift

it to U-GLB-L-LUB-closed � � 	 � 	 � � � 
 � � � .

�� � � � �



LUB-closure of � � 	 � is not guaranteed from � � , but we have

Proposition: For all � � � � � , let � �

� ��� � � � � � � � 	 � � 	 . If

1. � � is L-LUB-closed

2. for all�
�� � � � , there exists �
�� � such that� � � � � , where

� � 	 ��� �
�� � � � � � � � � � � 	

then � � 	 � is LUB-closed.

Item 2 says that every element, �
�� � � � , is a join of elements that are related to

some � �� � . By L-LUB closure of � , we get � � � . This property is fulfilled, for

example, by the Scott-closed-set lower powerdomain construction.

�� � � � !



Dams’s results

�� � � � �



Synthesizing a most-precise simulation

In his thesis, Dams proves, for Galois connection � � � � � � � � �� and

transition relation 
 	 � 
 � , that the most precise, sound abstract

transition relation 
 	 � 
 � is


 � � � �� � iff �� � � � �� �� � �� � � ��� � � 
�� � � � � � � � � � � 	 	

Recoded as a function and simplified, this reads


 � � � � � � �� � � � �� � � � � � �� � � 
 �� � 	

Our machinery gives us the same result: Given U-GLB-closed

� � 	 � 
 � and transition function 
 � � � � � � � , we generate � 	�  � 	 �

and synthesize the most precise, sound abstract transition function,


�� � � � � � � , such that � � 	� � 
 � � 	�  � 	 � 
�� :


� � � � � � � �� 	 � � � � 	� � 
 �� � �� � � � � � � � � �� � �� � �� � 	� 	 � �� � � �� � � � � �� � � 
 �� � 	

�� � � � �



Upper powersets: from � � � � to
�� � � � � � �

Let � � be a powerset and � 
 � be an upper powerset, for � and� ,
respectively. Let � � 	 � 
 � . Recall, for� �� � � , � �� � 
 � , that� � � � � �

iff for all �
�� � , there exists�
�� � such that� � � � .

Proposition: � � � � is U-closed when � � is; it is LUB-closed when � �

is; it is L-closed when � � is an upper powerset.

Proposition: For all� � � � , let � � � � � � � 
 � � � � � � � � 	 . If

1. � � is U-GLB-closed

2. for all �
�� � � �� � � , there exists�
�� � such that � � � � � � , where

� � 	 � �� �� � � � � � � � � �� 	

then � � � � is GLB-closed.

Corollary: Let upper powerset � � � � � � � � � � 	 � 	 � � � � � � � . Then

� � � � 	 � � 
 � � � is GLB-closed. because � � 	 .

�� � � � 




Overapproximating underapproximated sets

There is a good use for � � � � : defining an overapproximation analysis

of underapproximations.

Consider � 	� � � 	 � � � � 
 � � 
 � 
 � ; it says that

�
� � 	� � � � iff for each set

� �
�

� ,� � � � � � , that is, � underapproximates each� �
�

� :

.. c0 .. .. c1 ..
.. ci ..

P 
U

τ
ρ

P CP U .. a ..

P A

We can readily construct � 	� � � :

1. define a U-GLB-closed � � 	 � 
 � ;

2. lift it to a U-L-GLB-closed � � � � 	 � 
 � 
 � � � ;

3. complete it to a U-GLB-L-LUB-closed � 	� � � 	 � � � � 
 � � 
 � � � .

�� � � � �



The resulting Galois connection is

� ��� � ���
� � � 	 
� � � �

 � for all � � � � � � �� �� � �

� �� � ��� � � 
 � � � �� � � � �

Example: We complete � � � �� 
 � �� �� �� � � � � � �� �� �� � � � � � � � � ��

and obtain � � � �� �� �� �� � � �  "! � !$# �% &(' ) & :

*+, - all subsets of nats

.
*+/ 0 1, - nonempty subsets of nats

.
*+2 32 0 45 6 6 4/ 0 1, - all sets with

1+ even and 1+ odd .

*7 2 32 0 - all sets with 1+ even

.
*7 0 5 02 - empty set

even odd

none

{any}

{ }

{even,odd,any}

P Polarity
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Synthesizing a most-precise dual simulation

Dams proves, for Galois connection � !�� & �� � � �� and � � � � � , that

the best underapproximating relation � � � � � is

� ! � � �	 & iff �	 
 � � !�� & � 
� � � ��� 	  ���� ! � ! � & � � 	 &� �

Recoded as a function and simplified, this reads

� ! � & � � � !�� & � 
 � � � ��� 	  for all � 
 � ! � & � � ! � &�� � 	 �� �� � �

Our machinery gives us the same result:

Given U-GLB-closed �� � � � � and transition function � �� � � !�� & ,
we generate � 	�� 	� � � � ! � !� & � �  "! � !�� & ' ) & & � ! � � � � � & .
We generate this most precise, sound underapproximating abstract

transition function, �� � � � � � � :

�! ! � & � ! � "$# % �'& ( )*+ ! �, � ( � ' ) & ( � "#& &! � &

8:9 ; <>=-



where �, � ( � ' ) �� � �  � !�� & ' ) is! �, � ( � ' ) &!�� & � � � ! � & � � ! � & ,
and ) *+ ! �, � ( � ' ) & � � !� & � �  "! � !�� &(' ) & is

)*+ ! �, � ( � ' ) &! � & � � � ��� �	� 
 � � !�� &  � 
 � �  ��� � � !�� &  � 
 � �

and� "$# % �& !
�� &  � ��  for all� 
 �� � � � � � � � � .

That is, ��� �+� ��, � � � 
 � maps a set of arguments to the set of sets of answers, and

� # � � �! produces the smallest abstract set that underapproximates every answer set

� �#" � , for" $ * # � �/ � . We take into account that % is partially ordered.

Simplified,

&(' )* +-, . / 0 1 2 34 5 for all * 6 1 0 � for all 7 1 8 9;: )* + � & ) 7 +=< 8 9;: )* 6 + >, /? ?

is provably equal to Dams’s definition:

& )* +-, /@ )!A + 5 A 1B C D /=E 6 5 for all 7 1 8 ) * + � & ) 7 +=< E 6 >, /? ? ?

We can show that � �/ � belongs to and is F all elements in the former set.
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Every answer set is kept distinct and each set’s elements are

underapproximated:

.. c0 .. .. c1 ..
.. ci ..

P 
U

τ
ρ

P CP U .. a ..

P A

Dual simulation lifts to sets of arguments:

Theorem: �! � "�� � � iff � �� � � � � �! iff )*+ ! �,  � ( � ' ) & � 	� � 	� � � �! 
8:9 ; <>= �



Validation and refutation logics
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A logic generated from the logical relations

We define this language of assertions,

� � �  � �  � � �  � �  � �

and this semantics of typed judgements for both concrete domains,

� � , and abstract domains,� � :

�   � � � is given, for � 
 � �

�   � �� � 	 � � � if �! � &   � 	 � � for � 
 � � � � � 
 � � �� � 	

�   � 
 � � � if for all �� 
 � � �   � � � for� 
 � � 
 �

�   � � � � � if there exists �� 
 � such that �   � � � for� 
 � � � �

For abstract values, the typed judgement for �� reads

  �� � � if    � � , for  
 � � .

but for concrete values, it must read

�  �� � � if�   � � , for all� 
 � ,� 
 � �� � (a join completion)

8:9 ; <>= �



Some “syntactic sugar”:
�   � � � (that is, �   � � ) abbreviates �   � �� � 
 � 	 � � � �

�   � � � ( �   � � ) abbreviates �   � �� � � � 	 � � � �

This reveals that the logic extracted from the logical relations is a

variant of Hennessy-Milner or description logic.

8:9 ; <>= �



� � ��� � � � � � � � � � � 	 � �



�

Assume, for all function symbols, � , typed � � � � � , there are
interpretations � �� � � � � � 	 , and �� � � � � � � � 	 , such that

� � � �� � 	 �  . Also, we formalize when judgements    � � are well
formed — see the typings on/ $ % ��� in the definitions of� - � �

Definition:  � � is � � -sound iff for all� 
 � � � ,  
 � � 	 ,

   � � is well formed, holds true, and� � �  imply�   � � .

Assume that all  � � are �� -sound.

Theorem: For all types, � , we have that  � � are � � -sound.

We can add the logical connectives,

�   � � ��� � � if �   � � � and �   � � �

�   � � ��� � � if �   � � � or �   � � �

and prove these � � -sound.

8:9 ; <>= �



Validating � requires a refutation logic

Define�   ��� � iff� �  � � .

We have a logic that validates � for� 
 � by validating it for  
 � , so
we might have also a logic that refutes properties similarly:

Read/ � -�� ���� � as “it is not possible that any value modelled by/ has property � .”

  	� 
��� � is given, for  
 � �

  �� 
��� �� � 	 � � � if �!  &  � 
� � 	 � � for  
 � � � � � 
 � � �� � 	

�  � 
� � � � � � if exists  � 
 � �   	� 
��� � � for� 
 � � � �

�  � 
� � 
 � � � if for all  � 
 � �   �� 
��� � � for� 
 � � 
 �

  �� 
��� � � if   �� 
��� � � for  
 � �

Definition: �� 
��� � is � � -sound iff for all� 
 � � � ,  
 � � 	 ,   �� 
��� � is
well formed, holds, and� � �  imply� �  � � .

Theorem: All �� 
��� � are � � -sound.

8:9 ; <>= �



The case for� -� ���# � � shows significant loss of precision:/ � -� ���# � � and � �# �/ imply

for all" $ � , that" � -� ���� � , whereas we need only show that there exists some" $ � ,

such that"� -� ��� � � .

Corollary:    ��� � if   �� 
��� � is sound for � � .

  	� 
��� � � if    � � is sound for � � .

In the refutation logic,� -� � ��� � , the roles of � 
� and � � � are exchanged. This, as

well as the need to validate a mix of � and � , means we must employ ��� and �
	 to

validate/refute assertions — this is the idea behind mixed/modal transition systems.

The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and

refutation logics.

We might approximate every concrete set by a pair of lower and upper

approximations: �� � �  � � � � 
 % � � � % � . This motivates sandwich- and

mixed-powerdomains for over-under-approximation of sets

[Huth-Jagadeesan-Schmidt].
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