
Software Architecture
an informal introduction

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1



Outline

1. Components and connectors

2. Software architectures

3. Architectural analysis and views

4. Architectural description languages

5. Domain-specific design

6. Product lines

7. Middleware

8. Model-driven architecture

9. Aspect-oriented programming

10. Closing remarks

(-: / 2



An apology...

Because of a shortage of time, I was unable to draw and typeset all

the diagrams and text.

So, I downloaded the needed items, captured their images on the

screen, and inserted the captured images into these notes. For each

image, I have indicated its source.

I apologize for the bad quality of the some of the screen captures.

(-: / 3



1. Components and connectors

(-: / 4



Programming has evolved (from the 1960s)

� Single programmer-projects have evolved into development teams

� Single-component applications are now multi-component,

distributed, and concurrent

� One-of-a-kind-systems are replaced by system families,

specialized to a problem domain and solution framework

� Built-from-scratch systems are replaced by systems composed

from Commerical-Off-The-Shelf (COTS) components and

components reused from previous projects

(-: / 5



Single-component design

We learned first how to read and implement single-component
designs – a single algorithm or a single data structure:

isPrime(int x):boolean

pre: x > 1

post: returns true, if x is prime; returns false, otherwise

datatype Stack

operations
push : Value × Stack → Stack

pop : Stack → Stack

top : Stack → Value

axioms top(push(v, s)) = v

pop(push(v, s)) = s

etc.

(-: / 6



Multi-component design

It is more difficult to design a system of many components:

How do the system requirements suggest the design?

How do the users and their domain experts help formulate the design?

How is the design expressed so that it is understandable by the

domain experts as well as the implementors?

How is the design mapped to software components?

How are the components organized (sequence, hierarchy, layers,

star)?

How are the components connected? How do they

synchronize/communicate?

How do we judge the success of the design at meeting its

requirements?

(-: / 7



Programming-in-the-large

was the name given in the 1970’s to the work of designing

multi-component systems. Innovations were

� the concept of module (a collection of data and related functions)

and its implementation in languages like Modula-2 and Ada

� controlled visibility of a module’s contents (via import and export)

� logical invariant properties of a module’s contents

� interface descriptions for the modules that can be analyzed

separately from the modules themselves (cf. Java interfaces)

Reference: F. DeRemer and H. H. Kron. Programming-in-the-Large versus

Programming-in-the-Small. IEEE Transactions on Software Engineering, June 1976.

(-: / 8



Component reuse

By the 1980’s, virtually all applications required multi-component

design. Some practical techniques arose:

� incremental development: working systems were incremented

and modified into new systems that met a similar demand

� rapid prototyping: interpreter-like generator systems were used

to generate quick-and-inefficient implementations that could be

tested and incrementally refined.

� buy-versus-build: “Commercial Off The Shelf” (COTS) modules

were purchased and incorporated into new systems.

These techniques promoted component reuse — it is easier to reuse

than to build-from-scratch. But, to reuse components successfully,

one must have an architecture into which the components fit!

(-: / 9



Motivation for software architecture

We use already architectural idioms for describing the structure of

complex software systems:

� “Camelot is based on the client-server model and uses remote

procedure calls both locally and remotely to provide

communication among applications and servers.” [Spector87]

� “The easiest way to make the canonical sequential compiler into

a concurrent compiler is to pipeline the execution of the compiler

phases over a number of processors.” [Seshadri88]

� “The ARC network follows the general network architecture

specified by the ISO in the Open Systems Interconnection

Reference Model.” [Paulk85]

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html

(-: / 10



Architectural description has a natural position
in system design and implementation

A slide from one of David Garlan’s lectures:

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html

(-: / 11



Hardware architecture

There are standardized descriptions of computer hardware
architectures:

� RISC (reduced instruction set computer)

� pipelined architectures

� multi-processor architectures

These descriptions are well understood and successful because

(i) there are a relatively small number of design components

(ii) large-scale design is achieved by replication of design elements

In contrast, software systems use a huge number of design components and scale

upwards, not by replication of existing structure, but by adding more distinct design

components.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.

(-: / 12



Network architecture

Again, there are standardized descriptions:

� star networks

� ring networks

� manhattan street (grid) networks

The architectures are described in terms of nodes and connections.

There are only a few standard topologies.

In contrast, software systems use a wide variety of topologies.

(-: / 13



Classical architecture

The architecture of a building is described by

� multiple views: exterior, floor plans, plumbing/wiring, ...

� architectural styles: romanesque, gothic, ...

� style and engineering: how the choice of style influences the

physical design of the building

� style and materials: how the choice of style influences the

materials used to construct (implement) the building.

These concepts also appear in software systems: there are

(i) views: control-flow, data-flow, modular structure, behavioral requirements, ...

(ii) styles: pipe-and-filter, object-oriented, procedural, ...

(iii) engineering: modules, filters, messages, events, ...

(iv) materials: control structures, data structures, ...

(-: / 14



A crucial motivating concept: connectors

The emergence of networks, client-server systems, and OO-based

GUI applications led to the conclusion that

components can be connected in various ways

Mary Shaw stressed this point:

M: Central

Reference: Mary Shaw, Procedure Calls are the Assembly Language of Software

Interconnections: Connectors Deserve First-Class Status. Workshop on Studies of

Software Design, 1993.

(-: / 15



Shaw’s observations

Connectors are forgotten because (it appears that) there are no

codes for them.

But this is because the connectors must be coded in the same

language as the components, which confuses the two forms.

Different forms of low-level connection (synchronous, asynchronous,

peer-to-peer, event broadcast) are fundamentally different yet are all

represented as procedure (system) calls in programming language.

Connectors can (and should?) be coded in languages different from

the languages in which components are coded (e.g., unix pipes).

(-: / 16



Shaw’s philosophy

Components — compilation units (module, data structure, filter)
— are specified by interfaces .

Connectors — “hookers-up” (RPC (Remote Procedure Call) , event,
pipe) — mediate communications between components and are
specified by protocols .

(-: / 17



Example:

M: Central

Interface Central is different from a Java-interface; it lists the “players”
— inA, outB, linkC, Gorp, Thud, ... (connection points/ ports/
method invocations) — that use connectors.

(-: / 18



The connector’s protocol lists
(i) the types of component interfaces it can “mediate”;
(ii) orderings and invariants of component interactions;
(iii) performance guarantees.

Example: Shaw’s description of a unix pipe:

Reference: M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and Implementations

for Architectural Connections. In 3d. Int. Conf. on Configurable Distributed Systems,

Annapolis, Maryland, May 1996.

(-: / 19



Connectors can act as

� communicators: transfer data between components (e.g.,

message passing, buffering)

� mediators: manage shared resource access between

components (e.g., reader/writer policies, monitors, critical regions)

� coordinators: define control flow between components (e.g.,

synchronization (protocols) between clients and servers, event

broadcast and delivery)

� adaptors: connect mismatched components (e.g., a pipe

connects to a file rather than to a filter)

Perhaps you have written code for a bounded buffer or a monitor or a

protocol or a shared, global variable — you have written a connector!

(-: / 20



Connectors can facilitate

� reuse: components from one application are inserted into

another, and they need not know about context in which they are

connected

� evolution: components can be dynamically added and removed

from connectors

� heterogenity: components that use different forms of

communication can be connected together in the same system

A connector should have the ability to handle limited mismatches

between connected components, via information reformatting,

object-wrappers, and object-adaptors, such that the component is not

rewritten — the connector does the reformatting, wrapping, adapting.

(-: / 21



If connectors are crucial to systems building, why did we take so long

to “discover” them? One answer is that components are

“pre-packaged” to use certain connectors:

But “smart” connectors make components simpler, because the

coding for interaction rests in the connectors — not the components.

The philosophy, system = components + connectors was a strong

motivation for a theory of software architecture.

Reference: M. Shaw and D. Garlan. Formulations and Formalisms in Software

Architecture. Computer Science Today: Recent Trends and Developments Jan van

Leeuwen, ed., Springer-Verlag LNCS, 1996, pp. 307-323.

(-: / 22



2. Software Architecture

(-: / 23



What is a software architecture? (Perry and Wolf)

A software architecture consists of

1. elements: processing elements (“functions”), connectors (“glue” —

procedure calls, messages, events, shared storage cells), data elements
(what “flows” between the processing elements)

2. form: properties (constraints on elements and system) and relationship
(configuration, topology)

3. rationale: philosophy and pragmatics of the system:
requirements, economics, reliability, performance

There can be “views” of the architecture from the perspective of the
process elements, the data, or the connectors. The views might show

static and dynamic structure.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.

(-: / 24



What is a software architecture? (Garlan)

[A software architecture states] the structure of the compo nents
of a program/system, their interrelationships, and princi ples and

guidelines governing their design and evolution over time.

The architectural description

1. describes the system in terms of components and interactions

between them

2. shows correspondences between requirements and

implementation

3. addresses properties such as scale, capacity, throughput,

consistency, and compatibility.

(-: / 25



Mary Shaw calls the previous definitions

structural (constituent parts) models.

She notes that there are also

framework (whole entity) models,
dynamic (behavioral) models,

and process (implementational) models

of software architecture.

(-: / 26



� Structural (constituent parts) models: components, connectors,
and “other stuff” (configuration, rationale, semantics, constraints,
styles, analysis, properties, requirements, needs). Readily supports

architectural description languages; underemphasizes dynamics.

� Domain-specific (whole-entity/“framework”) models: a single
structure well suited to a problem domain (e.g,
telecommunications, avionics, client-server). The narrow focus allows

one to give a detailed presentation of syntax, semantics, and pragmatics and

tool support.

� Dynamic (behavioral) models: explains patterns of
communications, how components are added and removed, how
system evolves. (e.g., reactive systems, π-calculus, chemical abstract

machines). Emphasizes dynamics over statics.

� Process (implementational) models: Construction steps for
converting architecture into implementation. Disappearing.

(-: / 27



We begin with the structural (constituent parts) model:

� Components: What are the building blocks? (e.g., filters, ADTs,

databases, clients, servers)

� Connectors: How do the blocks interact? (e.g., call-return, event

broadcast, pipes, shared data, client-server protocols)

� Configuration: What is the topology of the components and

connectors?

� Constraints: How is the structure constrained? Requirements on

function, behavior, performance, security, maintainability....

(-: / 28



We have seen components and connectors, but what is a

configuration ?

The slide is from Nenad Medvidovic’s course on software architectures,

http://sunset.usc.edu/classes/cs578 2002

(-: / 29



Architectural Styles (patterns)

1. Data-flow systems: batch sequential, pipes and filters

2. Call-and-return systems: main program and subroutines, hierarchical

layers, object-oriented systems

3. Virtual machines: interpreters, rule-based systems

4. Independent components: communicating systems, event systems,

distributed systems

5. Repositories (data-centered systems): databases, blackboards

6. and there are many others, including hybrid architectures

The italicized terms are the styles (e.g., independent components); the roman terms

are architectures (e.g., communicating system). There are specific instances of the

architectures (e.g., a client-server architecture is a distributed system). But these

notions are not firm!

(-: / 30



Data-flow systems: Batch-sequential and Pipe-and-filter

ParseScan GenCode
tokens tree codetext

Batch sequential Pipe and filter

Components: whole program filter (function)

Connectors: conventional input-output pipe (data flow)

Constraints:

components execute to

completion, consuming

entire input, producing

entire output

data arrives in incre-

ments to filters

Examples: Unix shells, signal processing, multi-pass compilers

Advantages: easy to unplug and replace filters; interactions between components

easy to analyze. Disadvantages: interactivity with end-user severely limited; performs

as quickly as slowest component.

(-: / 31



Call-and-return systems: subroutine and layered

main

sub1 sub2 sub3

... ... ...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Subroutine Layered

Components: subroutines (“servers”) functions (“servers”)

Connectors: parameter passing protocols

Constraints: hierarchical execution

and encapsulation

functions within a layer

invoke (API of) others

at next lower layer

Examples: modular, object-oriented, N-tier systems (subroutine);
communication protocols, operating systems (layered)

(-: / 32



main

sub1 sub2 sub3

... ... ...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Advantages: hierarchical decomposition of solution; limits range of

interactions between components, simplifying correctness reasoning;

each layer defines a virtual machine; supports portability (by replacing

lowest-level components).

Disadvantages: components must know the identities of other

components to connect to them; side effects complicate correctness

reasoning (e.g., A uses C, B uses and changes C, the result is an

unexpected side effect from A’s perspective; components sensitive to

performance at lower levels/layers.

(-: / 33



Virtual machine: interpreter

program

interpreted

program’s

state

Interpretation

engine

interpreter’s

state

fetch

ins. &
data

outputs

inputs to program

Interpreter

Components: “memories” and state-machine engine

Connectors: fetch and store operations

Constraints: engine’s “execution cycle” controls the

simulation of program’s execution

Examples: high-level programming-language interpreters, byte-code
machines, virtual machines

Advantages: rapid prototyping Disadvantages: inefficient.

(-: / 34



Repositories: databases and blackboards

interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Database Blackboard

Components: processes and database knowledge sources and

blackboard
Connectors: queries and updates notifications and updates

Constraints: transactions (queries and

updates) drive computation

knowledge sources respond

when enabled by the state of the
blackboard. Problem is solved

by cooperative computation on
blackboard.

Examples: speech and pattern recognition (blackboard); syntax
editors and compilers (parse tree and symbol table are repositories)

(-: / 35



interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Advantages: easy to add new processes.

Disadvantages: alterations to repository affect all components.

(-: / 36



Independent components: communicating processes

process

process

process

α
β γ

δ

Communicating processes

Components: processes (“tasks”)

Connectors: ports or buffers or RPC

Constraints: processes execute in parallel and send mes-

sages (synchronously or asynchronously)

Example: client-server and peer-to-peer architectures

Advantages: easy to add and remove processes. Disadvantages: difficult to reason

about control flow.

(-: / 37



Independent components: event systems

object

object

object

event registry

!

?

!

!

?

Event systems

Components: objects or processes (“threads”)

Connectors: event broadcast and notification (implicit invocation)

Constraints:
components “register” to receive event notifi-

cation; components signal events, environment

notifies registered “listeners”

Examples: GUI-based systems, debuggers, syntax-directed editors,
database consistency checkers

(-: / 38



object

object

object

event registry

!

?

!

!

?

Advantages: easy for new listeners to register and unregister

dynamically; component reuse.

Disadvantages: difficult to reason about control flow and to formulate

system-wide invariants of correct behavior.

(-: / 39



Other forms of architecture

Process control system: Structured as a feedback loop where input

from sensors trigger computation whose outputs adjust the physical

environment. For controlling a physical environment, e.g., software for

flight control.

State transition system: Structured as a finite automaton; for reactive

systems, e.g., vending machines.

Domain-specific software architectures: architectures tailored to

specific application areas. Requires a domain model, which lists

domain-specific objects, operations, vocabulary. Requires a reference

architecture, which is a generic depiction of the desired architecture.

The architecture is then instantiated and refined into the desired

software architecture.

Examples: Client-server models like CORBA, DCOM (in .NET), Enterprise

Javabeans (in J2EE).

(-: / 40



Three architectures for a compiler (Garlan and Shaw)

The symbol table and tree are

“shared-data connectors”

The blackboard triggers

incremental checking and code

generation

(-: / 41



What do we gain from using a software
architecture?

1. the architecture helps us communicate the system’s design
to the project’s stakeholders (users, managers,
implementors)

2. it helps us analyze design decisions

3. it helps us reuse concepts and components in future
systems

(-: / 42



An example of an application and
its software architecture
An architecture that is heavily used for single-user, GUI-based

applications is the Model-View-Controller (MVC) architecture.

(-: / 43



A demonstration example: Heart Animation

When started, a view appears of an animated, beating heart:

When the “Mood” button is pressed, the heart changes from its

“happy” color to its “sad” color:

(-: / 44



But there is another view of the heart—two additional windows display

the state of the heart in terms of its history of happy and sad beats:

The heart is modelled within the animation and is viewed in two

different ways (by color and counts). It is controlled by a “clock” and a

Mood button.

The source code is available at www.cis.ksu.edu/santos/schmidt/ppdp01/Heart

(-: / 45



MVC Architecture of the Heart Animation

while true {
heart.beat();}

heart.resetMood();

size = ++size mod2;
mood.increment();
notifyObservers();

mood = ++mood mod2;
notifyObservers();

! update

HeartbeatController

run()

MoodController

actionPerformed()

size:{large,small}

Heart

beat()

mood: {happy, sad}

resetMood()

Counter

increment()

ActionListener
update()

HeartWriter

CounterWriter

update()

Observer

update()

Observable

notifyObservers()

JButton

heart

sad

happy

? actionPerformed

heart

? update

! actionPerformed

! press

? update

MVC is a hybrid architecture: the subassemblies are object-oriented and are

connected as an event system. (The java.util and javax.swing packages

implement the event registries.)

(-: / 46



HeartbeatController

run()

actionPerformed()

MoodController

size:{large,small}

Heart

beat()

resetMood()

mood: {happy, sad}

Counter

increment()

update()

HeartWriter
CounterWriter

update()

VIEW(S)

MODELCONTROLLER(S)

MVC

Components: classes and interfaces (to event registries)

Connectors: call-return message passing, event broadcast

Properties:

Architecture is divided into Model, View, and

Controller subassemblies. Controller updates

Model’s state; when updated, Model signals

View(s) to revise presentation.

(-: / 47



Analyzing the architecture: Couplings

Consider the dependency structure of the heart animation, where

self-contained subassemblies are circled; these can be extracted for

reuse:

HeartbeatController

MoodController
Heart Counter

Observable

Observer

HeartWriter CounterWriter

!

?
?

Couplings can be studied: A is coupled to B if modifications to B’s

signature imply modifications to A’s implementation. (Normally,

dependency implies coupling, and we will treat it as such here.)

(-: / 48



As a general rule, a system should have weak coupling — changes to

a component imply minimal changes to the rest of the system.

(But data-centered systems, like a database, have strong coupling — all user

processes are coupled to the database, making changes to the database expensive!)

In the example, the Observer/Observable event registry decouples

the animation’s controllers from its views and ensures that the model

is decoupled from all other subassemblies:

HeartbeatController

MoodController
Heart Counter

Observable

Observer

HeartWriter CounterWriter

!

?
?

(-: / 49



Without the Observer event registry, we might design the animation

like this, where the controllers tell the model to update and tell the

views to refresh:

HeartbeatController

MoodController
Heart Counter

HeartWriter CounterWriter

The structure is hierarchical, coupling the controllers to all

subassemblies; unfortunately, the controllers operate only with fixed

views.

(-: / 50



An alternative is to demand that the model contact all views whenever

it is updated:

HeartbeatController

MoodController
Heart Counter

CounterWriterHeartWriter

This looks clean, but the model controls the views! And it operates

only with fixed views.

Both of the latter two architectures will be difficult to maintain as the

system evolves. Subassembly reuse is unlikely.

The first architecture is the best; indeed, it uses the observer design

pattern.

(-: / 51



Design patterns

(-: / 52



When an architectural (sub)design proves successful in multiple

projects, it defines a design pattern that can be used in future

designs. The model and view subassemblies of the animation,

Observable

Observer

Heart Counter

HeartWriter CounterWriter

!

HeartbeatController

MoodController

?

?

are assembled according to the observer design pattern:

ConcreteSubject

state

getState()

setState()

ConcreteObserver

copyOfState

handle()

Observer

handle()

Observable

Observer[] registered

register(Observer)

notify()

?

s

r
r

!

(-: / 53



A design pattern is a solution scheme to a common architectural

problem that arises in a specific context. It is presented by

� stating the problem and the context in which it arises

� stating the solution in terms of an architectural structure (syntax)

� describing the behavior (semantics) of the structure

� assessing the pragmatics

Varieties:

1. Creational: patterns for constructing components

2. Structural: patterns for connecting components

3. Behavioral: patterns for communicating between components

Reference: E. Gamma, et al., Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.

(-: / 54



A behavioral pattern: observer

Problem Context: Maintain consistency of copies of state among
multiple objects, where one object’s state must be “mirrored” by all the
others.

The pattern designates one subject object to hold the state; observer
objects hold the copies and are notified by indirect event broadcast
when the subject’s state changes. The observers then query the
subject and copy the state changes.

Syntax: ConcreteSubject

state

getState()

setState()

ConcreteObserver

copyOfState

handle()

Observer

handle()

Observable

Observer[] registered

register(Observer)

notify()

?

s

r
r

!

(-: / 55



ConcreteSubject

state

getState()

setState()

ConcreteObserver

copyOfState

handle()

Observer

handle()

Observable

Observer[] registered

register(Observer)

notify()

?

s

r
r

!

Semantics:

I. The ConcreteSubject owns an event registry, r. Observable.

II. Each ConcreteObserver invokes r.register(this), registering itself.

III. When the ConcreteSubject’s setState method is invoked, the method
updates state and signals r.notify(), which broadcasts events to all
registered[i], starting these objects’ handle methods.

IV. Each handle method invokes s.getState() and updates its local state.

Pragmatics:

✔ weak coupling: the subject knows nothing about its observers

✔ observers are readily added, modified, and detached

✘ a minor state update signals all observers

(-: / 56



A structural pattern: composite

Problem Context: Compound data structures, constructed from

“leaves” and “compound” classes, must be manipulated by a client,

which treats all structures uniformly.

The pattern adds an abstract class to name the (disjoint) union of the

data classes and hold default methods for all operations on the data

classes. The client treats all objects as having the union type.

Syntax:

signal error;

Union d;
d = new Compound(...);
d.getChild(1);

... children[i] = c; ...

Union

op()

addChild(Union c)

getChild(int i): Union

Leaf

op()

Compound

Union[] children

addChild(Union c)

getChild(int): Union

Client

(-: / 57



signal error;

Union d;
d = new Compound(...);
d.getChild(1);

... children[i] = c; ...

Union

op()

addChild(Union c)

getChild(int i): Union

Leaf

op()

Compound

Union[] children

addChild(Union c)

getChild(int): Union

Client

Semantics:

I. Union holds default codings for all operations of all data classes. Each
subclass overrides some of the defaults.

II. The Client treats all data as having type Union and invokes its methods
without employing down-casts.

Pragmatics:

✔ client can process the data structures recursively without down-casts

✔ easy to add new data classes to Union

✘ difficult to restruct the classes that may be children of Compound

(-: / 58



A creational pattern: abstract factory

Problem Context: A client uses a “product family” (e.g., widgets —
windows, scroll bars, menus), constructed on demand. The client
must be separate from the family so that the family can be easily
changed (e.g., a different “look and feel”).

The pattern uses an interface to list the constructors for the products,
and each family implements the interface.

Syntax:
AbstractFactory

createA(): AbsProductA

createB(): AbsProductB

ConcreteFactory2

createA(): AbsProductA

createB(): AbsProductB

ConcreteFactory1

createA(): AbsProductA

createB(): AbsProductB ProductB1 ProductB2

AbsProductB

ProductA1 ProductA2

AbsProductA

Client

(-: / 59



AbstractFactory

createA(): AbsProductA

createB(): AbsProductB

ConcreteFactory2

createA(): AbsProductA

createB(): AbsProductB

ConcreteFactory1

createA(): AbsProductA

createB(): AbsProductB ProductB1 ProductB2

AbsProductB

ProductA1 ProductA2

AbsProductA

Client

Semantics:

I. The AbstractFactory interface is implemented by one of
ConcreteFamily1 or ConcreteFamily2, and interfaces AbsProductA and
AbsProductB are implemented by the respective concrete products.

II. The Client invokes the methods in AbstractFactory to receive objects
of type AbsProduct1 and AbsProduct2 — it does not know the identities of
the concrete products.

Pragmatics:

✔ Client is decoupled from the products it uses

✔ interface AbstractFactory forces all product families to be consistent

✘ it is difficult to add new products to just one factory

(-: / 60



Of course, the abstract factory pattern is a compensation for the lack

of a polymorphic class — but it does indicate a context when the

“polymorphism” can be profitably applied.

And the composite pattern is a compensation for the lack of a disjoint

union type — but it does indicate a context when disjoint union can be

profitably applied.

In this sense, design patterns are universal across programming

paradigms, although each programming paradigm will support some

design patterns more simply than others.

(-: / 61



3. Architectural analysis and
views

(-: / 62



How do we classify architectural styles?

1. Forms of components and connectors. See earlier slides.

2. Control-flow: how control is transferred, allocated, and shared.
topology: geometric shape of control — linear, hierarchical, hub-and-spoke.

Static or dynamic. synchronicity: lockstep, synchronous, asynchronous. binding

time: when the partner of a transfer of control is established: compile-, link-, or

run-time.

3. Data-flow: how data is communicated through the system.
topology: geometric shape of the data flow; continuity: continuous, sporadic,

high-volume, low-volume flow; mode: how data is transferred: passed, shared,

copy-in-copy-out (from shared structure), broadcast, or multicast.

4. Control/data interaction. shape: are control/data topologies similar?

directionality: do data and control travel in the same direction?

5. Which form of reasoning is compatible with the style? state machine

theory/process algebra (for independent components); function composition (for

pipe-and-filter); inductive/compositional (for hierarchical).

(-: / 63



(The pipe-and-filter example seen earlier is called pipeline here.)

Reference: M. Shaw and P. Clements. A Field Guide to Boxology: Preliminary

Classification of Architectural Styles for Software Systems. Proc. COMPSAC’97,

21st Int’l Computer Software and Applications Conference, August 1997, pp. 6-13.

(-: / 64



Andrew’s classifications of communicating-process architectures:

� one-way data flow

� client-server-style request and reply

� back-and-forth (heartbeat) interaction between neighboring

processes

� probes and echoes from a process to its successors

� message broadcast

� token passing (for control/access privileges)

� coordination between replicated servers

� decentralized workers

(-: / 65



(-: / 66



A two-slide table of architectural styles:

(-: / 67



(-: / 68



How do we select a style of software
architecture?

Shaw gives this simple checklist from A Field Guide to Boxology,

COMPSAC’97:

(1) If the problem can be decomposed into sequential stages,
consider a data-flow architecture: batch sequential or pipeline.

In addition, if each stage is incremental, so that later stages can begin
before earlier stages finish, consider a pipeline architecture.

(2) If the problem involves transformations on continuous streams of
data (or on very long streams), consider a pipeline architecture.

But the problem passes “rich” data representations, avoid pipelines
restricted to ASCII.

(3) If the central issues are understanding the data of the application,
its management, and representation, consider a repository or
abstract-data-type architecture. If the data is long-lived, focus on

(-: / 69



repositories.

If the representation of data is likely to change over the lifetime of the

program, than abstract data types can confine the changes to

particular components.

If you are considering repositories and the input data has a low

signal-to-noise ratio and the execution order cannot be

predetermined, consider a blackboard.

If you are considering repositories and the execution order is

determined by a stream of incoming requests and the data is highly

structured, consider a database management system.

(4) If your system involves controlling continuing action, is embedded

in a physical system, and is subject to unpredictable external

pertubation so that preset algorithms go wrong, consider a

closed-loop control architecture.

(-: / 70



(5) If you have designed a computation but have no machine on which

you can execute it, consider an interpreter architecture.

(6) If your task requires a high degree of flexibility/configurability,

loose coupling between tasks, and reactive tasks, consider interacting

processes.

If you have reason not to bind the recipients of signals from their

originators, consider an event architecture.

If the tasks are of a hierarchical nature, consider a replicated worker

or heartbeat style.

If the tasks are divided between producers and consumers, consider

client/server.

If it makes sense for all of the tasks to communicate with each other in

a fully connected graph, consider a token-passing style.

(-: / 71



Architectural views: stating and satisfying requirements

A building is too complex to be described in just one way — multiple

views are presented. An architect might draw these views:

� floor plans

� elevation drawings

� electrical and plumbing diagrams

� traffic patterns

� sunlight and solar views

The views help show how the building’s requirements are satisfied by

the architecture.

But the views also direct the implementation: Some of the views are “aspects” that

might be “woven” into the construction; others are “properties” of the construction

(that should be monitored or enforced).

(-: / 72



Process-driven design: 4+1 view model (Kruchten)

A software architecture might be “viewed” four different ways:

1. logical: behavior requirements — key abstractions (classes,
objects), data and control flow
use UML class, collaboration, and sequence diagrams

2. development: organization of software packages
use UML package diagrams

3. process: distribution, concurrency, coordination, synchronization
use UML activity diagrams

4. physical: deployment onto hardware — performance, reliability,
scalability
use UML deployment diagrams

Finally, scenarios (use-cases) direct show how the views “work
together”

(-: / 73



Using UML class, collaboration ,
and sequence diagrams
to present the logical view:

From Mikko Kontio, IBM,

http://www-128.ibm.com/

developerworks/wireless/

library/wi-arch11/

(-: / 74



Using package diagrams to present the development view and
deployment diagrams to present the physical view:

(-: / 75



4. Architecture Description
Languages

(-: / 76



A language for connectors: UniCon

Shaw developed a language, UniCon (Universal Connector

Language), for describing connectors and components.

Components are specified by interfaces , which include
(i) type;

(ii) attributes with values that specialize the type;

(iii) players, which are the component’s connection points. Each

player is itself typed.

Connectors are specified by protocols ; they have
(i) type;

(ii) specific properties that specialize the type;

(iii) roles that the connector uses to mediate (make) communication

between components.

(-: / 77



Graphical depiction of an assembly of three components and four
connectors:

A development tool helps the designer draw the configuration and
map it to coding.

Reference: M. Shaw, R. DeLine, and G. Zelesnik, Abstractions and Implementations

for Architectural Connections. In 3d Int. Conf. Configurable Distributed Systems,

Annapolis, Maryland, May 1996.

(-: / 78



uses statements in-

stantiate the parts

composed

connect statements

state how players sat-

isfy roles

bind statements map

the external interface to

the internal configura-

tion

(-: / 79



Connectors described in UniCon:

� data-flow connectors (pipe)

� procedural connectors (procedure call, remote procedure call):

pass control

� data-sharing connectors (data access): export and import data

� resource-contention connectors (RT scheduler): competition for

resources

� aggregate connectors (PL bundler): compound connections

(-: / 80



(-: / 81



(-: / 82



(-: / 83



(-: / 84



Wright : Unicon + CSP

Garlan and Allen developed Wright to specify protocols. Here is a

single-client/single-server example:

The protocols are specified with Hoare’s CSP (Communicating

Sequential Processes) algebra.

(-: / 85



The glue protocol synchronizes the Client and Server roles:

Client || Server || glue

⇒ result?y → Client || Server || Server.invoke!x → ...

⇒ result?y → Client || return!y → Server ||

Server.return?y → ...

⇒ ... ⇒ Client || Server || glue

(-: / 86



Forms of CSP processes:

� prefixing: e → P

plusOne?x → return!x + 1 → · · · || plusOne!2 → return?y → · · ·

⇒ return!2 + 1 → · · · || return?y → · · ·

� external choice: P[]Q

plusOne?x → · · · [] plusTwo?x → · · · x + 2 · · · || plusTwo!5 → · · ·

⇒ · · · 5 + 2 · · · || · · ·

� internal choice: P ⊓ Q

plusOne?x → · · · || plusOne!5 → · · · ⊓ plusTwo!5 → · · ·

⇒ plusOne?x → · · · || plusTwo!5 → · · ·

� parallel composition: P||Q

� halt: §

� (tail) recursion: p = · · · p (More formally, µz.P, where z may occur
free in P.)

(-: / 87



A pipe protocol in Wright

Reference: R. Allen and D. Garlan. A formal basis for architectural connection. ACM

TOSEM 1997.

(-: / 88



C2: an N-tier framework and language

Developed at Univ. of California, Irvine, Institute of Software
Research: http://www.isr.uci.edu/architecture/c2.html

Diagrams are from Medvidovic’s course,

http://sunset.usc.edu/classes/cs578 2002

(-: / 89



Example architecture in C2: video game

(-: / 90



Here is a C2SADEL description of the video game’s “Well”
component:

Reference: N. Medvidovic, et al. A Language and Environment for

Architecture-Based Software Development and Evolution. 21st Int. Conf. on

Software Engineering, Los Angeles, May 1999.

(-: / 91



And here is a description of a connector and part of the configuration:

(-: / 92



ArchJava: Java extended with Unicon features

� Each component (class) has its own interfaces (ports) that list

which methods it requires and provides

� Connectors are coded as classes, too, and extend the basic

classes, Connector, Port, Method, etc.

� The ArchJava run-time platform includes a run-time type checker

that enforces correctness of run-time connections (e.g., RPC,

TCP)

� There is an open-source implementation and Eclipse plug-in

� www.archjava.org

(-: / 93



POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 94



POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 95



POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

From K. M. Hansen, www.daimi.dk/∼marius/teaching/ATiSA2005

(-: / 96



POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 97



A summary of some ADLs

From K. M. Hansen, www.daimi.dk/∼marius/teaching/ATiSA2005

(-: / 98



(-: / 99



So, what is an architectural description
language?

It is a notation (linear or graphical) for specifying an architecture.

It should specify

� structure: components (interfaces), connectors (protocols),
configuration (both static and dynamic structure)

� behavior: semantical properties of individual components and

connectors, patterns of acceptable communication, global
invariants,

� design patterns: global constraints that support
correctness-reasoning techniques, design- and run-time tool

support, and implementation.

But it is difficult to design a general-purpose architectural description

language that is elegant, expressive, and useful.

(-: / 100



5. Domain-specific design

(-: / 101



Domain-specific design

If the problem domain is a standard one (e.g., flight-control or

telecommunications or banking), then there are precedents to follow.

A Domain-Specific Software Architecture has

� a domain: defines the problem area domain concepts and terminology;

customer requirements; scenarios; configuration models (entity-relationship,

data flow, etc.)

� reference requirements: features that restrict solutions to fit the

domain. (“Features” are studied shortly.) Also: platform, language, user

interface, security, performance

� a reference architecture

� a supporting environment/infrastructure: tools for modelling,

design, implementation, evaluation; run-time platform

� a process or methodology to implement the reference

architecture and evaluate it.

(-: / 102



from Medvidovic’s course, http://sunset.usc.edu/classes/cs578 2002

(-: / 103



Domain-specific (modelling) language (DSL)

is a modelling language specialized to a specific problem domain,
e.g., telecommunications, banking, transportation.

We use a DSL to describe a problem and its solution in concepts
familiar to people who work in the domain.

It might define (entity-relationship) models, ontologies (class
hierarchies), scenarios, architectures, and implementations.

Example: a DSL for sensor-alarm networks: domains: sites (building, floor,

hallway, room), devices (alarm, movement detector, camera, badge), people

(employee, guard, police, intruder). Domain elements have features/attributes and

operations. Actions can be by initiated by events — “when a movement detector

detects an intruder in a room, it generates a movement-event for a camera and

sends a message to a guard....”

When a DSL can generate computer implementations, it is a
domain-specific programming language.

(-: / 104



Domain-specific programming language

In the Unix world, these are “little languages” or “mini-languages,”

designed to solve a specific class of problems. Examples are awk,

make, lex, yacc, ps, and Glade (for GUI-building in X).

Other examples are Excel, HTML, XML, SQL, regular-expression

notation and BNF. These are called top-down DSLs, because they are

designed to implement domain concepts and nothing more.

Non-programmers can use a top-down DSL to write solutions.

The bottom-up approach, called embedded or in-language DSL,

starts with a dynamic-data-structure language, like Scheme or Perl or

Python, and adds libraries (modules) of functions that encode

domain-concepts-as-code, thus “building the language upwards

towards the problem to be solved.” Experienced programmers use

bottom-up DSLs to program solutions.

(-: / 105



Tradeoffs in using (top-down) DSLs

✔ non-programmers can discuss and use the DSL

✔ the DSL supports patterns of design, implementation, and

optimization

✔ fast development

✘ staff must be trained to use the DSL

✘ interaction of DSL-generated software with other software

components can be difficult

✘ there is high cost in developing and maintaining a DSL

Reference: J. Lawall and T. Mogensen. Course on Scripting Languages and DSLs,

Univ. Copenhagen, 2006, www.diku.dk/undervisning/2006f/213

(-: / 106



From DSLs to product lines (Steve Cook, Microsoft)

A model is a representation, written in a DSL, whose elements
correspond to domain elements/concepts. It helps stakeholders
(users, managers, implementors) communicate about the system.

A framework is a collection of components that implement the
domain’s aspects/features. (Example: GUI frameworks)

The model should show how to build upon or extend the
framework to generate an application.

A pattern is a “model with holes” with rules for filling the holes.

A value chain is a manufacturing process where each participant
takes inputs (goods or information) from suppliers, adds “value,” and
passes the output to the successors in the chain.

A product line is a value chain for software construction, based on
models, patterns, and frameworks:
requirements engineer → architect → developer → tester → user

(-: / 107



6. Software product lines

(-: / 108



A software product line

is also called a software system family — a collection of software
products that share an architecture and components, constructed by
a product line. They are inspired by the products produced by
industrial assembly lines, e.g., automobiles.

The CMU Software Engineering Institute definition:

A product line is a set of software intensive systems that
(i) share a common set of features,

(ii) satisfy the needs of a particular mission, and
(iii) are developed from a set of core assets in a prescribed w ay.

Key issues:
variability: Can we state precisely the products’ variations (features) ?
guidance: Is there a precise recipe that guides feature selection and
product assembly?

Reference: www.softwareproductlines.com

(-: / 109



An example product line: Cummins Corporation

produces diesel engines for trucks and heavy machinery. An engine

controller has 100K-200K lines-of-code. At level of 12 engine “builds,”

company switched to a product line approach:

1. defined engine controller domain

2. defined a reference architecture

3. built reusable components

4. required all teams to follow product line approach

Cummins now produces 20 basic “builds” — 1000 products total;

development time dropped from 250 person/months to < 10. A new

controller consists of 75% reused software.

Reference: S. Cohen. Product line practice state of the art report.

CMU/SEI-2002-TN-017.

(-: / 110



Features and feature diagrams

are a development tool for domain-specific architectures and product

lines. They help define a domain’s reference requirements and guide

implementions of instances of the reference architecture.

A feature is merely a property of the domain. (Example: the

features/options/choices of an automobile that you order from the

factory.)

A feature diagram displays the features and guides a user in choosing

features for the solution to a domain problem.

It is a form of decision tree with and-or-xor branching, and its

hierarchy reflects dependencies of features as well as modification

costs.

(-: / 111



Feature diagram for assembling automobiles

enginetransmission

manualautomatic electric gasoline

pullsTrailorbody

car

Filled circles label required features; unfilled circles label optional

ones. Filled arcs label xor-choices; unfilled arcs label or-choices

(where at least one choice is selected).

Here is one possible outcome of “executing” the feature diagram:

car

manual transmission

engine

gaselectric

body

(-: / 112



Feature diagrams work well for configuring generic data structures:

−morphism

list

mono− poly−

ownership

copy reference

Compare the diagram to the typical class-library representation of a

generic list structure.

An advantage of a feature-diagram construction of a list structure over

a class-library construction is that the former can generate a smaller,

more efficient list structure, customized to exactly the choices of the

client.

(-: / 113



Feature diagrams are useful for both constraining as well as

generating an architecture: the feature requirements are displayed in

a feature diagram, which guides the user to generating the desired

instance of the reference architecture.

Feature diagrams are an attempt at making software assembly appear

similar to assembly of mass-produced products like automobiles.

In particular, feature diagrams encourage the use of standardized,

parameterized, reusable software components.

Feature diagrams might be implemented by a tool that selects

components according to feature selection. Or, they might be

implemented within the structure of a domain-specific programming

language whose programs select and assemble features.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

(-: / 114



Feature generation is implemented by

Reference: D. Muthig, Software product lines and reengineering. Fraunhofer Inst.

2002

(-: / 115



Generative programming

is the name given to the application of programs that generate other

programs (cf. “automatic programming” in the 1950s). A compiler is of

course a generating program, but so are feature-diagram-driven

frameworks, partial evaluators, and some development environments

(e.g., for Java beans).

Reference: Coming attractions in software architecture, P. Clements. CMU/SEI-96-TR-008.

(-: / 116



Generative programming is motivated by the belief that conventional
software production methods (even those based on “object-oriented”
methodologies) will never support component reuse:

Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley, 2000.

One solution is to understand a software system as a customized
product, produced by generative programming, from a product line.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

(-: / 117



Software factories

A software factory combines DSLs, patterns, models, frameworks,

tools, and guidance to “accelerate life-cycle tasks for a type of

software application” [Steve Cook, Microsoft].

That is, it is a kind of “product line” for assembling the correct

language, architecture, and software components for a software

project — a kind of software-industrial engineering.

DSLs and XML provide the language for assembling and using the

software factory.

The goal is complete automation of sofware development — no more

coding (except in DSLs (-: )

Reference: J. Greenfield, et al. Software Factories, Wiley, 2004. See also Microsoft

Visual Studio Team 2005.

(-: / 118



7. Middleware

(-: / 119



Middleware : a popular form of domain-specific
software architecture

Middleware lies between hardware and software in the design of
independent-component (e.g., client-server) architectures.
Middleware is also called a distributed component platform. It gives

� standards for writing the APIs (and code) for components (and
connectors) so that they can connect, communicate, and be
reused. The standards are independent of any particular
programming language, allowing heterogeneous (different styles
of) components to be used together.

� prebuilt components, connectors, and interfaces, along with a
development environment, for assembling an architecture.

Middleware provides “smart” connectors that hide the details behind
communication. The user writes components that conform to the
middleware’s standards/APIs.

(-: / 120



Middleware typically demands these hardware services:

� remote communication protocols

� global naming services

� security services

� data transmission services

Warning! The term, “middleware,” is overused — almost any tool that

provides a run-time platform is called “middleware.”

(-: / 121



CORBA: Common Object Request Broker
Architecture

CORBA is middleware for building distributed, object-based,

client-server architectures; developed by the Object Management

Group (OMG).

Components communicate through a centralized service, the Object

Request Broker (ORB).

An object can be a client or a server (or both).

To use the ORB, a server component must implement an API

(interface) that lets it connect to an object adapter, which itself

connects to the ORB. (Object adapters contain code for object

registration with a global naming service, reference generation, and

server activation).

(-: / 122



Object adapters are available in Java, C++, Perl, etc.; components are
written in these languages and communicate via procedure calls.

The physical locations of objects are hidden — references, held in a
naming service, are used instead.

The implementations of objects are hidden.

The communications protocols (TCP/IP, RPC, ...) are hidden.

Only the interfaces are known.

Diagram is from: S. Vinoski. CORBA: Integrating Diverse Applications Within

Distributed Heterogeneous Environments. IEEE Communications, Feb. 1997.

(-: / 123



How connectors work

A client knows the API of the server it wishes to use.

The client uses the naming service to obtain a reference to a server;

the reference is used to obtain a local copy of the server object, a

“proxy,” called a stub. To send a request, the client invokes a method

of the stub. The stub encodes (marshalls) the request and forwards it

to the ORB, which transmits it to the true server object.

The request is received by the server’s skeleton, which decodes

(unmarshalls) the request and invokes the appropriate method of the

server.

The result is returned along the same “path.”

(-: / 124



(-: / 125



From the client’s perspective, a send connection looks like a method

invocation:

Reference: S. Vinoski. CORBA. IEEE Communications, Feb. 1997.

(-: / 126



Structure of the Reference Model for CORBA

An implementation of CORBA must support this structure:

Object Services are interfaces for the ORB, providing transmission,
security, and server lookup by naming and “trading” (property).
Domain Interfaces are the object interfaces for the problem area
(telecommunication, financial, medical).
Application Interfaces are object interfaces for the application; written
by the software architect.

(-: / 127



CORBA has become popular because it is a standard that is

supported by many programming languages. Its architecture is useful

because it allows heterogenous components that communicate by

implementing interfaces: the ORB interfaces, the object-adapter

interfaces, the stub and skeleton interfaces.

But CORBA has some disadvantages, too:

� the architecture is difficult to optimize

� there is no deadlock detection nor garbage collection (in the

middleware)

� all objects are treated as potentially remote

� all object’s references are stored in a global database

(-: / 128



DCOM: Microsoft’s Distributed Object
Component Model (now in .NET)

has similar objectives and structure as CORBA but tries to
address some of CORBA’s deficiencies:

supports reference-counting garbage collection (uses “pinging” to

detect inactive clients)

batches together multiple method calls (and pings) to minimize

network “round trips”

exploits locality: thread-local and machine-local method calls are

implemented more efficiently than RPCs. Uses a virtual table to standardize

method call lookup and hide the differences between implementations

makes it easier to program proxy objects and implement dynamic load

balancing

allows a component to learn dynamically the interface of another.

But it uses a different IDL and interfaces than CORBA’s )-:

(-: / 129



Reference: DCOM Technical Overview. Microsoft Windows/NT white paper, 1996.

(-: / 130



DCOM uses a virtual table to implement communication, as function
call, as efficiently as possible:

Reference: http://sunset.usc.edu/classes/cs578 2002

(-: / 131



Java beans: middleware for Java

A Java bean is a reusable (Java-coded) component, that can be
manipulated (its attributes set and its methods executed) both at
design-time and run-time.

For this reason, a bean has a design-time interface and a separate
run-time interface — this is the key architectural concept for beans.
The design-time interface almost always includes a GUI that is displayed by the

builder tool.

The run-time interface lists properties (attributes), methods, and events that the bean

possesses.

The interfaces are more general than usual: they include “properties”
(attributes – local state), methods, and event broadcast-listening. The
interfaces need not be written by the programmer; they can be
extracted from the bean by a development tool.

A development tool (the bean box) uses a bean’s design-time

(-: / 132



interface to help an application builder position a bean in the

application, customize its appearance, and select its run-time

behaviors (methods).

Java beans were originally tailored towards GUI-building applications

— buttons, text fields, and sliders are obvious candidates for beans —

but the concept also works for data structures and algorithms.

Examples:

� insert a sorting-algorithm-bean into a spreadsheet bean

� insert a spreadsheet bean into a table bean

� insert a table bean into a web-page bean

(-: / 133



A calculator and its assembly via beans:

Examples are from http://www.tcs.tifr.res.in/man/javaTutorial/beans

(-: / 134



Java beans communicate by Java-style event broadcast; a bean can

be an event source or an event listener or both.

Beans execute within a run-time environment, a form of middleware.

The environment broadcasts and delivers events; it rests on top of the

Java Virtual Machine.

Because it is complex to construct the design-time and run-time

interfaces, beans have an introspection facility, based on a Java

interface Property, which the development tool uses to extract the

bean’s interfaces.

The extraction is done in a primitive way: the bean must use standard

naming conventions for its attributes, methods, and events (e.g.,

addListener, removeListener, get, set). Better, the programmer

can write a class BeanInfo whose methods surrender the

property-method-event interfaces.

(-: / 135



The Java Bean Box: a simple development tool

Slide is from http://sunset.usc.edu/classes/cs578 2002

(-: / 136



Beans and remote access

(-: / 137



Servlets: beans as proxies

(-: / 138



Enterprise Java Beans (EJB) (now in J2EE)

are a variant of Java beans (and not truly compatible with them),

oriented to client-server applications.

An EJB is a servlet-like object that is remotely constructed by a client,

using methods in the server’s home interface. The EJB is placed in a

container (an “adaptor” or “wrapper”) that receives the client’s

transaction, decodes it, and gives it to the EJB. Such an EJB is called

a session bean.

(An entity bean is an EJB that is shared by multiple clients; it has no

internal state.)

The EJB implements methods in the remote interface, which are the

method names invoked by the client to request transactions.

The client uses methods in the home interface to remove the session

bean.

(-: / 139



(-: / 140



8. Model-driven architecture

(-: / 141



An imprecise description: a model-driven architecture is software

(architecture) development based on a model written in a modelling

language. (Example: using UML to describe and suggest

implementation of a system.)

A slightly more precise description: a model-driven architecture is

a two-stage software architecture development:

1. starting at the “business level,” define a platform-independent

model (PIM) of the system,

2. now at the “architectural level,” map the PIM to a platform specific

model (PSM) at the “technology level.”

3. implement the required PSM interfaces

But the most precise description comes from the OMG’s response

to the CORBA/COM/EJB competition....

(-: / 142



The OMG’s MDA methodology

CORBA, EJB (now, J2EE), DCOM (now, .NET) are competing
frameworks for building client-server architectures. There are even
interchange languages for mapping between their IDLs.

The OMG defined a “meta-model” (the PIM) of client-server and
mappings from the PIM to PSMs for CORBA, J2EE, etc.

The PIM is to be written in UML2, which is UML extended to write
PIMs. (UML2 includes concepts from SPL, a telecommunications
design language.)

The mapping from PIM to PSM maps architecture, data forms, and
IDL to the PSM’s. A mapping from the client-server PIM to J2EE is
well underway.

Advantages: hides multiplicities of programming languages, IDLs, etc.; supports

upgrades of the PSMs. Disadvantages: requires two more meta- languages, MOF

and XMI; relies heavily on UML2; unclear it will map to non-J2EE PSMs

(-: / 143



From MDA to MDE and DSM

The name, “Model Driven Architecture,” is trademarked by the OMG

and refers to multi-level models using UML2.

The key ideas,

1. use a hierarchy of models (“business model,” ..., platform-specific

model) to define a software architecture;

2. refine each model at level i to the model at lower level, i − 1;

are now popular and are called Model Driven Engineering (MDE).

Domain Specific Modelling (DSM) is MDE using a hierarchy of DSLs:

Each model is coded in a DSL, and translators map each

domain-specific program to a (doman-specific) program at the next

lower-level (and finally to assembly code).

Reference: www.dsmforum.org

(-: / 144



9. Aspect-oriented programming

(-: / 145



Recall Kruchten’s 4 views of software:

1. logical: behavioral and functional requirements
2. process: concurrency, coordination, and synchronization
3. development: organization of software modules
4. physical: deployment onto hardware

Each view tells us how to code part of the software.

Kiczales at Xerox PARC said that software contains aspects :

� functional behavior (what the software “does”)
� synchronization and security control
� error handling
� persistency and memory management
� monitoring and logging

Each aspect tells us how to code part of the software.

But the aspect’s codings “cross cut” the functional components and
are “scattered” throughout the program.

(-: / 146



Example: a synchronized stack in Java: functional code in black,

synchronization code in red, error-handling in blue:

public class Stack

{ private int top; private Object[] elements;

public Stack(int size) { elements = new Object[size]; top = 0; }

public synchronized void push(Object element) {
while (top == elements.length) {

try { wait(); } catch (InterruptedException e) { ... }
}
elements[top] = element; top++;
if (top == 1) { notifyAll(); } // signal that stack is nonempty

}

public synchronized Object pop() {
while (top == 0) {

try { wait(); } catch (InterruptedException e) { ... }
}
top--; Object return val = elements[top];
if (top < elements.length) { notifyAll(); } // stack not full

return return val;
} }

(-: / 147



The synchronized stack example is not so elegant:

� The various aspects are “tangled” (intertwined) in the code, and it

is difficult to see which lines of code compute which aspect.

� One aspect is divided (“scattered”) across many components; if

there is a change in the aspect, many components must be

rewritten.

� It is difficult to study and code an aspect separately.

(-: / 148



From M. Wand, invited talk, ICFP 2003: www.ccs.neu.edu/home/wand

(-: / 149



How do we code and integrate an aspect?

Kiczales proposed that each aspect be coded separately and the
aspects be woven together by a tool called a weaver. The weaver
inserts code at connection points, called join points.

A standard join point is a method call; another is (the entry and exit
points of) a method’s definition. Join points can be field declarations
or even references to variable names (e.g., for monitoring).

The aspects should be

� noninvasive: one aspect should not be written specially to allow it
to be “woven into” by another

� orthogonal: one aspect does not interfere with the local, logical
properties of another

� minimal coupling: aspects can be unconnected and reused

Normally, other aspects are woven into the functional aspect.

(-: / 150



Wrappers implement simple aspects

When join points are method definitions, where an aspect merely

adds code before method entry and after exit, then we can mimick

weaving with a wrapper.

Example: pre-condition error checking via a subclass-wrapper:

public class NumericalOperator {
public double square root(double d) { ... } }

public class NumericalWrapper extends NumericalOperator {
public double square root(double m) { // check that m>= 0 :

double answer;
if (m >= 0) { answer = super.square root(m); }

else { throw new RuntimeException( ... ) }
return answer; }

}

The technique is simple but inelegant — it changes the name of

class NumericalOperator. Also, one quickly obtains too many layers

of wrappers.

(-: / 151



Composition filters: “smart wrappers”

Filters integrate “local” as well as “global” aspects, in both “horizontal”

and “vertical” composition:

L. Bergmans, The composition filters object model, Computer Science, Univ. Twente,

1994.

(-: / 152



Lopes developed COOL: A language dedicated to
synchronization aspects

// In a separate Java file, write the functional component:
public class Stack {

private int top; private Object[] elements;

public Stack(int size) { elements = new Object[size]; top = 0; }

public void push(Object element) { elements[top] = element; top++; }

public Object pop() { top--; return elements[top]; }
}

// In a separate Cool file, state the synchronization policy:
coordinator Stack {

selfex push, pop; // self exclusive methods
mutex { push, pop }; // mutually exclusive methods
condition full = false; condition empty = true;

guard push: requires !full;
onexit { if (empty) empty = false; }

guard pop: requires !empty;
onexit { if (full) full = false;

if (top == 0) empty = true; }
}

(-: / 153



When the two classes are woven, the result is the synchronized stack:

public class Stack
{ private int top; private Object[] elements;

private boolean empty; private boolean full;

public Stack(int size)
{ elements = new Object[size]; top = 0;
full = false; empty = true; }

public synchronized void push(Object element) {
while (full) {

try { wait(); } catch (InterruptedException e) { }
}
elements[top] = element; top++;
if (empty) { empty = false; notifyAll(); }

}

public synchronized Object pop() {
while (empty) {

try { wait(); } catch (InterruptedException e) { }
}
top--; Object return val = elements[top];
if (top == 0) empty = true;
if (full) { full = false; notifyAll(); }
return return val;

} }

(-: / 154



The COOL language looks somewhat like a language for writing

connectors!

Indeed, when join points are method calls or method definitions, then

weaving two aspects is weaving the connector code into the

component code!

(-: / 155



Weaving automata: Colcombet and Fradet

Program and aspect might be represented as automata and woven
into a product automaton (enforces policies for error handling,
synchronization):

From T. Colcombet and P. Fradet. Enforcing trace properties by program

transformation, ACM POPL 2000.

(-: / 156



The policy, program, and product automaton:

(-: / 157



Aspects as coordinators

An aspect is sometimes specified as a global “coordinator” that
enforces a synchonization or security policy:

coordinator
(policy)

clients

The coordinator is coded separately, and the weaver distributes the
coordinator’s code into the clients, giving distributed coordination.
(Partial evaluators do this weaving.) The result looks like CORBA:

clients

residual
coordinator

local
coordinator

(-: / 158



Subject-oriented programming

IBM (Harrison and Ossher): a subject is an aspect of a data structure.

Example: a book viewed in two different ways

// as a literary subject:

LiteraryBook {

title

topic

abstract

getAbstract()

{ return abstract }

}

// as a subject of production:

ProductionBook {

book title

kind of paper

kind of binding

kind of cover

printTheCover()

{ println(book title, abs()) }

}

These look like multiple interfaces or abstract classes (c.f. Java

beans); the Book class is assembled from the subjects, which are

“unioned” (a kind of tensor product) using correspondence rules.

(-: / 159



// as a literary subject:

LiteraryBook {

title

topic

abstract

getAbstract()

{ return abstract } }

// as a subject of production:

ProductionBook {

book title

kind of paper

kind of binding

kind of cover

printTheCover()

{ println(book title, abs()) } }

The join points are class, attribute, and method names, as used in the
correspondence rules:

ByNameMerge(Book, (LiteraryBook, ProductionBook)

Equate(attribute Book.title (LiteraryBook.title,

ProductionBook.book title))

Equate(operation Book.abs (LiteraryBook.getAbstract,

ProductionBook.abs))

(-: / 160



We are moving towards programming-language support for these

formats of interface, connection, and implementation. Examples:

� Jiazzi: www.cs.utah.edu/plt/jiazzi/

� GenVoca/AHEAD: www.cs.utexas.edu/users/schwartz

� composition filters:

http://trese.ewi.utwente.nl/oldhtml/composition filters

� subject-oriented programming: www.research.ibm.com/sop

� COOL/RIDL: Lopes, C. A Language Framework for Distributed

Programming. PhD thesis, Northeastern Univ., 1998.

� AspectJ: www.parc.com/research/csl/projects/aspectj

These are the “modern-day” architectural description languages! See

www.generative-programming.org for an overview.

(-: / 161



10. Final Remarks

(-: / 162



Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley,

2000.

(-: / 163



(-: / 164



Selected textbook references

F. Buschmann, et al. Pattern-Oriented Software Architecture. Wiley

1996.

P. Clements and L. Northrup. Software Product Lines.

Addison-Wesley 2002.

P. Clements, et al. Documenting Software Architectures: Views and

Beyond. Addison Wesley, 2002.

K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

E. Gamma, et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.

M. Shaw and D. Garlan. Software Architecture. Prentice Hall 1996.

(-: / 165


