Closed and logical relations for over- and under-approximation of powersets

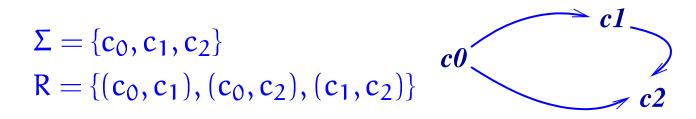
David Schmidt

Kansas State University and École Polytechnique

www.cis.ksu.edu/~schmidt

Motivation

Dennis Dams's mixed transition systems



Approximating the states: Note: \perp and \top omitted for brevity.

$$\alpha \{c_0\} = a_0, \quad \alpha \{c_1\} = a_{12} = \alpha \{c_2\} = \alpha \{c_1, c_2\}$$

Over-approximation transitions ("*may*" : $\exists \exists$) for safety properties:

$$\alpha \Sigma = \{a_0, a_{12}\}$$

$$R^{\sharp} = \{(a_0, a_{12}), (a_{12}, a_{12})\}$$

$$a0 - - - - \gg a12^{\prime\prime}$$

Under-approximation transitions ("*must*" : $\forall \exists$) for liveness properties:

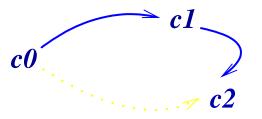
$$\alpha \Sigma = \{a_0, a_{12}\} R^{\flat} = \{(a_0, a_{12})\}$$
 $a0 \longrightarrow a12$

A mixed transition system is $(\alpha \Sigma, R^{\flat}, R^{\sharp})$.

Note that the $\forall \exists$ -definition of under-approximation is not the only candidate:

$$\Sigma = \{c_0, c_1, c_2\}$$

R = {(c_0, c_1), (c_1, c_2)}



State abstraction:

$$\alpha \{c_0\} = a_0, \quad \alpha \{c_1\} = a_{12} = \alpha \{c_2\} = \alpha \{c_1, c_2\}$$

The $\exists \exists$ -over-approximation remains the same: $a\theta = - - - \Rightarrow a12^{\flat}$

Under-approximation transitions $(\forall \exists)$:

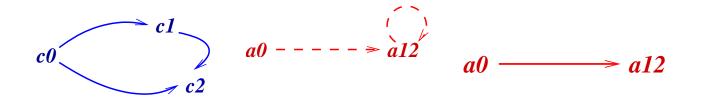
$$\alpha \Sigma = \{a_0, a_{12}\}$$

$$R^{\flat} = \{(a_0, a_{12})\}$$

$$a0 \longrightarrow a12$$

Under-approximation transitions $(\forall \forall)$:

$$\begin{array}{l} \alpha \Sigma = \{a_0, a_{12}\} \\ \mathsf{R}^\flat = \{ \} \end{array} \qquad \qquad a0 \qquad a12 \end{array}$$



From Galois connection, $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, Dams defines this *simulation relation*: $c \rho \alpha$ *iff* $c \in \gamma(\alpha)$. For $R \subseteq C \times C$, he defines

 $aR^{\sharp}a' \text{ iff } a' \in \{\alpha(Y) \mid Y \in \min\{S' \mid R^{\exists \exists}(\gamma(a), S')\}\}$ $aR^{\flat}a' \text{ iff } a' \in \{\alpha(Y) \mid Y \in \min\{S' \mid R^{\forall \exists}(\gamma(a), S')\}\}$

and he proves

 $\begin{array}{l} R \lhd_{\rho} R^{\sharp} : R^{\sharp} \ \rho\text{-simulates } R \\ R^{\flat} \lhd_{\rho^{-1}} R : R^{\flat} \ \text{is } \rho\text{-simulated by } R \end{array}$

This gives him soundness for \Box (\forall R) and \diamond (\exists R): *If*

 $a \models \Box \phi$ iff for all a', $aR^{\sharp}a'$ implies $a' \models \phi$ $a \models \Diamond \phi$ iff there exists a' such that $aR^{\flat}a'$ and $a' \models \phi$ then, $a \models \phi$ and $c \rho a$ imply $c \models \phi$.

And with lots of hard work, he proves "best precision": Of all the ρ -, ρ^{-1} -simulations of R, R[#] and R^b preserve the *most* \Box \diamond -properties.

Can we prove the over- and under-approximation results directly from Galois-connection theory?

Yes — we treat $R \subseteq C \times C$ as $R : C \rightarrow \mathcal{P}(C)$.

Then, $\mathbb{R}^{\sharp} : \mathbb{A} \to \mathcal{P}_{L}\mathbb{A}$, where \mathcal{P}_{L} is a *lower powerset* (\subseteq) constructor.

We "lift" the Galois connection, $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, on the states to a higher-order Galois connection on transition relations:

 $C \to PC\langle \alpha', \gamma' \rangle A \to \mathcal{P}_L A$

so that

- 1. $\mathbb{R} \triangleleft_{\rho} \mathbb{R}^{\sharp}$ iff $\mathbb{R} \circ \gamma' \sqsubseteq \gamma' \circ \mathbb{R}^{\sharp}$
- 2. soundness of $a \models \phi$ follows from 1.

3. $R_{best}^{\sharp} = \alpha' \circ R \circ \gamma$

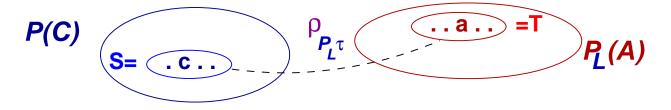
And we do similar but harder work for $\mathbb{R}^{\flat} : \mathbb{A} \to \mathcal{P}_{U}\mathbb{A}$, where \mathcal{P}_{U} is an *upper powerset* (\supseteq) constructor.

And there are interesting choices for α' , γ' , PC, \mathcal{P}_L , and \mathcal{P}_U

Let $R^{\sharp} : A \to \mathcal{P}_L A$. How do we concretize a set $T \in \mathcal{P}_L A$?

Given Galois connection, $\mathcal{P}(C)\langle \alpha, \gamma \rangle A_{\tau}$, say $c \rho_{\tau} \alpha$ *iff* $c \in \gamma(\alpha)$: c *is approximated by* α .

Choice 1: let $S \in \mathcal{P}(C)$ and $T \in \mathcal{P}_L A$:



S is over-approximated by T iff for every $c \in S$, there exists some $a \in T$ such that c is approximated by a:

 $S \rho_{\mathcal{P}_{I}}(\tau) T$ iff for every $c \in S$, there exists $a \in T$ such that $c \rho_{\tau} a$

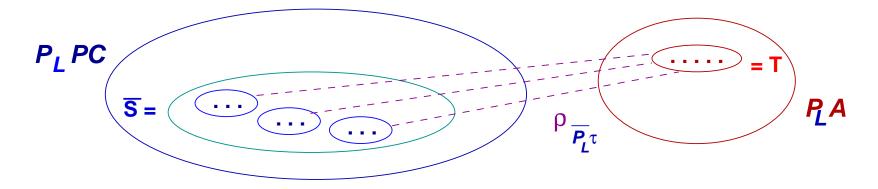
Then,

$$\gamma_{\mathcal{P}_{L}\tau}(\mathsf{T}) = \cup \{S \mid S \, \rho_{\mathcal{P}_{L}\tau} \, \mathsf{T}\} = \{c \mid \text{exists } a \in \mathsf{T}, c \, \rho_{\tau} \, a\}$$

When $\rho_{\tau} \subseteq C \times C$ equals \sqsubseteq_{τ} , then $\rho_{\mathcal{P}_{L}\tau}$ is half of the Egli-Milner ordering and freely generates the lower ("Hoare") powerdomain.

Choice 2: The concrete domain might be $\mathcal{P}_{L}(\mathcal{P}(C))$: sets of sets of states. *Intuition:* if abstract state $a \in A_{\tau}$ concretizes to a *set of states*, $\gamma(a) \subseteq C$, then set $T \in \mathcal{P}_{L}A_{\tau}$ should concretize to a *set of sets*.

We have this relationship:



That is, $\overline{S} \in \mathcal{P}_L(\mathcal{P}(C))$ is over-approximated by $T \in \mathcal{P}_L A_{\tau}$ if for every set $S \in \overline{S}$, $S \rho_{\mathcal{P}_L(\tau)} T$.

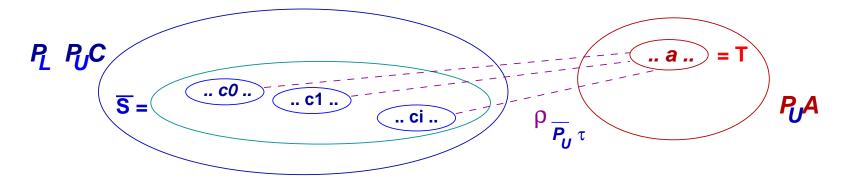
This makes

$$\gamma_{\bar{\mathcal{P}}_{L}\tau}(T) = \{ S \mid S \rho_{\mathcal{P}_{L}\tau} T \}$$

This definition is the "same" as the one on the previous slide in the sense that $\bigcup \gamma_{\bar{\mathcal{P}}_L \tau}(\mathsf{T}) = \gamma_{\mathcal{P}_L \tau}(\mathsf{T})$.

Either can be used to define a sound and best $R^{\sharp} : A \to \mathcal{P}_{L}A_{\tau}$.

But we define the under-approximation, $\mathbb{R}^{\flat} : \mathbb{A} \to \mathcal{P}_{U}\mathbb{A}$ with Choice 2, mapping sets $T \in \mathcal{P}_{U}\mathbb{A}$ to sets of sets in $\mathcal{P}_{L}(\mathcal{P}_{U}\mathbb{C})$:



That is, \overline{S} is approximated by T iff *for every set* $S \in \overline{S}$, S *is under-approximated by* T, written as $S \rho_{\mathcal{P}_{U}(\tau)}$ T, where

 $\begin{array}{l} S \ \rho_{\mathcal{P}_{U}(\tau)} \ T \ \textit{iff for every} \ a \in T, \ \textit{there exists some} \ c \in S \ \textit{such that} \ c \ \rho_{\tau} \ a. \end{array}$ $This \ makes \qquad \qquad \gamma_{\bar{\mathcal{P}}_{U}A_{\tau}}(T) = \{S \mid S \ \rho_{\mathcal{P}_{U}\tau} \ T\} \end{array}$

which has a different significance than $\gamma_{\mathcal{P}_{U}A_{\tau}}(T) = \bigcup \gamma_{\bar{\mathcal{P}}_{U}A_{\tau}}(T)$! Choice 2 gives us a useful, sound $R^{\flat} : A \to \mathcal{P}_{U}A$.

When $\rho_{\tau} \subseteq C \times C$ is \sqsubseteq_{τ} , then $\rho_{\mathcal{P}_{U}\tau}$ is the other half of the Egli-Milner ordering and freely generates the upper ("Smyth") powerdomain.

Example: Let Nat be the set of natural numbers and let complete lattice $Polarity = \{none, even, odd, any\}$.

Define ρ : Nat × Polarity in the obvious way: 2ρ even, 2ρ any, 3ρ odd, etc.

We define a Galois connection on $\mathcal{P}(Nat)$ and Polarity and lift it:

 $\gamma : \mathcal{P}_{\uparrow} \text{Polarity} \to \mathcal{P}_{\downarrow}(\mathcal{P}(Nat)^{op})$

```
\gamma \{\} = \text{ all subsets of nats}
\supseteq
\gamma \{any\} = \text{ nonempty subsets of nats}
\supseteq
\gamma \{even, odd, any\} = \text{ all sets with}
1 + \text{ even and } 1 + \text{ odd } \supseteq
\gamma \{even, any\} = \text{ all sets with } 1 + \text{ even}
\supseteq
\gamma \{even, any\} = \text{ all sets with } 1 + \text{ even}
```

Our results from reworking Dams's constructions

- 1. Starting from approximation relations, $\rho \subseteq C \times A$, we generate Galois connections from such U-GLB-L-LUB-closed relations cf. [*Mycroft-Jones 86, Cousot-Cousot JLC 92*].
- 2. We define lower and upper powerset constructions, weaker forms of powerdomain but strong enough for abstraction studies. The former are the *join completions* of [*Cousot-Cousot ICCL 94*].
- 3. We use the powerset types in a family of logical relations, show how the family preserves the closure properties in 1., and prove that a simulation proof is an instance of proof via logical relations. We obtain Dams's most-precise simulation results "for free." We compare to earlier attempts by [*Loiseaux, et al. 95, Backhouse-Backhouse 98*].
- We extract validation and refutation logics from the logical relations, state their resemblance to Hennessy-Milner logic (and description logic), and obtain easy proofs of soundness.

Closed relations

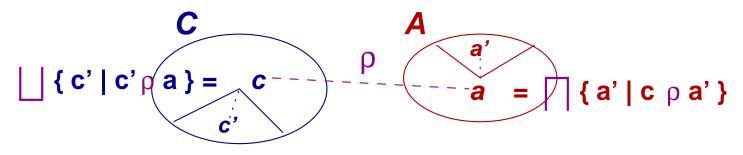
Closed relations and Galois connections

Let C and A be complete lattices, and let $\rho \subseteq C \times A$.

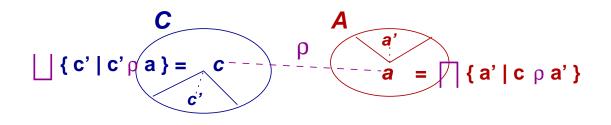
 $c \ \rho \ \alpha$ means that c is modelled/approximated by α

Definition: For all $c, c' \in C$, $a, a' \in A$, for $\rho \subseteq C \times A$, ρ is

- 1. U-closed iff $c \rho a$, $a \sqsubseteq a'$ imply $c \rho a'$
- 2. *GLB-closed* iff $c \rho \sqcap \{a \mid c \rho a\}$
- 3. L-closed iff $c \rho a$, $c' \sqsubseteq c$ imply $c' \rho a$
- 4. LUB-closed iff $\sqcup \{c \mid c \rho a\} \rho a$



Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986 (LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998



Proposition: For L-U-LUB-GLB-closed $\rho \subseteq C \times A$, $C\langle \alpha_{\rho}, \gamma_{\rho} \rangle A$ is a Galois connection, where

- $\ \ \, \blacklozenge \ \ \, \alpha_{\rho}(c) = \sqcap \{ \alpha \mid c \ \rho \ \alpha \}$
- $\blacklozenge \gamma_{\rho}(\mathfrak{a}) = \sqcup \{ c \mid c \rho \mathfrak{a} \}$

Intuition: U-closed makes γ_{ρ} mono; L-closed makes α_{ρ} mono; GLB-closed ensures α_{ρ} selects the most precise sound answer; LUB-closed ensures γ_{ρ} selects the most general sound answer.

Note that $c \rho a$ iff $c \sqsubseteq_C \gamma_{\rho} a$ iff $\alpha_{\rho} c \sqsubseteq_A a$. Backhouse²: ρ is a *pair algebra*.

Proposition: For Galois connection, $C\langle \alpha, \gamma \rangle A$, define $\rho_{\alpha\gamma} \subseteq C \times A$ as $\{(c, a) \mid \alpha c \sqsubseteq a\}$. Then,

 $\rho_{\alpha\gamma}$ is L-U-LUB-GLB-closed and $\langle \alpha_{\rho_{\alpha\gamma}}, \gamma_{\rho_{\alpha\gamma}} \rangle = \langle \alpha, \gamma \rangle$.

"Completing" U-GLB-closed $\rho \subseteq C \times A$ into a Galois connection between $\mathcal{P}(C)$ and A

Here is a standard technique: Let C be a (discretely ordered) set and let A be a complete lattice.

Theorem: If $\rho \subseteq C \times A$ is U-GLB-closed, then $\mathcal{P}(C)\langle \alpha_{\bar{\rho}}, \gamma_{\bar{\rho}}\rangle A$ is a Galois connection, where

- $\blacklozenge \ \gamma_{\bar{\rho}}(\mathfrak{a}) = \{ c \mid c \rho \mathfrak{a} \}$
- $\ \ \, \bullet \ \ \, \alpha_{\bar{\rho}}(S) = \sqcap \{ a \mid S \subseteq \gamma_{\bar{\rho}} a \}$

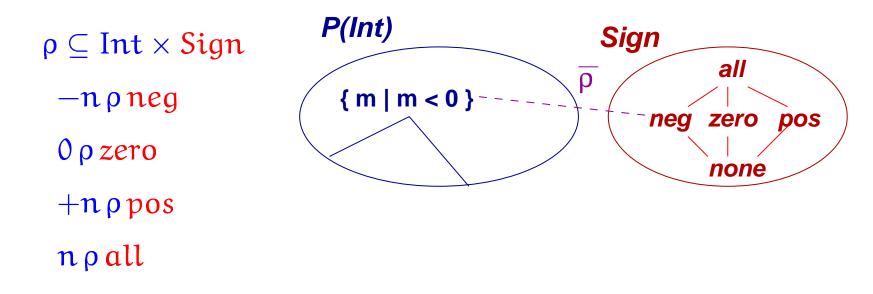
Note that $c \rho a$ iff $c \in \gamma_{\bar{\rho}} a$ iff $\alpha_{\bar{\rho}} \{c\} \sqsubseteq a$.

The proof comes from this construction, which "completes" ρ to $\overline{\rho}$:

For $\rho \subseteq C \times A$, define $\bar{\rho} \subseteq \mathcal{P}(C) \times A$ as $S \bar{\rho} a$ iff for all $c \in S$, $c \rho a$.

Lemma: If ρ is U-GLB-closed, then $\bar{\rho}$ is L-U-GLB-LUB-closed, and $\gamma_{\bar{\rho}} \mathfrak{a} = \sqcup \{S \mid S \bar{\rho} \mathfrak{a}\} = \{c \mid c \rho \mathfrak{a}\}$. because $\sqsubseteq_{\mathcal{P}(C)} = \subseteq$ and $\sqcup_{\mathcal{P}(C)} = \cup$.

Example: Let Int be the discretely ordered set of integers:



 ρ is U-GLB-(and trivially, L-)closed but not LUB-closed, so it is completed to $\bar{\rho} \subseteq \mathcal{P}(Int) \times Sign$, giving us a Galois connection, $\mathcal{P}(Int)\langle \alpha_{\bar{\rho}}, \gamma_{\bar{\rho}}\rangle Sign$.

Powersets

Powersets

When D is a partially ordered, we have choices for the "powerset" of D, but we should build a complete lattice with *singleton* and *union* operations: $(E, \sqsubseteq_E, \{\cdot\}: D \rightarrow E, \uplus: E \times E \rightarrow E)$.

Down-set (order-ideal) completion [Cousot-Cousot ICCL94]: For $d \in D$, $S \subseteq D$, *define* $\downarrow d = \{e \in D \mid e \sqsubseteq d\}$ *and* $\downarrow S = \cup \{\downarrow d \mid d \in S\}$.

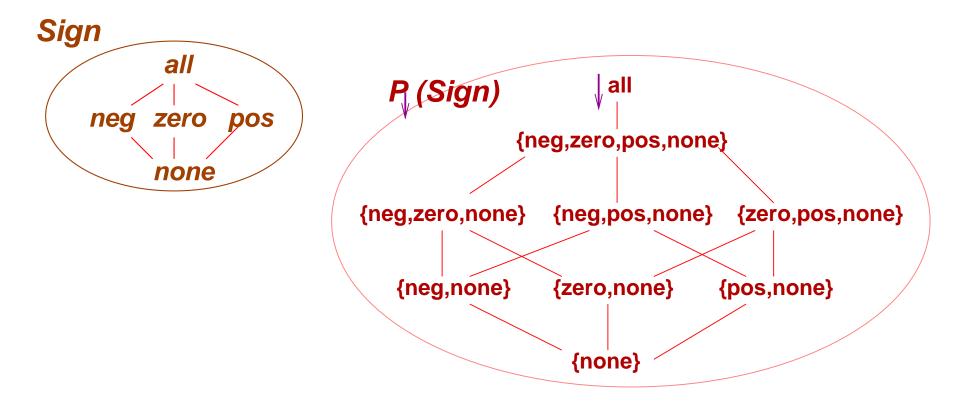
Define $\mathcal{P}_{\downarrow}D = (\{\downarrow S \mid S \subseteq D\}, \subseteq, \downarrow, \cup)$ — all down-closed subsets of D

Join completion [Cousot-Cousot ICCL94] — sublattices of $\mathcal{P}_{\perp}D$:

 $(\mathcal{M}, \subseteq, \downarrow, \sqcup_{\mathcal{M}})$, where $\mathcal{M} \subseteq \{ \downarrow S \mid S \subseteq D \}$ is a *Moore family* (closed under \cap). (Note that $(\{ \downarrow d \mid d \in D\}, \subseteq, \downarrow, \downarrow \circ \sqcup_D)$ is isomorphic to D.)

For every monotone $f : D \to L$, we define $ext(f) : \mathcal{P}_{\downarrow}D \to L$ as $ext(f)(S) = \sqcup_{d \in S}f(d)$.

Join completions "add new joins to D": For $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, we build $\mathcal{P}(C)\langle \bar{\alpha}, \bar{\gamma} \rangle \mathcal{P}_L A$, where $\mathcal{P}_L A$ is a join completion, $\bar{\gamma} = ext(\gamma)$, and $\gamma[A] \subseteq \bar{\gamma}[\mathcal{P}_L A]$.



There is a dual construction:

Up-set (filter) completion: For $d \in D$ and $S \subseteq D$, *define* $\uparrow d = \{e \in D \mid d \sqsubseteq e\}$ and $\uparrow S = \cup \{\uparrow d \mid d \in S\}$.

Define $\mathcal{P}_{\uparrow}D = (\{\uparrow S \mid S \subseteq D\}, \supseteq, \uparrow, \cup)$ — all up-closed subsets of D

For every monotone $f : D \to L$, define $ext(f) : \mathcal{P}_{\uparrow}D \to L$ as $ext(f)(S) = \Box_{d \in S}f(d)$.

As noted in [Cousot-Cousot ICCL94], there is no obvious application of $\mathcal{P}_{\uparrow}D$ to enriching A: Given $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, we build $\mathcal{P}(C)\langle \bar{\alpha}, \bar{\gamma} \rangle \mathcal{P}_{\uparrow}A$, where $\bar{\gamma} = ext(\gamma)$ and we see that $\gamma[A] = \bar{\gamma}[\mathcal{P}_{\uparrow}A]$ — no "new meets" are added to A.

Fortunately, we have another use for $\mathcal{P}_{\uparrow}D$.

Lower powerdomains via Hennessy-Plotkin

Definition: For complete lattice, D, A *powerset of* D is $PD = (E, \sqsubseteq_E, \{\cdot\}: D \rightarrow E, \uplus: E \times E \rightarrow E)$, such that

- (E, \sqsubseteq_E) is a complete lattice
- ♦ { · } is monotone
- ♦ ⊎ is monotone, absorptive, commutative, and associative
- ♦ For every monotone $f : D \to L$, there is a monotone $ext(f) : PD \to L$ such that $ext(f) \{ d \} = f(d)$, for all $d \in D$.

For powerset PD, $d \in D$ and $S \in PD$, *define* $d \in S$ *iff* $\{d\} \uplus S = S$.

Definition: Powerset $\mathcal{P}_L D = (E, \sqsubseteq_E, \{\cdot\}, \uplus)$ is a

- *lower powerset* iff ((for all $x \in S_1$, there exists $y \in S_2$ such that $x \sqsubseteq_{\tau} y$) implies $S_1 \sqsubseteq_E S_2$).
- strongly lower powerset iff implies is replaced by iff.

Proposition: For a lower powerset, $\mathcal{P}_L D$, we have that $\exists \exists u = u \text{ iff } \mathcal{P}_L D$ is strongly lower.

Every join completion is a strongly lower powerset, and every strongly lower powerset, $\mathcal{P}_L D$, is order-isomorphic to its trivial join-completion, $(\{\downarrow_D S \mid S \in \mathcal{P}_L D\}, \subseteq, \downarrow_D \circ \{\cdot\}, \downarrow_D \circ \sqcup_D).$

For a join completion, $d \in S$ iff $d \in S$.

Definition: A strongly lower powerset, $\mathcal{P}_L D$, is a *lower powerdomain* iff for every monotone $f : D \to L$, where L is itself a strongly lower powerset, $ext(f) : \mathcal{P}_L D \to L$ preserves unions (binary joins): $ext(f)(S \uplus_{\mathcal{P}_L D} S') = ext(f)(S) \uplus_L ext(f)(S').$

When ext(f) is unique, then the powerdomain is *initial*.

Lower powerdomains are stronger than what we will need, but a lower powerdomain $\mathcal{P}_L D$ has the precision expected of a "all subsets of D" construction. For example, if we define $ext(f)(S) = \sqcup_{d \in S} f(d)$, then union-preservation is implied by $d \in S \sqcup S'$ iff $d \in S$ or $d \in S'$.

Upper powersets

As [Plotkin Pisa] notes, the definitions of upper powerset and strongly upper powerset coincide, so

Definition: Powerset $\mathcal{P}_U D = (E, \sqsubseteq_E, \{\cdot\}, \uplus)$ is an *upper powerset* iff $(S_1 \sqsubseteq_E S_2 \text{ iff for all } y \in S_2, \text{ there exists } x \in S_1 \text{ such that } x \sqsubseteq_{\tau} y).$

 $\mathcal{P}_{\uparrow}D$ is an upper powerset.

Proposition: For an upper powerset, $\square = \square$.

Definition: An upper powerset, $\mathcal{P}_{U}D$, is an *upper powerdomain* iff for every monotone $f: D \to L$, where L is itself an upper powerset, $ext(f): \mathcal{P}_{U}D \to L$ preserves unions:

 $ext(f)(S \sqcup_{\mathcal{P}_{U}D} S') = ext(f)(S) \sqcup_{L} ext(f)(S').$

For example, if we define $ext(f)(S) = \prod_{d \in S} f(d)$, then union-preservation is implied by $d \in S \prod S'$ iff $d \in S$ or $d \in S'$.

Logical relations

Logical relations

We now attach typings to the relations. Given this grammar of types,

 $\tau ::= b \mid \tau_1 \to \tau_2 \mid \mathcal{P}_L \tau \mid \mathcal{P}_U \tau \mid \bar{\tau}$

We will see that $\rho_{\overline{\tau}} \subseteq \mathcal{P}(C) \times A$ comes from $\rho_{\tau} \subseteq C \times A$

let A_{τ} be a complete lattice of the appropriate form (e.g., $A_{\tau_1 \to \tau_2}$ is a domain of monotone functions, $A_{\mathcal{P}_{U}\tau}$ is an upper powerset, etc.)

We define this family of logical relations, $\rho_{\tau} \subseteq C_{\tau} \times A_{\tau}$:

 ρ_b is given

 $f \rho_{\tau_1 \to \tau_2} f^{\sharp}$ iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_1}$, $c \rho_{\tau_1} a$ implies $f(c) \rho_{\tau_2} f^{\sharp}(a)$

 $S \rho_{\mathcal{P}_{I} \tau} T$ iff for all $c \in S$, there exists $a \in T$ such that $c \rho_{\tau} a$

- $S \rho_{\mathcal{P}_{U}\tau} T$ iff for all $a \in T$, there exists $c \in S$ such that $c \rho_{\tau} a$
- $S \ \rho_{\bar{\tau}} \ a \ \text{iff for all} \ c \in S, c \ \rho_{\tau} \ a$

and use it to generate Galois connections inductively.

Simulation relations are just logical relations

Binary relations are the key component in simulation proofs:

- For $\rho \subseteq C \times A$, transition relations, $R \subseteq C \times C$, $R^{\sharp} \subseteq A \times A$,
- **Definition:** R^{\sharp} simulates R (or, R^{\sharp} overapproximates R), written $R \triangleleft_{\rho} R^{\sharp}$, iff for all $c, c' \in C, a \in A$,
- $c \rho a$ and c R c' imply there exists $a' \in A$ such that $a R^{\sharp} a'$ and $c' \rho a'$.
- Say that we represent R and R^{\sharp} as multi-functions, $R : C \to \mathcal{P}_L C$ and $R^{\sharp} : A \to \mathcal{P}_L A$:

Theorem: $R \triangleleft_{\rho_b} R^{\sharp}$ iff $R \rho_{b \rightarrow \mathcal{P}_L b} R^{\sharp}$. The proof assumes that R and R^{\sharp} behave monotonically, which is not a restriction, given that C is typically discretely ordered and R^{\sharp} must be monotone to be computed with the standard techniques.

The dual simulation, $R^{\flat} \triangleleft_{\rho_{b}^{-1}} R$, is characterized as $R \rho_{b \rightarrow \mathcal{P}_{U}b} R^{\flat}$. (R^{\flat} underapproximates R.)

The results that follow

- Every (U-GLB-...-closed) family of logical relations, ρ_τ ⊆ C_τ × A_τ, inductively lift to a family of Galois connections whose targets are A_τ. Specifically, simulation is an instance of an "inductively defined" Galois connection.
- 2. Dams's best simulations coincide with the best abstract transition functions defined by the Galois connections.
- The family of logical relations define a *validation logic*, such that

 α ⊨_τ φ and α ρ_τ c *imply* c ⊨_τ φ, as well as a dual *refutation logic* (explained later). Thus, description logic and Hennessy-Milner logic are instances of the validation logic.

Related results from [Loiseaux, et al. 95]

For sets C and A and $\rho \subseteq C \times A$, $\mathcal{P}(C)\langle post[\rho], p\tilde{r}e[\rho] \rangle \mathcal{P}(A)$ is a Galois connection.

Note that $p\tilde{r}e[\rho] = \lambda T.\{c \mid c.\rho \subseteq T\}$ is ρ "reduced" to an underapproximation function. $post[\rho] = \lambda S.\{a \mid exists c \in S, c \rho a\}$. A's partial ordering, if any, is forgotten.

For $R \subseteq C \times C$, $R^{\sharp} \subseteq A \times A$, simulation is equivalently defined

R is ρ -simulated by R^{\sharp} iff $R^{-1} \cdot \rho \subseteq \rho \cdot (R^{\sharp})^{-1}$

Treating R^{-1} and $(R^{\sharp})^{-1}$ as functions, define soundness as

 $(\mathbb{R}^{\sharp})^{-1}$ is a sound overapproximation for \mathbb{R}^{-1} with respect to γ iff $\operatorname{pre}[\mathbb{R}] \circ \gamma \sqsubseteq_{\mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{C})} \gamma \circ \operatorname{pre}[\mathbb{R}^{\sharp}]$

For ρ , R, R^{\ddagger}, Loiseaux, et al. prove

- R is ρ -simulated by \mathbb{R}^{\sharp} iff $(\mathbb{R}^{\sharp})^{-1}$ is sound for \mathbb{R}^{-1} w.r.t. $\tilde{\operatorname{pre}}[\rho]$.
- and so, $a \models \phi \in ACTL$ implies $c \models \phi$, for $c \rho a$.

Base types, b: *manufacturing* $\rho_b \subseteq C \times A$

When starting from a (discretely ordered) set C, of type b, and a complete lattice A, it is highly unlikely that $\rho_b \subseteq C \times A$ is LUB-closed (because C has no lubs for distinct elements).

LUB-closure means that each $a \in A$ has a best concretization in C. To have this, we usually must "complete" C.

Complete the relation to $\rho_{\bar{b}} \subseteq \mathcal{P}(C) \times A$, giving $\mathcal{P}(C) \langle \alpha_{\rho_{\bar{b}}}, \gamma_{\rho_{\bar{b}}} \rangle A$, where, for $c \in C$ and $a \in A$, $c \rho_b a$ iff $\alpha_{\rho_{\bar{b}}} \{c\} \sqsubseteq a$.

Even when C is a complete lattice, it is difficult to define a LUB-closed $\rho_b \subseteq C \times A$ (generally, $c \rho_b a$ and $c' \rho_b a$ do not imply $c \sqcup c' \rho_b a$). For example, $C = Nat_{\perp}^{\perp}$,

 $\mathbf{A} = \{\text{even}, \text{odd}, \bot, \top\}, 2 \rho \text{ even and } 4 \rho \text{ even}, \text{ but } \neg (\top \rho \text{ even}).$

Preview of closure properties on relations of compound type

 $\begin{array}{l} f \ \rho_{\tau_1 \to \tau_2} \ f^{\sharp} \ \text{iff for all } c \in C_{\tau_1}, a \in A_{\tau_1}, c \ \rho_{\tau_1} \ a \ \text{implies } f(c) \ \rho_{\tau_2} \ f^{\sharp}(a) \\ S \ \rho_{\mathcal{P}_L \tau} \ T \ \text{iff for all } c \widetilde{\in} S, \ \text{there exists } a \widetilde{\in} T \ \text{such that } c \ \rho_{\tau} \ a \\ S \ \rho_{\mathcal{P}_U \tau} \ T \ \text{iff for all } a \widetilde{\in} T, \ \text{there exists } c \widetilde{\in} S \ \text{such that } c \ \rho_{\tau} \ a \\ S \ \rho_{\tau} \ a \ \text{iff for all } c \in S, c \ \rho_{\tau} \ a \end{array}$

For $\rho_{\tau} \subseteq C \times A$ and for $F[\tau] \in \{\tau' \to \tau, \mathcal{P}_L \tau, \mathcal{P}_U \tau, \bar{\tau}\},\$

- If ρ_{τ} is L-closed, then so is $\rho_{F[\tau]}$.
- If ρ_{τ} is U-closed, then so is $\rho_{F[\tau]}$.
- If ρ_{τ} is U-GLB-closed, then so are $\rho_{\tau' \to \tau}$, $\rho_{\bar{\tau}}$, and $\rho_{\mathcal{P}_{L}\tau}$.
- If ρ_{τ} is L-LUB-closed, then so are $\rho_{\tau' \to \tau}$ and $\rho_{\mathcal{P}_{U}\tau}$.

Relation to [Backhouse² 1998]

A relational formulation of [Hartmanis and Stearns 1964] and [Abramsky 1990]: $\rho \subseteq C \times A$ is a *pair algebra* iff exist $\alpha : C \to A$ and $\gamma : A \to C$ s.t.

 $\{(\mathbf{c},\mathbf{a}) \mid \alpha \mathbf{c} \sqsubseteq_{\mathbf{A}} \mathbf{a}\} = \rho = \{(\mathbf{c},\mathbf{a}) \mid \mathbf{c} \sqsubseteq_{\mathbf{C}} \gamma \mathbf{a}\}$

For the category, C, of partially ordered sets (*objects*) and binary relations (*morphisms*), *if* an endofunctor, $\sigma : C \Rightarrow C$, is also

- 1. *monotonic*: for relations, $R, S \subseteq C \times C'$, $R \subseteq S$ implies $\sigma R \subseteq \sigma S$
- 2. *invertible*: for all relations, $R \subseteq C \times C'$, $(\sigma R)^{-1} = \sigma(R^{-1})$,

then σ maps pair algebras to pair algebras, that is, σ is a unary type constructor that "lifts" a Galois connection between C and A to one between σ C and σ A.

The result generalizes to *n*-ary functors and applies to the standard functors, $\tau \times \tau$, $\tau \to \tau$, List(τ), etc.

But the result does not apply to $\mathcal{P}_{L}\tau$ nor $\mathcal{P}_{U}\tau$ — invertibility (2) fails.

Function spaces: *from* $\rho_{\tau_1} \subseteq C_1 \times A_1$ *and* $\rho_{\tau_1} \subseteq C_2 \times A_2$ *to* $\rho_{\tau_1 \to \tau_2} \subseteq (C_1 \to C_2) \times (A_1 \to A_2)$

For abstract complete lattices, A_1 and A_2 , let Let $A_1 \rightarrow A_2$ denote the complete lattice of *monotone* (not necessarily Scott-continuous) functions with the usual pointwise ordering.

Let $\rho_{\tau_i} \subseteq C_{\tau_i} \times A_{\tau_i}$, $i \in 1..2$, be U-GLB-L-LUB-closed. Recall that $f \rho_{\tau_1 \to \tau_2} f^{\sharp}$ *iff for all* $c \in C_{\tau_1}$, $a \in A_{\tau_1}$, $c \rho_{\tau_1} a$ *implies* $f(c) \rho_{\tau_2} f^{\sharp}(a)$. **Proposition:** For $f: C_{\tau_1} \to C_{\tau_2}$, $f^{\sharp}: A_{\tau_1} \to A_{\tau_2}$, $f \rho_{\tau_1 \to \tau_2} f^{\sharp}$ iff $\alpha_{\rho_{\tau_2}} \circ f \sqsubseteq_{A_1 \to A_2} f^{\sharp} \circ \alpha_{\rho_{\tau_1}}$

 $f^{\sharp}_{best}(\mathfrak{a}) = \alpha_{\rho_{\tau_2}} \circ f \circ \gamma_{\rho_{\tau_1}} = \sqcap \{\mathfrak{a'} \mid f(\sqcup \{c \mid c \rho_{\tau_1} \mathfrak{a}\}) \rho_{\tau_2} \mathfrak{a'} \}$

We can generate higher-order Galois connections of form

 $C_1 \to C_2 \langle \alpha, \gamma \rangle A_1 \to A_2 \text{ and } \mathcal{P}_{\downarrow}(C_1 \to C_2) \langle \alpha^{\varphi}, \gamma^{\varphi} \rangle A_1 \to A_2$

from $\rho_{\tau_1 \rightarrow \tau_2}$ and $\rho_{\tau_1 \rightarrow \tau_2}$, respectively. See [Cousot-Cousot-ICCL94].

Completed sets: *from* $\rho_{\tau} \subseteq C \times A$ *to* $\rho_{\bar{\tau}} \subseteq \mathcal{P}_L C \times A$

We have $\rho_{\tau} \subseteq C \times A$. Recall, for join completion $\mathcal{P}_{L}C$ and $\rho_{\overline{\tau}} \subseteq \mathcal{P}_{L}C \times A$, that $S \rho_{\overline{\tau}} a$ iff for all $c \in S, c \rho_{\tau} a$.

Proposition: $\rho_{\overline{\tau}}$ is U-closed when ρ_{τ} is; it is GLB-closed when ρ_{τ} is U-GLB-closed; and it is L-closed when ρ_{τ} is.

When $\rho_{\tau} \subseteq C \times A$ is U-GLB-L-closed, then $\rho_{\overline{\tau}} \subseteq \mathcal{P}_{\downarrow}C \times A$ is U-GLB-L-LUB-closed.

Sometimes LUB-closure of $\rho_{\overline{\tau}}$ comes from a weaker join completion:

Proposition: For $a \in A$, let $\mathcal{L}_a = \{S \in \mathcal{P}_L C \mid S \rho_{\overline{\tau}} a\}$. If *(i)* ρ_{τ} is L-LUB-closed, and *(ii)* for all $c \in \sqcup \mathcal{L}_a$, there is some $S_c \subseteq \cup \mathcal{L}_a$ such that $c = \sqcup S_c$, then $\rho_{\overline{\tau}}$ is LUB-closed.

Item *(ii)* says that every element, $c \in \sqcup \mathcal{L}_{\alpha}$, is a join of elements that are related to α . By L-LUB closure of ρ_{τ} , we get $c \rho_{\tau} \alpha$. This idea reappears for lower powersets.

Lower powersets: *from* $\rho_{\tau} \subseteq C \times A$ *to* $\rho_{\mathcal{P}_L \tau} \subseteq \mathcal{P}_L C \times \mathcal{P}_L A$

Let PC be a powerset for C and let $\mathcal{P}_L A$ be a strongly lower powerset for A. Let $\rho_{\tau} \subseteq C \times A$.

Recall, for $S \in PC$, $T \in \mathcal{P}_L A$, that $S \rho_{\mathcal{P}_L \tau} T$ iff for all $c \in S$, there exists $a \in T$ such that $c \rho_{\tau} a$. — Every $c \in S$ is approximated by some $a \in T$.

Proposition: $\rho_{\mathcal{P}_L \tau}$ is U-closed if ρ_{τ} is; it is GLB-closed if ρ_{τ} is; it is L-closed if PC is a strongly lower powerset.

Proposition: For all C and A, $\rho_{\mathcal{P}_L \tau} \subseteq \mathcal{P}_{\downarrow} C \times \mathcal{P}_L A$ is L-LUB-closed. because $\sqcup = \bigcup$.

So, we can always begin play with a U-GLB closed $\rho_b \subseteq C \times A$ and lift it to U-GLB-L-LUB-closed $\rho_{\mathcal{P}_I b} \subseteq \mathcal{P}_{\downarrow}C \times \mathcal{P}_{L}A$.

LUB-closure of $\rho_{\mathcal{P}_L \tau}$ is not guaranteed from ρ_{τ} , but we have **Proposition:** For all $T \in \mathcal{P}_L A$, let $\mathcal{L}_T = \{S \in PC \mid S \rho_{\mathcal{P}_L \tau} T\}$. If

- 1. ρ_{τ} is L-LUB-closed
- 2. for all $c \in \sqcup \mathcal{L}_T$, there exists $a \in T$ such that $c = \sqcup S_a$, where $S_a \subseteq \{c' \in S \in \mathcal{L}_T \mid c' \rho_\tau a\}$

then $\rho_{\mathcal{P}_L\tau}$ is LUB-closed.

Item 2 says that every element, $c \in \sqcup \mathcal{L}_T$, is a join of elements that are related to some $a \in T$. By L-LUB closure of ρ_τ , we get $c \rho_\tau a$. This property is fulfilled, for example, by the Scott-closed-set lower powerdomain construction.

Dams's results

Synthesizing a most-precise simulation

In his thesis, Dams proves, for Galois connection $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$ and transition relation $R \subseteq C \times C$, that the most precise, sound abstract transition relation $R \subseteq A \times A$ is

 $\mathbf{R}(\mathbf{a},\mathbf{a}') \text{ iff } \mathbf{a}' \in \{ \alpha(\mathbf{Y}) \mid \mathbf{Y} \in \min\{\mathbf{S}' \mid \mathbf{R}^{\exists \exists}(\gamma(\mathbf{a}),\mathbf{S}')\} \}$

Recoded as a function and simplified, this reads

 $\mathsf{R}(\mathfrak{a}) = \{ \alpha(s') \mid \exists s \in \gamma(\mathfrak{a}), s' \in \mathsf{R}(s) \}$

Our machinery gives us the same result: Given U-GLB-closed $\rho_b \subseteq C \times A$ and transition function $R : C \to \mathcal{P}(C)$, we generate $\rho_{\bar{b} \to \mathcal{P}_L b}$ and synthesize the most precise, sound abstract transition function, $R^{\sharp} : A \to \mathcal{P}_L A$, such that $ext_{\bar{b}}(R) \rho_{\bar{b} \to \mathcal{P}_L b} R^{\sharp}$:

 $\mathsf{R}^{\sharp}(\mathfrak{a}) = (\alpha_{\rho_{\mathcal{P}_{L}\mathfrak{b}}} \circ ext_{\bar{\mathfrak{b}}}(\mathsf{R}) \circ \gamma_{\rho_{\bar{\mathfrak{b}}}})(\mathfrak{a}) = \sqcup \{ \{ \alpha_{\rho_{\bar{\mathfrak{b}}}} \{ s' \} \} \mid \exists s \in \gamma_{\rho_{\bar{\mathfrak{b}}}}(\mathfrak{a}), s' \in \mathsf{R}(s) \}$

Upper powersets: *from* $\rho_{\tau} \subseteq C \times A$ *to* $\rho_{\mathcal{P}_{U}\tau} \subseteq \mathcal{P}_{U}C \times \mathcal{P}_{U}A$

Let PC be a powerset and $\mathcal{P}_{U}A$ be an upper powerset, for C and A, respectively. Let $\rho_{\tau} \subseteq C \times A$. Recall, for $S \in PC$, $T \in \mathcal{P}_{U}A$, that $S \rho_{\mathcal{P}_{U}\tau}T$ iff for all $a \in T$, there exists $c \in S$ such that $c \rho_{\tau} a$.

Proposition: $\rho_{\mathcal{P}_{u}\tau}$ is U-closed when ρ_{τ} is; it is LUB-closed when ρ_{τ} is; it is L-closed when PC is an upper powerset.

Proposition: For all $S \in PC$, let $\mathcal{G}_S = \{T \in \mathcal{P}_UA \mid S \rho_{\mathcal{P}_U\tau}T\}$. If

1. ρ_{τ} is U-GLB-closed

2. for all $a \in \bigcap_{\mathcal{P}_{U}A} \mathcal{G}_{S}$, there exists $c \in S$ such that $a = \bigcap_{A} T_{c}$, where $T_{c} \subseteq \{a' \in T \in \mathcal{G}_{S} \mid c \ \rho_{\tau} \ a'\}$

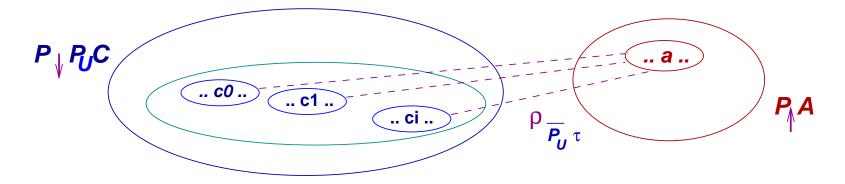
then $\rho_{\mathcal{P}_{U}\tau}$ is GLB-closed.

Corollary: Let upper powerset $\mathcal{P}_{\uparrow}A = (\{\uparrow D \mid D \subseteq A\}, \supseteq, \uparrow, \cup)$. Then $\rho_{\mathcal{P}_{U}\tau} \subseteq PC \times \mathcal{P}_{\uparrow}A$ is GLB-closed. because $\sqcap = \cup$.

Overapproximating underapproximated sets

There is a good use for $\rho_{P_{u}\tau}$: defining an *overapproximation analysis* of *underapproximations*.

Consider $\rho_{\overline{P}_{U}\tau} \subseteq \mathcal{P}_{\downarrow}(\mathcal{P}_{U}C) \times \mathcal{P}_{U}A$; it says that $\overline{S} \rho_{\overline{P}_{U}\tau} T$ iff for each set $S \in \overline{S}$, $S \rho_{\mathcal{P}_{U}\tau} T$, that is, T underapproximates each $S \in \overline{S}$:



We can readily construct $\rho_{\bar{\mathcal{P}}_{U}\tau}$:

- 1. define a U-GLB-closed $\rho_{\tau} \subseteq C \times A$;
- 2. lift it to a U-L-GLB-closed $\rho_{\mathcal{P}_{U}\tau} \subseteq \mathcal{P}_{U}C \times \mathcal{P}_{\uparrow}A$;

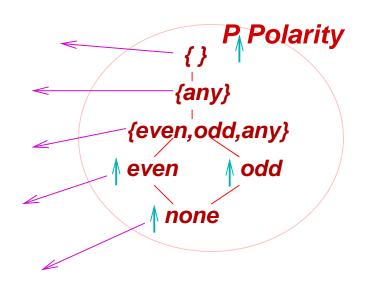
3. complete it to a U-GLB-L-LUB-closed $\rho_{\overline{P}_{1}\tau} \subseteq \mathcal{P}_{\downarrow}(\mathcal{P}_{U}C) \times \mathcal{P}_{\uparrow}A$.

The resulting Galois connection is

$$\begin{split} \alpha_{\rho_{\bar{\mathcal{P}}_{U}\tau}}\bar{S} &= \sqcap\{T\in\mathcal{P}_{\uparrow}A\mid \text{ for all }S\in\bar{S},S\,\rho_{\mathcal{P}_{U}\tau}\,\mathsf{T}\}\\ \gamma_{\rho_{\bar{\mathcal{P}}_{U}\tau}}\mathsf{T} &=\{S\mid S\,\rho_{\mathcal{P}_{U}\tau}\,\mathsf{T}\} \end{split}$$

Example: We complete ρ : Nat × Polarity = {none, even, odd, any} and obtain γ : \mathcal{P}_{\uparrow} Polarity $\rightarrow \mathcal{P}_{\downarrow}(\mathcal{P}(Nat)^{op})$:

 γ {} = all subsets of nats \supseteq γ {any} = nonempty subsets of nats \supseteq γ {even, odd, any} = all sets with 1+ even and 1+ odd \supseteq γ ↑ even = all sets with 1+ even \supseteq γ ↑ none = empty set



Synthesizing a most-precise dual simulation

Dams proves, for Galois connection $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$ and $R \subseteq C \times C$, that the best underapproximating relation $R \subseteq A \times A$ is

 $\mathbf{R}(\mathbf{a},\mathbf{a}') \text{ iff } \mathbf{a}' \in \{ \alpha(\mathbf{Y}) \mid \mathbf{Y} \in \min\{\mathbf{S}' \mid \mathbf{R}^{\forall \exists}(\gamma(\mathbf{a}),\mathbf{S}') \} \}$

Recoded as a function and simplified, this reads

 $\mathsf{R}(\mathfrak{a}) = \{ \alpha(\mathsf{Y}) \mid \mathsf{Y} \in \min\{\mathsf{S'} \mid \text{for all } s \in \gamma(\mathfrak{a}), \mathsf{R}(s) \cap \mathsf{S'} \neq \{ \} \} \}$

Our machinery gives us the same result:

Given U-GLB-closed $\rho_b \subseteq C \times A$ and transition function $R : C \to \mathcal{P}(C)$, we generate $\rho_{\bar{b}} \to \bar{\mathcal{P}}_{ub} \subseteq (\mathcal{P}(C) \to \mathcal{P}_{\downarrow}(\mathcal{P}(C)^{op})) \times (A \to \mathcal{P}_{\uparrow}A)$.

We generate this most precise, sound underapproximating abstract transition function, $\mathbb{R}^{\flat} : \mathbb{A} \to \mathcal{P}_{\uparrow}\mathbb{A}$:

$$\mathsf{R}^{\flat}(\mathfrak{a}) = (\alpha_{\rho_{\bar{\mathcal{P}}_{\mathsf{U}}^{\flat}}} \circ ext(\{\!\!\{\cdot\}\!\!\} \circ \mathsf{R}^{\mathsf{op}}) \circ \gamma_{\rho_{\bar{\mathfrak{b}}}})(\mathfrak{a})$$

where $\{\!\!\{\cdot\}\!\!\} \circ R^{\operatorname{op}} : C \to \mathcal{P}_{\downarrow} \mathcal{P}(C)^{\operatorname{op}} \text{ is } (\{\!\!\{\cdot\}\!\!\} \circ R^{\operatorname{op}})(c) = \uparrow R(c) = R(c),$ and $ext(\{\!\!\{\cdot\}\!\!\} \circ R^{\operatorname{op}}) : \mathcal{P}(C) \to \mathcal{P}_{\downarrow}(\mathcal{P}(C)^{\operatorname{op}}) \text{ is}$ $ext(\{\!\!\{\cdot\}\!\!\} \circ R^{\operatorname{op}})(S) = \downarrow_{\mathcal{P}(C)^{\operatorname{op}}} \{R(c) \mid c \in S\} = \{S \supseteq R(c) \mid c \in S\}$ and $\alpha_{\rho_{\overline{\mathcal{P}}_{U}b}}(\overline{S}) = \sqcap \{T \mid \text{for all } S \in \overline{S}, S \rho_{\mathcal{P}_{U}b} T\}.$

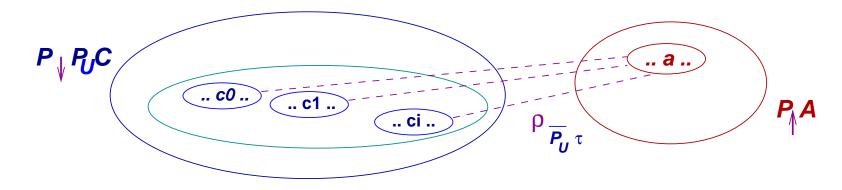
That is, $ext(\{\cdot\} \circ R^{\circ p})$ maps a set of arguments to the set of sets of answers, and $\alpha_{\bar{p}_{\mathcal{P}_{u}b}}$ produces the smallest abstract set that underapproximates every answer set R(c), for $c \in \gamma_{\bar{p}_{b}}(a)$. We take into account that A is partially ordered.

Simplified, $R^{\flat}(\mathfrak{a}) = \prod \{T \in \mathcal{P}_{\uparrow} A \mid \text{for all } \mathfrak{a}' \in T, \text{ for all } s \in \gamma_{\rho_{\overline{b}}}(\mathfrak{a}), R(s) \cap \gamma_{\rho_{\overline{b}}}(\mathfrak{a}') \neq \{\}\}$ is provably equal to Dams's definition:

 $\mathbf{R}(\mathbf{a}) = \{ \alpha(\mathbf{Y}) \mid \mathbf{Y} \in \min\{\mathbf{S'} \mid \text{for all } \mathbf{s} \in \gamma(\mathbf{a}), \mathbf{R}(\mathbf{s}) \cap \mathbf{S'} \neq \{\}\} \}$

We can show that $R(\alpha)$ belongs to and is \Box all elements in the former set.

Every answer set is kept distinct and each set's elements are underapproximated:



Dual simulation lifts to sets of arguments:

Theorem: $\mathbb{R}^{\flat} \triangleleft_{\rho^{-1}} \mathbb{R}$ iff $\mathbb{R} \rho_{b \to \mathcal{P}_{u}b} \mathbb{R}^{\flat}$ iff $ext(\{\!\! \{\cdot\} \circ \mathbb{R}^{op}\}) \rho_{\bar{b} \to \bar{\mathcal{P}}_{u}b} \mathbb{R}^{\flat}$

Validation and refutation logics

A logic generated from the logical relations

We define this language of assertions,

 $\phi ::= p_b \mid f.\phi \mid \forall \phi \mid \exists \phi$

and this semantics of typed judgements for both concrete domains, C_{τ} , and abstract domains, A_{τ} :

 $\begin{aligned} d &\models_{b} p_{b} \text{ is given, for } d \in D_{b} \\ d &\models_{\tau_{1} \to \tau_{2}} f.\varphi \text{ if } f(d) \models_{\tau_{2}} \varphi, \text{ for } d \in D_{\tau_{1}}, f \in D_{\tau_{1} \to \tau_{2}} \\ S &\models_{\mathcal{P}_{L}\tau} \forall \varphi \text{ if for all } d \in S, d \models_{\tau} \varphi, \text{ for } S \in D_{\mathcal{P}_{L}\tau} \\ S &\models_{\mathcal{P}_{U}\tau} \exists \varphi \text{ if there exists } d \in S \text{ such that } d \models_{\tau} \varphi, \text{ for } S \in D_{\mathcal{P}_{U}\tau} \end{aligned}$

For abstract values, the typed judgement for $\bar{\tau}$ reads

 $a \models_{\overline{\tau}} \phi$ if $a \models_{\tau} \phi$, for $a \in A_{\tau}$.

but for concrete values, it must read

 $S \models_{\bar{\tau}} \phi$ if $c \models_{\tau} \phi$, for all $c \in S$, $S \in \mathcal{P}_L C_{\tau}$ (a join completion)

Some "syntactic sugar":

 $d \models \forall R \varphi$ (that is, $d \models \Box \varphi$) abbreviates $d \models_{\tau_1 \rightarrow \mathcal{P}_L \tau_2} R. \forall \varphi$

 $d \models \exists R\phi \ (d \models \Diamond \phi) \text{ abbreviates } d \models_{\tau_1 \to \mathcal{P}_U \tau_2} R. \exists \phi$

This reveals that the logic extracted from the logical relations is a variant of Hennessy-Milner or description logic.

$\tau ::= b \mid \tau_1 \to \tau_2 \mid \mathcal{P}_L \tau \mid \mathcal{P}_U \tau \mid \bar{\tau}$

Assume, for all function symbols, f, typed $\tau_1 \rightarrow \tau_2$, there are interpretations $f: C_{\tau_1} \rightarrow C_{\tau_2}$, and $f^{\sharp}: A_{\tau_1} \rightarrow A_{\tau_2}$, such that $f \rho_{\tau_1 \rightarrow \tau_2} f^{\sharp}$. Also, we formalize when judgements $a \models_{\tau} \phi$ are *well formed* — see the typings on $a \in A_{\tau'}$ in the definitions of $\models_{\tau} \phi$

Definition: $\models_{\tau} \phi$ *is* ρ_{τ} *-sound* iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_2}$,

 $a \models_{\tau} \phi$ is well formed, holds true, and $c \rho_{\tau} a$ imply $c \models_{\tau} \phi$. Assume that all $\models_{b} p$ are ρ_{b} -sound.

Theorem: For all types, τ , we have that $\models_{\tau} \phi$ are ρ_{τ} -sound.

We can add the logical connectives,

 $d \models_{\tau} \phi_1 \land \phi_2 \text{ if } d \models_{\tau} \phi_1 \text{ and } d \models_{\tau} \phi_2$ $d \models_{\tau} \phi_1 \lor \phi_2 \text{ if } d \models_{\tau} \phi_1 \text{ or } d \models_{\tau} \phi_2$

and prove these ρ_{τ} -sound.

Validating $\neg \phi$ **requires a** *refutation logic*

Define $c \models_{\tau} \neg \phi$ iff $c \not\models_{\tau} \phi$.

We have a logic that validates ϕ for $c \in C$ by validating it for $a \in A$, so we might have also a logic that *refutes* properties similarly:

Read $\mathbf{a} \models_{\tau}^{pos} \mathbf{\phi}$ as "it is not possible that any value modelled by \mathbf{a} has property $\mathbf{\phi}$."

$$a \models_{b}^{pos} p \text{ is given, for } a \in A_{b}$$

$$a \models_{\tau_{1} \to \tau_{2}}^{pos} f.\phi \text{ if } f(a) \models_{\tau_{2}}^{pos} \phi, \text{ for } a \in A_{\tau_{1}}, f \in A_{\tau_{1} \to \tau_{2}}$$

$$T \models_{\mathcal{P}_{u}\tau}^{pos} \forall \phi \text{ if exists } a \in T, a \models_{\tau}^{pos} \phi, \text{ for } T \in A_{\mathcal{P}_{u}\tau}$$

$$T \models_{\mathcal{P}_{L}\tau}^{pos} \exists \phi \text{ if for all } a \in T, a \models_{\tau}^{pos} \phi, \text{ for } T \in A_{\mathcal{P}_{L}\tau}$$

$$a \models_{\tau}^{pos} \phi \text{ if } a \models_{\tau}^{pos} \phi, \text{ for } a \in A_{\tau}$$

Definition: $\models_{\tau}^{pos} \phi$ is ρ_{τ} -sound iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_2}$, $a \models_{\tau}^{pos} \phi$ is well formed, holds, and $c \rho_{\tau} a$ imply $c \not\models_{\tau} \phi$.

Theorem: All $\models_{\tau}^{pos} \phi$ are ρ_{τ} -sound.

The case for $\models_{\bar{\tau}}^{pos} \phi$ shows significant loss of precision: $a \models_{\bar{\tau}}^{pos} \phi$ and $S \rho_{\bar{\tau}} a$ imply for all $c \in S$, that $c \models_{\tau}^{pos} \phi$, whereas we need only show that there exists some $c \in S$, such that $c \models_{\tau}^{pos} \phi$.

Corollary: $a \models_{\tau} \neg \phi$ *if* $a \models_{\tau}^{pos} \phi$ is sound for ρ_{τ} .

 $a \models_{\tau}^{\neg pos} \neg \phi$ *if* $a \models_{\tau} \phi$ is sound for ρ_{τ} .

In the refutation logic, $\models_{\tau}^{pos} \phi$, the roles of $\mathcal{P}_{L}\tau$ and $\mathcal{P}_{U}\tau$ are exchanged. This, as well as the need to validate a mix of \forall and \exists , means we must employ \mathbb{R}^{\sharp} and \mathbb{R}^{\flat} to validate/refute assertions — this is the idea behind mixed/modal transition systems.

The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and refutation logics.

We might approximate every concrete set by a *pair* of lower and upper approximations: $\rho_{P\tau} \subseteq PC \times (\mathcal{P}_LA \times \mathcal{P}_UA)$. This motivates sandwich- and mixed-powerdomains for over-under-approximation of sets [Huth-Jagadeesan-Schmidt].

References

Primary:

- 1. This talk: www.cis.ksu.edu/~schmidt/papers
- 2. K. Backhouse and R. Backhouse. Galois Connections and Logical Relations. Mathematics of Program Construction, LNCS 2386, 2002.
- 3. P. Cousot and R.Cousot. Abstract interpretation frameworks. *Journal of Logic and Computation* 2 (1992).
- 4. P. Cousot and R.Cousot. Higher-order abstract interpretation. IEEE Conf. on Computer Languages, 1994.
- D. Dams. Abstract interpretation and partition refi nement for model checking. PhD thesis, Univ. Eindhoven, 1996.
- 6. C. Loiseaux, et al. Property preserving abstractions for the verification of concurrent systems. *Formal Methods in System Design* 6 (1995).
- 7. A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In Programs as Data Objects, LNCS 217, 1985.
- 8. G. Plotkin. Domain theory. Lecture notes, Univ. Pisa 1982.

Secondary:

- S. Abramsky, Abstract interpretation, logical relations, and Kan extensions. J. Logic and Computation 1 (1990).
- 2. F. Baader, et al. *The Description Logic Handbook.* Cambridge Univ. Press 2003.
- D. Dams, R. Gerth, O. Grumberg. Abstract Interpretation of Reactive Systems. ACM TOPLAS 19 (1997).
- 4. J. Hartmanis and R. Stearns. Pair algebras and their application to automata theory. *Information and Control* 7 (1964).
- 5. R. Heckman. *Powerdomain constructions.* PhD thesis, Saarbrücken, 1990.
- M. Huth, R. Jagadeesan, D. Schmidt. Modal transition systems: a foundation for three-valued program analysis, ESOP 2002. Also, A domain equation for refi nement of partial systems, *J. MSCS*, in press.
- M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
 26th ACM POPL, 1999.
- 8. D.A. Schmidt. Binary Relations for Program Abstraction. In The Essence of Computation, Springer LNCS 2566, 2002.