
CIS300 and 200 and the core

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Some history

(-: / 2

My history regarding CIS200

I rebuilt CIS200 and taught it from 1997 to 2000 (with Bill
Shea’s help in 1998–2000).

Constraints (in 1996) on redoing CIS200:

¨ use a language that supports object orientation

¨ computer engineers wanted C experience

¨ some subsequent CIS courses required C++ and C

¨ beginners need to be protected from dangerous language
features (e.g., address arithmetic, buffer overruns)

I made Java (Version 1.02!) the compromise choice

(-: / 3

How it went...

¨ teaching “objects £rst” was dif£cult — too much propaganda (“all

the world are objects”), too much Java overhead, too much

advanced material: o-o, GUI frameworks, events, interfaces

¨ a serious problem developed: programming by oracle (IDE) — the

student cuts and pastes some code into the IDE, runs a test or

two from the assignment sheet, and watches what happens (like

the monkey typing Hamlet). Students fail to develop a
semantic model of execution, one they can draw with pencil
and paper and use to generate an execution trace.

I tried to sell them a model, but the object model of execution

overwhelmed them — classes, object instances generated from

classes, method activations, local variables, intra-method control

¤ow, inter-method control ¤ow, this, super, etc.!)-:

(-: / 4

¨ I wrote a 750+-page text — complete with machine model,

operational semantics, programming logic — that was/is

contracted to a publisher; after about 3-5 complete rewrites and

numerous disagreements with the editor and his moving-target

reviewers, the text rests in electronic-only form at

www.cis.ksu.edu/~schmidt/PPJ.

The text is used by a variety of people around the planet, and I

learned a lot from writing it (but I won’t tell you exactly what!).

(-: / 5

CIS300: Algorithms and Data Structures

I’ve taught this from 2000 to today.
(www.cis.ksu.edu/~schmidt/300s03)

What I expect of incoming students: not much

Gurdip’s advice to me in 2000 was on target: “just hope that
they can program a bit with arrays!”

Students are confused by components, packages, and
(especially) interfaces; they have trouble writing loops; many
employ cut-paste-and-test methodology.

(-: / 6

Topics I cover in CIS300:
TOPIC (Weeks 1-8) APPLICATION

Review of software design methodology;
What is a data structure?

The array as a data structure; Sorting,
searching, and time complexity

implement/modify an array-based
database to sort and binary-search its
contents

Stacks and their array and linked-list imple-
mentations; processing patterns that use
stacks

travelling-salesman problem

storage layout in the JVM: activation-record
stack and heap; semantics of object cre-
ation, method invocation, parameter pass-
ing

Queues and their linked-list implementa-
tion; processing patterns

moving averages, breadth-£rst search,
simple simulation

Linked list variants, e.g., doubly-linked
implement set or bag speci£cation via
linked lists

(-: / 7

TOPIC (Weeks 9-16) APPLICATION

Flat (iterative) vs. Layered (recursive) data
types; inductive de£nition and process-
ing patterns; immutable and mutable data
types

ConsLists, Trees, Folder systems, other
dynamic structures

Binary trees and their variants: ordered
(search) trees, n-ary trees, spelling trees,
AVL trees

database implemented by an ordered
tree; dictionary implemented by spelling
tree

Hash tables rework an earlier project with a hash ta-
ble

priority queues implemented by heaps implement a priority queue

Graphs (if time allows)

(-: / 8

Course text: none — they tend to be too Java- and Java-library
speci£c. (And in the past, the students didn’t read the text!) I write my
own notes, which the students download (see
www.cis.ksu.edu/~schmidt/300s03/Lectures for the last complete
set)

Java in¤uence in what I do: I try to make it almost none, although I
use Java interfaces in several exercises, and I use some simple
Java-coded GUIs in one or two assignments as a review of CIS200
(e.g., “modify the event handler in this GUI to do ...”).

Why I don’t use java.util: Mostly, its method suites are too
complex and a bit nonstandard (e.g., its speci£cation of “Set” has about 25

methods yet lacks union and intersection operations; its speci£cation of “List” lacks

head and tail operations).

Alas, by de-emphasizing “collections,” I miss the opportunity to
promote iterators. (But a Java-coded iterator is a bit ugly.)-:

(-: / 9

Some assessment

(-: / 10

CIS200 is too Java-dependent and “heavy”

¨ It’s wrong to introduce subclassing, event handling,
multi-threading, and interfaces (all required to use Java
GUIs) as well as exception handling (for sequential-£le
processing) in a £rst course!

¨ Even objects-as-instances-of-templates (classes) is heavy.
(Why can’t we limit ourselves to components = modules in
CIS200!?)

¨ Computer hardware, virtual-machine organization, and
operational semantics are not drilled into the students. As a
consequence, the student’s survival semantics is
cut-it-paste-it-and-ask-the-IDE.

(-: / 11

CIS300 is better de£ned but ¤awed:

¨ I am constantly torn between teaching “CS 1.5” (give the
students what they missed/forgot in CS1) and CS2.

¨ Java’s clumsy interfaces, abstract classes, subclasses, and
the requisite down-castings — Castor oil! — distract my
students and make me wish I could use Scheme or a
language with type inference.

¨ There is tension between teaching processing (control)
patterns e.g., structural recursion on trees, and design
(component) patterns, e.g., the visitor pattern for trees.

¨ I would like to emphasize class invariants and pre-
post-conditions, but the students don’t have the background.

¨ And what about support tools (debuggers, IDEs)?

(-: / 12

Some speculation

(-: / 13

We live in interesting times...

Due to £erce price competition, tech companies increase lay offs [“Job

Cuts in Tech Sector Soar”, Reuters 18 Oct.], moving towards a “worker free”
workplace, where automation and contracters carry the load. This is a
paradigm shift.

As a double penalty, our £eld suffers from an image problem:

Computer scientist = programmer = Dilbert

and everyone knows you don’t need a computing degree to be a programmer....)-:

Nonetheless, the demand for computing expertise will increase.

We must look towards training these computing generalists:

¬computingSpecialist ≡ intelligentUser ∧ lightweightProgrammer

and look towards supporting multi-disciplinary programs.

We must design a computing core that tells one what you need to
know to be a computing generalist.

(-: / 14

Computer Science “core” courses at

¨ Cornell: intensive programming; data structures and functional

programming; architecture; numerical computation

¨ CMU: intensive programming; data structures; programming

paradigms and formal methods; architecture; algorithms

¨ MIT: structure and interpretation of computer programs (Abelson

and Sussman); circuit theory I and II; system and signal theory

¨ Berkeley: structure and interpretation of computer programs;

data structures; machine structures (architecture and OS)

¨ Stanford: intensive programming; programming paradigms

(LISP, OO, assembly); automata and computational complexity;

arti£cial intelligence

(-: / 15

What is the “core” (foundation) of computing?

1. models for computation (architecture, computability)

2. algorithms (programming the models: control-, data- and
component-structures)

3. meta-programming (programs that (help) do
programming: translators, operating systems, analyzers,
support environments)

One bold proposal would be a CS:2-1-3 sequence. Another would be

to teach the £rst 3 CIS courses from Abelson and Sussman’s

Structure and Interpretation of Computer Programs (MIT Press,

1985), which covers most of the intellectual import in computing

(programming, induction, data structures, modules, interpreters, theorem provers,

hardware simulators, translators). But maybe this works only for the very best CS

departments.)-:

(-: / 16

A presentation that matches our curriculum

1. CIS200: hardware/software systems control structure

2. CIS300: hardware/software systems data structure

3. CIS501: hardware/software component structure

4. CIS301: hardware/software systems logical structure

Rationale for the course titles: Each programming paradigm (procedural, o-o,
event-driven, logical, functional) and/or language (Prolog, CAML, C#, Pascal) and/or
methodology (stepwise re£nement, object-orientation, Jackson methodology) has
well-de£ned notions of control (evaluation ordering), data structure (aggregates),
component structure (modular organization), and correctness logic.

These same notions are embedded in architecture and support software, and

indeed, “software” was introduced to eliminate need of rewiring hardware.

(-: / 17

CIS200: Control structure

Theme: “structure and interpretation of computer programs” for
computing generalists — how to command coherently

1. computer-hardware architecture, networks, and internet: what happens where
(execution ordering, what controls what); single-computer machine model

2. support tools (operating system, web browser, text-editor, high-level-language
translators, frameworks (e.g., Visual Basic)): what happens where (execution
ordering, what controls what in the machine model)

3. programming in “script” (straight-line coding/control): expression and command
evaluation in the machine model; inserting script into a program generator

4. classical control structures: sequencing, conditional, repetition; operational
semantics on machine model; standard algorithms for numbers and strings

5. methods-as-functions, and modules-as-method-suites; 2-3 component systems

6. introduction to aggregates: arrays, sequential £les, and their standard
algorithms

7. introduction to components: local state in modules; methods as state-mutators

(-: / 18

Practical impact: The course emphasizes control — procedural

programming — and is somewhat language neutral, although a

carefully chosen subset of C# is an OK choice.

No more programming Java-GUIs and animations — they are

distracting — use a GUI-generator (a la Visual ..X..)

Secondary issues: BlueJ is a clunky IDE; the students grumble.

Better to introduce Eclipse, which is freely available, “cool,” and can

be applied in subsequent courses.

Java should be retired: its core and libraries have ballooned beyond

control.

Why C# ? built-in iterator, foreach; built-in get,set templates for classes; reintroduces

record structures to good advantage; points towards C and C++; simpler

event-handling methodology; compatible with .NET and Mono (open-source version

for Linux: www.mono-project.com) which is better organized than Java libraries.

(-: / 19

CIS300: Data structure

Theme: Presentation of meta-programming tools (operating
system, compiler, database) with the data structures they utilize.

1. the role of data structure in hardware architecture

2. data-structures as aggregates; data structures as object
instances of class de£nitions; class-representation invariants

3. sorting, searching of arrays; time-complexity hierarchy

4. stacks: virtual-machine architecture (activation-record stack);
stack-based syntactic recognition in compilers/text editors

5. queues: application to OS; intro to multithreading, mutual
exclusion, and synchronization

6. trees: application to compilation: parsing and translation; use of
XML for tree representation

7. hash tables, heaps, mumble, ...

(-: / 20

CIS501: Component structure

Theme: connecting components — control issues
(multi-threading, synchronization), data issues (communication
mechanisms, mutual exclusion), case studies

1. distinctions: modules vs. classes vs. objects; types vs. interfaces vs.
speci£cations; components vs. connectors

2. components and connectors in hardware architecture and in meta-programs
(operating system, compiler)

3. “design theory”: design patterns, UML-like notations, connector- and
architecture-description languages

4. heterogeneous systems, linking languages, interface description languages;
case studies: client-server architecture, XML application, Corba

5. multithreaded systems; patterns for mutual exclusion

6. software-architecture paradigms: layered, database, blackboard, etc.; analyses
of architectures of IDEs, debuggers, (graphics) frameworks, etc.

7. software-architecture views, UML diagrams, aspects

(-: / 21

CIS301: Logical structure

Theme: logic for computing is dynamic logic

1. Hoare logic of while + (recursive) procedures

2. data-representation (class) invariants; design and program by
contract

3. soundness of assertions/reasoning with respect to machine
model

4. design-by-contract project completed with manual and
tool-assisted veri£cations

5. proof and model theory of £rst-order logic, introduced on a
demand-driven basis.

6. £nite-state automata, regular languages; context-free grammars

7. hardware architecture as Turing machine; unsolvable problems

(-: / 22

Comments

The core produces an intelligent computing generalist who can use,

connect together, and to some degree, program systems; can

understand the hardware/software foundations; and can specialize to

project manager, systems administrator, bio-informatician, graphics

designer, etc.

The self-contained core gives ¤exibility to the CS curriculum, allowing

“modular” degree programs, and should improve the recruiting of non-

and dual-CS majors.

Bill (Hankley) suggested we might create a track of CIS300/501

tailored towards software-engineering specialization (is this an IS

core?). This sounds £ne, but extra courses mean extra teaching, and

indeed, any revisions at all will generate lots of extra work.

Throughout all this, we don’t lower academic standards.

(-: / 23

