
Software Architecture
an informal introduction

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Outline

1. Components and connectors

2. Software architectures

3. Architectural analysis and views

4. Architectural description languages

5. Domain-specific design

6. Product lines

7. Middleware

8. Model-driven architecture

9. Aspect-oriented programming

10. Closing remarks

(-: / 2

1. Components and connectors

(-: / 3

Motivation for software architecture

We use already architectural idioms for describing the structure of

complex software systems:

� “Camelot is based on the client-server model and uses remote

procedure calls both locally and remotely to provide

communication among applications and servers.” [Spector87]

� “The easiest way to make the canonical sequential compiler into

a concurrent compiler is to pipeline the execution of the compiler

phases over a number of processors.” [Seshadri88]

� “The ARC network follows the general network architecture

specified by the ISO in the Open Systems Interconnection

Reference Model.” [Paulk85]

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html

(-: / 4

Architectural description has a natural position
in system design and implementation

A slide from one of David Garlan’s lectures:

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html

(-: / 5

Hardware architecture

There are standardized descriptions of computer hardware
architectures:

� RISC (reduced instruction set computer)

� pipelined architectures

� multi-processor architectures

These descriptions are well understood and successful because

(i) there are a relatively small number of design components

(ii) large-scale design is achieved by replication of design elements

In contrast, software systems use a huge number of design components and scale

upwards, not by replication of existing structure, but by adding more distinct design

components.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.

(-: / 6

Network architecture

Again, there are standardized descriptions:

� star networks

� ring networks

� manhattan street (grid) networks

The architectures are described in terms of nodes and connections.

There are only a few standard topologies.

In contrast, software systems use a wide variety of topologies.

(-: / 7

Classical architecture

The architecture of a building is described by

� multiple views: exterior, floor plans, plumbing/wiring, ...

� architectural styles: romanesque, gothic, ...

� style and engineering: how the choice of style influences the

physical design of the building

� style and materials: how the choice of style influences the

materials used to construct (implement) the building.

These concepts also appear in software systems: there are

(i) views: control-flow, data-flow, modular structure, behavioral requirements, ...

(ii) styles: pipe-and-filter, object-oriented, procedural, ...

(iii) engineering: modules, filters, messages, events, ...

(iv) materials: control structures, data structures, ...

(-: / 8

A crucial motivating concept: connectors

The emergence of networks, client-server systems, and OO-based

GUI applications led to the conclusion that

components can be connected in various ways

Mary Shaw stressed this point:

M: Central

Reference: Mary Shaw, Procedure Calls are the Assembly Language of Software

Interconnections: Connectors Deserve First-Class Status. Workshop on Studies of

Software Design, 1993.

(-: / 9

Shaw’s observations

Connectors are forgotten because (it appears that) there are no

codes for them.

But this is because the connectors must be coded in the same

language as the components, which confuses the two forms.

Different forms of low-level connection (synchronous, asynchronous,

peer-to-peer, event broadcast) are fundamentally different yet are all

represented as procedure (system) calls in programming language.

Connectors can (and should?) be coded in languages different from

the languages in which components are coded (e.g., unix pipes).

(-: / 10

Shaw’s philosophy

Components — compilation units (module, data structure, filter)
— are specified by interfaces .

Connectors — “hookers-up” (RPC (Remote Procedure Call) , event,
pipe) — mediate communications between components and are
specified by protocols .

(-: / 11

Example:

M: Central

Interface Central is different from a Java-interface; it lists the “players”
— inA, outB, linkC, Gorp, Thud, ... (connection points/ ports/
method invocations) — that use connectors.

(-: / 12

The connector’s protocol lists
(i) the types of component interfaces it can “mediate”;
(ii) orderings and invariants of component interactions;
(iii) performance guarantees.

Example: Shaw’s description of a unix pipe:

Reference: M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and Implementations

for Architectural Connections. In 3d. Int. Conf. on Configurable Distributed Systems,

Annapolis, Maryland, May 1996.

(-: / 13

Connectors can act as

� communicators: transfer data between components (e.g.,

message passing, buffering)

� mediators: manage shared resource access between

components (e.g., reader/writer policies, monitors, critical regions)

� coordinators: define control flow between components (e.g.,

synchronization (protocols) between clients and servers, event

broadcast and delivery)

� adaptors: connect mismatched components (e.g., a pipe

connects to a file rather than to a filter)

Perhaps you have written code for a bounded buffer or a monitor or a

protocol or a shared, global variable — you have written a connector!

(-: / 14

Connectors can facilitate

� reuse: components from one application are inserted into

another, and they need not know about context in which they are

connected

� evolution: components can be dynamically added and removed

from connectors

� heterogenity: components that use different forms of

communication can be connected together in the same system

A connector should have the ability to handle limited mismatches

between connected components, via information reformatting,

object-wrappers, and object-adaptors, such that the component is not

rewritten — the connector does the reformatting, wrapping, adapting.

(-: / 15

If connectors are crucial to systems building, why did we take so long

to “discover” them? One answer is that components are

“pre-packaged” to use certain connectors:

But “smart” connectors make components simpler, because the

coding for interaction rests in the connectors — not the components.

The philosophy, system = components + connectors was a strong

motivation for a theory of software architecture.

Reference: M. Shaw and D. Garlan. Formulations and Formalisms in Software

Architecture. Computer Science Today: Recent Trends and Developments Jan van

Leeuwen, ed., Springer-Verlag LNCS, 1996, pp. 307-323.

(-: / 16

2. Software Architecture

(-: / 17

What is a software architecture? (Perry and Wolf)

A software architecture consists of

1. elements: processing elements (“functions”), connectors (“glue” —

procedure calls, messages, events, shared storage cells), data elements
(what “flows” between the processing elements)

2. form: properties (constraints on elements and system) and relationship
(configuration, topology)

3. rationale: philosophy and pragmatics of the system:
requirements, economics, reliability, performance

There can be “views” of the architecture from the perspective of the
process elements, the data, or the connectors. The views might show

static and dynamic structure.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.

(-: / 18

Architectural Styles (patterns)

1. Data-flow systems: batch sequential, pipes and filters

2. Call-and-return systems: main program and subroutines, hierarchical

layers, object-oriented systems

3. Virtual machines: interpreters, rule-based systems

4. Independent components: communicating systems, event systems,

distributed systems

5. Repositories (data-centered systems): databases, blackboards

6. and there are many others, including hybrid architectures

The italicized terms are the styles (e.g., independent components); the roman terms

are architectures (e.g., communicating system). There are specific instances of the

architectures (e.g., a client-server architecture is a distributed system). But these

notions are not firm!

(-: / 19

Data-flow systems: Batch-sequential and Pipe-and-filter

ParseScan GenCode
tokens tree codetext

Batch sequential Pipe and filter

Components: whole program filter (function)

Connectors: conventional input-output pipe (data flow)

Constraints:

components execute to

completion, consuming

entire input, producing

entire output

data arrives in incre-

ments to filters

Examples: Unix shells, signal processing, multi-pass compilers

Advantages: easy to unplug and replace filters; interactions between components

easy to analyze. Disadvantages: interactivity with end-user severely limited; performs

as quickly as slowest component.

(-: / 20

Call-and-return systems: subroutine and layered

main

sub1 sub2 sub3

...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Subroutine Layered

Components: subroutines (“servers”) functions (“servers”)

Connectors: parameter passing protocols

Constraints: hierarchical execution

and encapsulation

functions within a layer

invoke (API of) others

at next lower layer

Examples: modular, object-oriented, N-tier systems (subroutine);
communication protocols, operating systems (layered)

(-: / 21

main

sub1 sub2 sub3

...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Advantages: hierarchical decomposition of solution; limits range of

interactions between components, simplifying correctness reasoning;

each layer defines a virtual machine; supports portability (by replacing

lowest-level components).

Disadvantages: components must know the identities of other

components to connect to them; side effects complicate correctness

reasoning (e.g., A uses C, B uses and changes C, the result is an

unexpected side effect from A’s perspective; components sensitive to

performance at lower levels/layers.

(-: / 22

Virtual machine: interpreter

program

interpreted

program’s

state

Interpretation

engine

interpreter’s

state

fetch

ins. &
data

outputs

inputs to program

Interpreter

Components: “memories” and state-machine engine

Connectors: fetch and store operations

Constraints: engine’s “execution cycle” controls the

simulation of program’s execution

Examples: high-level programming-language interpreters, byte-code
machines, virtual machines

Advantages: rapid prototyping Disadvantages: inefficient.

(-: / 23

Repositories: databases and blackboards

interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Database Blackboard

Components: processes and database knowledge sources and

blackboard
Connectors: queries and updates notifications and updates

Constraints: transactions (queries and

updates) drive computation

knowledge sources respond

when enabled by the state of the
blackboard. Problem is solved

by cooperative computation on
blackboard.

Examples: speech and pattern recognition (blackboard); syntax
editors and compilers (parse tree and symbol table are repositories)

(-: / 24

interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Advantages: easy to add new processes.

Disadvantages: alterations to repository affect all components.

(-: / 25

Independent components: communicating processes

process

process

process

α
β γ

δ

Communicating processes

Components: processes (“tasks”)

Connectors: ports or buffers or RPC

Constraints: processes execute in parallel and send mes-

sages (synchronously or asynchronously)

Example: client-server and peer-to-peer architectures

Advantages: easy to add and remove processes. Disadvantages: difficult to reason

about control flow.

(-: / 26

Independent components: event systems

object

object

object

event registry

!

?

!

!

?

Event systems

Components: objects or processes (“threads”)

Connectors: event broadcast and notification (implicit invocation)

Constraints:
components “register” to receive event notifi-

cation; components signal events, environment

notifies registered “listeners”

Examples: GUI-based systems, debuggers, syntax-directed editors,
database consistency checkers

(-: / 27

object

object

object

event registry

!

?

!

!

?

Advantages: easy for new listeners to register and unregister

dynamically; component reuse.

Disadvantages: difficult to reason about control flow and to formulate

system-wide invariants of correct behavior.

(-: / 28

Three architectures for a compiler (Garlan and Shaw)

The symbol table and tree are

“shared-data connectors”

The blackboard triggers

incremental checking and code

generation

(-: / 29

What do we gain from using a software
architecture?

1. the architecture helps us communicate the system’s design
to the project’s stakeholders (users, managers,
implementors)

2. it helps us analyze design decisions

3. it helps us reuse concepts and components in future
systems

(-: / 30

4. Architecture Description
Languages

(-: / 31

A language for connectors: UniCon

Shaw developed a language, UniCon (Universal Connector

Language), for describing connectors and components.

Components are specified by interfaces , which include
(i) type;

(ii) attributes with values that specialize the type;

(iii) players, which are the component’s connection points. Each

player is itself typed.

Connectors are specified by protocols ; they have
(i) type;

(ii) specific properties that specialize the type;

(iii) roles that the connector uses to mediate (make) communication

between components.

(-: / 32

Graphical depiction of an assembly of three components and four
connectors:

A development tool helps the designer draw the configuration and
map it to coding.

Reference: M. Shaw, R. DeLine, and G. Zelesnik, Abstractions and Implementations

for Architectural Connections. In 3d Int. Conf. Configurable Distributed Systems,

Annapolis, Maryland, May 1996.

(-: / 33

uses statements in-

stantiate the parts

composed

connect statements

state how players sat-

isfy roles

bind statements map

the external interface to

the internal configura-

tion

(-: / 34

Connectors described in UniCon:

� data-flow connectors (pipe)

� procedural connectors (procedure call, remote procedure call):

pass control

� data-sharing connectors (data access): export and import data

� resource-contention connectors (RT scheduler): competition for

resources

� aggregate connectors (PL bundler): compound connections

(-: / 35

(-: / 36

(-: / 37

(-: / 38

(-: / 39

Wright : Unicon + CSP

Garlan and Allen developed Wright to specify protocols. Here is a

single-client/single-server example:

The protocols are specified with Hoare’s CSP (Communicating

Sequential Processes) algebra.

(-: / 40

The glue protocol synchronizes the Client and Server roles:

Client || Server || glue

⇒ result?y → Client || Server || Server.invoke!x → ...

⇒ result?y → Client || return!y → Server ||

Server.return?y → ...

⇒ ... ⇒ Client || Server || glue

(-: / 41

Forms of CSP processes:

� prefixing: e → P

plusOne?x → return!x + 1 → · · · || plusOne!2 → return?y → · · ·

⇒ return!2 + 1 → · · · || return?y → · · ·

� external choice: P[]Q

plusOne?x → · · · [] plusTwo?x → · · · x + 2 · · · || plusTwo!5 → · · ·

⇒ · · · 5 + 2 · · · || · · ·

� internal choice: P ⊓ Q

plusOne?x → · · · || plusOne!5 → · · · ⊓ plusTwo!5 → · · ·

⇒ plusOne?x → · · · || plusTwo!5 → · · ·

� parallel composition: P||Q

� halt: §

� (tail) recursion: p = · · · p (More formally, µz.P, where z may occur
free in P.)

(-: / 42

A pipe protocol in Wright

Reference: R. Allen and D. Garlan. A formal basis for architectural connection. ACM

TOSEM 1997.

(-: / 43

C2: an N-tier framework and language

Developed at Univ. of California, Irvine, Institute of Software
Research: http://www.isr.uci.edu/architecture/c2.html

Diagrams are from Medvidovic’s course,

http://sunset.usc.edu/classes/cs578 2002

(-: / 44

Example architecture in C2: video game

(-: / 45

Here is a C2SADEL description of the video game’s “Well”
component:

Reference: N. Medvidovic, et al. A Language and Environment for

Architecture-Based Software Development and Evolution. 21st Int. Conf. on

Software Engineering, Los Angeles, May 1999.

(-: / 46

And here is a description of a connector and part of the configuration:

(-: / 47

ArchJava: Java extended with Unicon features

� Each component (class) has its own interfaces (ports) that list

which methods it requires and provides

� Connectors are coded as classes, too, and extend the basic

classes, Connector, Port, Method, etc.

� The ArchJava run-time platform includes a run-time type checker

that enforces correctness of run-time connections (e.g., RPC,

TCP)

� There is an open-source implementation and Eclipse plug-in

� www.archjava.org

(-: / 48

POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 49

POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 50

POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

From K. M. Hansen, www.daimi.dk/∼marius/teaching/ATiSA2005

(-: / 51

POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

(-: / 52

So, what is an architectural description
language?

It is a notation (linear or graphical) for specifying an architecture.

It should specify

� structure: components (interfaces), connectors (protocols),
configuration (both static and dynamic structure)

� behavior: semantical properties of individual components and

connectors, patterns of acceptable communication, global
invariants,

� design patterns: global constraints that support
correctness-reasoning techniques, design- and run-time tool

support, and implementation.

But it is difficult to design a general-purpose architectural description

language that is elegant, expressive, and useful.

(-: / 53

5. Domain-specific design

(-: / 54

Domain-specific design

If the problem domain is a standard one (e.g., flight-control or

telecommunications or banking), then there are precedents to follow.

A Domain-Specific Software Architecture has

� a domain: defines the problem area domain concepts and terminology;

customer requirements; scenarios; configuration models (entity-relationship,

data flow, etc.)

� reference requirements: features that restrict solutions to fit the

domain. (“Features” are studied shortly.) Also: platform, language, user

interface, security, performance

� a reference architecture

� a supporting environment/infrastructure: tools for modelling,

design, implementation, evaluation; run-time platform

� a process or methodology to implement the reference

architecture and evaluate it.

(-: / 55

from Medvidovic’s course, http://sunset.usc.edu/classes/cs578 2002

(-: / 56

Domain-specific (modelling) language (DSL)

is a modelling language specialized to a specific problem domain,
e.g., telecommunications, banking, transportation.

We use a DSL to describe a problem and its solution in concepts
familiar to people who work in the domain.

It might define (entity-relationship) models, ontologies (class
hierarchies), scenarios, architectures, and implementations.

Example: a DSL for sensor-alarm networks: domains: sites (building, floor,

hallway, room), devices (alarm, movement detector, camera, badge), people

(employee, guard, police, intruder). Domain elements have features/attributes and

operations. Actions can be by initiated by events — “when a movement detector

detects an intruder in a room, it generates a movement-event for a camera and

sends a message to a guard....”

When a DSL can generate computer implementations, it is a
domain-specific programming language.

(-: / 57

Domain-specific programming language

In the Unix world, these are “little languages” or “mini-languages,”

designed to solve a specific class of problems. Examples are awk,

make, lex, yacc, ps, and Glade (for GUI-building in X).

Other examples are Excel, HTML, XML, SQL, regular-expression

notation and BNF. These are called top-down DSLs, because they are

designed to implement domain concepts and nothing more.

Non-programmers can use a top-down DSL to write solutions.

The bottom-up approach, called embedded or in-language DSL,

starts with a dynamic-data-structure language, like Scheme or Perl or

Python, and adds libraries (modules) of functions that encode

domain-concepts-as-code, thus “building the language upwards

towards the problem to be solved.” Experienced programmers use

bottom-up DSLs to program solutions.

(-: / 58

Tradeoffs in using (top-down) DSLs

✔ non-programmers can discuss and use the DSL

✔ the DSL supports patterns of design, implementation, and

optimization

✔ fast development

✘ staff must be trained to use the DSL

✘ interaction of DSL-generated software with other software

components can be difficult

✘ there is high cost in developing and maintaining a DSL

Reference: J. Lawall and T. Mogensen. Course on Scripting Languages and DSLs,

Univ. Copenhagen, 2006, www.diku.dk/undervisning/2006f/213

(-: / 59

6. Software product lines

(-: / 60

A software product line

is also called a software system family — a collection of software
products that share an architecture and components, constructed by
a product line. They are inspired by the products produced by
industrial assembly lines, e.g., automobiles.

The CMU Software Engineering Institute definition:

A product line is a set of software intensive systems that
(i) share a common set of features,

(ii) satisfy the needs of a particular mission, and
(iii) are developed from a set of core assets in a prescribed w ay.

Key issues:
variability: Can we state precisely the products’ variations (features) ?
guidance: Is there a precise recipe that guides feature selection and
product assembly?

Reference: www.softwareproductlines.com

(-: / 61

An example product line: Cummins Corporation

produces diesel engines for trucks and heavy machinery. An engine

controller has 100K-200K lines-of-code. At level of 12 engine “builds,”

company switched to a product line approach:

1. defined engine controller domain

2. defined a reference architecture

3. built reusable components

4. required all teams to follow product line approach

Cummins now produces 20 basic “builds” — 1000 products total;

development time dropped from 250 person/months to < 10. A new

controller consists of 75% reused software.

Reference: S. Cohen. Product line practice state of the art report.

CMU/SEI-2002-TN-017.

(-: / 62

Features and feature diagrams

are a development tool for domain-specific architectures and product

lines. They help define a domain’s reference requirements and guide

implementions of instances of the reference architecture.

A feature is merely a property of the domain. (Example: the

features/options/choices of an automobile that you order from the

factory.)

A feature diagram displays the features and guides a user in choosing

features for the solution to a domain problem.

It is a form of decision tree with and-or-xor branching, and its

hierarchy reflects dependencies of features as well as modification

costs.

(-: / 63

Feature diagram for assembling automobiles

enginetransmission

manualautomatic electric gasoline

pullsTrailorbody

car

Filled circles label required features; unfilled circles label optional

ones. Filled arcs label xor-choices; unfilled arcs label or-choices

(where at least one choice is selected).

Here is one possible outcome of “executing” the feature diagram:

car

manual transmission

engine

gaselectric

body

(-: / 64

Feature diagrams work well for configuring generic data structures:

−morphism

list

mono− poly−

ownership

copy reference

Compare the diagram to the typical class-library representation of a

generic list structure.

An advantage of a feature-diagram construction of a list structure over

a class-library construction is that the former can generate a smaller,

more efficient list structure, customized to exactly the choices of the

client.

(-: / 65

Feature diagrams are useful for both constraining as well as

generating an architecture: the feature requirements are displayed in

a feature diagram, which guides the user to generating the desired

instance of the reference architecture.

Feature diagrams are an attempt at making software assembly appear

similar to assembly of mass-produced products like automobiles.

In particular, feature diagrams encourage the use of standardized,

parameterized, reusable software components.

Feature diagrams might be implemented by a tool that selects

components according to feature selection. Or, they might be

implemented within the structure of a domain-specific programming

language whose programs select and assemble features.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

(-: / 66

Generative programming

is the name given to the application of programs that generate other

programs (cf. “automatic programming” in the 1950s). A compiler is of

course a generating program, but so are feature-diagram-driven

frameworks, partial evaluators, and some development environments

(e.g., for Java beans).

Reference: Coming attractions in software architecture, P. Clements. CMU/SEI-96-TR-008.

(-: / 67

Generative programming is motivated by the belief that conventional
software production methods (even those based on “object-oriented”
methodologies) will never support component reuse:

Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley, 2000.

One solution is to understand a software system as a customized
product, produced by generative programming, from a product line.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

(-: / 68

10. Final Remarks

(-: / 69

Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley,

2000.

(-: / 70

(-: / 71

Selected textbook references

F. Buschmann, et al. Pattern-Oriented Software Architecture. Wiley

1996.

P. Clements and L. Northrup. Software Product Lines.

Addison-Wesley 2002.

P. Clements, et al. Documenting Software Architectures: Views and

Beyond. Addison Wesley, 2002.

K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.

E. Gamma, et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.

M. Shaw and D. Garlan. Software Architecture. Prentice Hall 1996.

(-: / 72

