
Abstract parsing:

static analysis of dynamically generated string output using

LR-parsing technology

Kyung-Goo Doh1, Hyunha Kim1, David A. Schmidt2

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We combine LR(k)-parsing technology and data-flow analysis to analyze, in ad-
vance of execution, the documents generated dynamically by a program. Based on the doc-
ument language’s context-free reference grammar and the program’s control structure, the
analysis predicts how the documents will be generated and parses the predicted documents.
Our strategy remembers context-free structure by computing abstract LR-parse stacks. The
technique is implemented in Objective Caml and has statically validated a suite of PHP pro-
grams that dynamically generate HTML documents.

1 Introduction

Scripting languages like PHP, Perl, Ruby, and Python use strings as a “universal data structure”
to communicate values, commands, and programs. For example, one might write a PHP script that
assembles within a string variable an SQL query or an HTML page or an XML document. Typically,
the well-formedness of the assembled string is verified when the string is supplied as input to its
intended processor (database, web browser, or interpreter), and an incorrectly assembled string might
cause processor failure. Worse still, a malicious user might deliberately supply misleading input that
generates a document that attempts a cross-site-scripting or injection attack.

As a first step towards preventing failures and attacks, the well-formedness of a dynamically
generated, “grammatically structured” string (document) should be checked with respect to the
document’s context-free reference grammar (for SQL or HTML or XML) before the document is
supplied to its processor. Better still, the document generator program itself should be analyzed to
validate that all its generated documents are well formed with respect to the reference grammar,
like an application program is type checked in advance of execution.

In this paper, we employ LR(k)-parsing technology and data-flow analysis to analyze statically
a program that dynamically generates documents as strings, and at the same time, parse the dy-
namically generated strings with the context-free reference grammar for the document language. We
compute abstract parse stacks that remember the context-free structure of the strings.

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 ⊔ X2
X2 = [· X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its data-flow equations

2 Motivating example

Say that a script must generate an output string that conforms to this grammar,

S → a | [S]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket languages.) The grammar
is LR(0), but it can be difficult to enforce even for simple programs, like the one in Figure 1, left
column. Perhaps we require this program to print only well-formed S-phrases — the occurrence of
x at “print x” is a “hot spot” and we must analyze x’s possible values.

– An analysis based on type checking assigns types (reference-grammar nonterminals) to the pro-
gram’s variables. The occurrences of x can indeed be data-typed as S, but r has no data type
that corresponds to a nonterminal.

– An analysis based on regular expressions (Christensen [2], Minamide [6], Wasserman [8]) solves
flow equations shown in Figure 1’s right column in the domain of regular expressions, determining
that the hot spot’s (X3’s) values conform to the regular expression, [∗ · a ·]∗, but this does not
validate the assertion.

– A grammar-based analysis (Thiemann [7]) treats the flow equations as a set of grammar rules.
The “type” of x at the hot spot is X3. Next, a language-inclusion check tries to prove that all
X3-generated strings are S-generable.

Our approach solves the flow equations in the domain of parse stacks — X3’s meaning is the set
of LR-parses of the strings that might be denoted by x.

[
. S

S .[S]
.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

a

]

parse stack (top lies at right) input sequence (front lies at left)

s0 [[a]]

s0 :: s1 [a]] (because goto(s0, [) = s1)
s0 :: s1 :: s1 a]]

s0 :: s1 :: s1 :: s2]] (reduce:S → a)
s0 :: s1 :: s1 S]]

s0 :: s1 :: s1 :: s3]] (because goto(s1, S) = s3)
s0 :: s1 :: s1 :: s3 :: s4] (reduce:S → [S])
s0 :: s1 S]

s0 :: s1 :: s3]

s0 :: s1 :: s3 :: s4 (reduce:S → [S])
s0 S

s0 :: s5 (finished)

Fig. 2. goto controller for S → [S] | a and an example parse of [[a]]

Assume that the reference grammar is LR(k); we first calculate its LR-items and build its parse
(“goto”) controller.

We interpret the flow equations in Figure 1 as functions that map an input parse state to (a set
of) output parse stacks.

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 ⊔ X2
X2 = [· X1 · R
X3 = X1

[
. S

S .[S]
.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

a

]

To analyze the hot spot at X3, we generate the function call, X3(s0), where s0 is the start state for
parsing an S-phrase. The flow equation, X3 = X1, generates

X3(s0) = X1(s0)

which itself demands a parse of the string generated at point X1 from state s0:

X1(s0) = X0(s0) ∪ X2(s0)

The union of the parses from X0 and X2 must be computed.3 Consider X0(s0):

X0(s0) = goto(s0, a) = s2 (reduce:S → a)
⇒ goto(s0, S) = s5

A parse of string ’a’ from s0 generates s2, a final state, that reduces to nonterminal S, which
generates s5 — an S-phrase has been parsed. (The ⇒ signifies a reduce step to a nonterminal.) The
completed stack is therefore s0 :: s5. The remaining call, X2(s0), goes

X2(s0) = ([· X1 · R)(s0) = goto(s0, [) ⊕ (X1 · R)
= s1 ⊕ (X1 · R) = s1 :: (X1(s1) ⊕ R)

The ⊕ operator sequences the parse steps: for parse stack, st, and function, E, st ⊕ E = st ::
E(top(st)), that is, the stack made by appending st to the stack returned by E(top(st)). Then,
X1(s1) = X0(s1) ∪ X2(s1) computes to s3, and

X2(s0) = s1 :: (X1(s1) ⊕ R) = s1 :: (s3 ⊕ R) = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 (reduce:S → [S])
⇒ goto(s0, S) = s5

That is, X2(s0) built the stack, s1 :: s3 :: s4, denoting a parse of [S], which reduced to S, giving
s5.

3 In general, the functions compute sets of parse stacks. In this example, all the sets are singletons.

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 ⊔ X2
X2 = [· X1 · R
X3 = X1

Here is the complete list of solved function calls:

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5

X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5

X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5

R(s3) = goto(s3,]) = s4

X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3 (see comment below)
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3

X2(s1) = goto(s1, [) ⊕ (X1 · R)
= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3) (see comment below)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

The solution is X3(s0) = s5, validating that the strings printed at the hot spot must be S-phrases.
Each equation instance, Xi(sj) = Eij , is a first-order data-flow equation. In the example, X1(s1)

and X2(s1) are mutually recursively defined, and their solutions are obtained by iteration-until-
convergence. The flow-equation set is generated dynamically while the equations are being solved.
This is a demand-driven analysis [1, 3, 4], called minimal function-graph semantics [5], computed by
a worklist algorithm.

Worklist,
added and processed
from top to bottom:

X3(s0)
X1(s0)
X0(s0)
X2(s0)
X1(s0)
X1(s1)
X3(s0)
X0(s1)
X2(s1)
X1(s1)
X2(s0)
X2(s1)
R(s3)
X2(s0)
X2(s1)
X1(s0)
X1(s1)

Cache updates, inserted from top to bottom,
where X(s) 7→ P abbreviates Cache[X(s)] := P

X3(s0) 7→ ∅
X1(s0) 7→ ∅
X0(s0) 7→ ∅
X2(s0) 7→ ∅
X0(s0) 7→ reduce(s0, goto(s0, a)) = reduce(s0, s2)

= reduce(s0, goto(s0, S)) = reduce(s0, s5) = {s5}
X1(s1) 7→ ∅
X1(s0) 7→ {s5}
X0(s1) 7→ ∅
X2(s1) 7→ ∅
X3(s0) 7→ {s5}
X0(s1) 7→ reduce(s1, goto(s1, a)) = {s3}
X1(s1) 7→ {s3}
R(s3) 7→ ∅
R(s3) 7→ reduce(s3, goto(s3,])) = {s4}
X2(s0) 7→ ([:: X1 :: R)(s0)

= s1 ⊕ (X1 :: R) = (s1 :: X1(s1)) ⊕ R

= s1 :: s3 :: R(s3) = reduce(s0, s1 :: s3 :: s4)
= reduce(s0, goto(s0, S)) = {s5}

X2(s1) 7→ ([:: X1 :: R)(s1) = {s3}

Generated call graph:

0X3 ()

s
1X2 ()

s
3

()R
s
0X1 ()

s
0X2 ()

s
0X0 ()

s
1X1 ()

s
1X0 ()

s

Fig. 3. Worklist-algorithm calculation of call, X3(s0), in Figure 1

The initialization step places initial call, X0(s0), into the worklist and into the call graph and
assigns to the cache the partial solution, Cache[X0(s0)] 7→ ∅. The iteration step repeats the following
until the worklist is empty:

1. Extract a call, X(s), from the worklist, and for the corresponding flow equation, X = E, compute
E(s), folding abstract stacks as necessary.

2. While computing E(s), if a call, X ′(s′) is encountered, (i) add the dependency, X ′(s′) → X(s),
to the call graph (if it is not already present); (ii) if there is no entry for X ′(s′) in the cache,
then assign Cache[X ′(s′)] 7→ ∅ and place X ′(s′) on the worklist.

3. When E(s) computes to an answer set, P , and P contains an abstract parse stack not already
listed in Cache[X(s)], then assign Cache[X(s)] 7→ (Cache[X(s)] ∪ P) and add to the worklist
all X ′′(s′′) such that the dependency, X(s) → X ′′(s′′), appears in the flowgraph.

Concrete semantics: A source program computes a store that maps variables to strings. The concrete

collecting semantics computes a set of stores for each program point; the collecting semantics is then
abstracted so that it computes, for each program point, a single store that maps each variable to a set
of strings.

The collecting semantics is overapproximated by the data-flow semantics, which uses flow equations to
compute the set of strings denoted by each variable at each program point. In Figure 1, the data-flow
semantics computes these values of variable x at the program points:

X0 = {a} X2 = {[s1] | s1 ∈ X1} R = {]} X1 = X0 ∪ X2 = X3

Let Σ name the states in the parser’s goto-controller. A parse stack, st ∈ Σ+, models those strings that
parse to st. Function γ : P(Σ+) → P(String) concretizes a set of parse stacks into a set of strings:

γ(S) = {t ∈ String | s0 :: s1 :: · · · :: sk ∈ S and parse(s0, t) = s0 :: s1 :: · · · :: sk}

The abstract collecting interpretation, X , computes the set of parse stacks denoted by a program variable.
For flow equation, Xi = Ei, the function, Xi : Σ → P(Σ∗), is defined as Xi(s) = [[Ei]](s), where s ∈ Σ

and

[[t]]s = {reduce(s, goto(s,t))}, where t is a terminal symbol

[[E1 ⊔ E2]]s = [[E1]]s ∪ [[E2]]s

[[Xj]]s = [[Ej]]s, where Xj = Ej is the flow equation for Xj

[[E1 · E2]]s = {reduce(s, p′) | p′ ∈ ([[E1]]s) ⊕ [[E2]]},

where S ⊕ g = {p :: g(top(p)) | p ∈ S}

where reduce(s, p) reduces the final states within parse stack, s :: p.
reduce(s, p) =

t := top(p)
if t = sm, the final state for item, T → U1U2 · · ·Um·,
then p′ := pop(m,p) // pop m states, corresponding to U1U2 · · ·Um

p′′ := p′ :: goto(top(s :: p′), T)
return reduce(s, p′′) // repeat till finished

else return p // t was not a final state, so nothing to reduce

Fig. 4. Abstract collecting interpretation: Xi(s) = [[Ei]]s denotes the set of parse stacks generated by parsing
the strings denoted by Ei, starting from parse state s.

3 Abstract parse stacks

In the previous example, the result for each Xi(sj) was a single stack. In general, a set of parse
stacks can result, e.g., for

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a ·]

at conclusion, x holds zero or more left brackets and an S-phrase; X3(s0) is the infinite set, {s5, s1 ::
s3, s1 :: s1 :: s3, s1 :: s1 :: s1 :: s3, · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no parse state repeats in a stack.
Since Σ, the set of parse-state names, is finite, folding produces a finite set of finite-sized stacks
(that contain cycles).

A stack segment like p = s1 :: s1 is a linked list, a graph, 11 ss
, where the stack’s top

and bottom are marked by pointers; when we push a state, e.g., p :: s2, we get 1 s1 s2
s

.

The folded stack is formed by merging same-state objects and retaining all links: 1 s2s .
(This can be written as the regular expression, s+

1 :: s2.) Folding can apply to multiple states, e.g.,

6 s7
s
6 s7

s
6 s8s

folds to 6 s7
s8s

.

For the above example, X3(s0) = {s5, s+

1 :: s3}.

Flow equation set generated from demand, X3(s0):

X0(s0) = [(s0)
X1(s0) = X0(s0) ∪ X2(s0)

X2(s0) = X1(s0) ⊕ [

X3(s0) = X1(s0) ⊕ (a.])

Least fixed-point solution expressed with abstract parse stacks:

X0(s0) = [(s0) = {s1}

Because X1 and X2 are mutually defined, we iterate to a solution,
where Xi’s value at iteration j is denoted Xij :

X11(s0) = {s1} ∪ ∅ = {s1}
X21(s0) = X11(s0) ⊕ [= fold{s1 :: s1} = {s+

1 }
X12(s0) = {s1} ∪ {s+

1 } = {s1, s
+

1 }
= {s+

1 }. (We can merge the two stack segments since the first
is a prefix of the second and has the same bottom and top states.)

X22(s0) = X12(s0) ⊕ [= {s+

1 :: [(s1)} = fold{s+

1 :: s1} = {s+

1 }
X13(s0) = {s1} ∪ {s+

1 } = {s1, s
+

1 } = {s+

1 } = X12(s0)
X23(s0) = {s+

1 } = X22(s0)

X3(s0) = {s+

1 :: a(s1) ⊕]}
First, s+

1 :: a(s1) = s+

1 :: s2 ⇒ s+

1 :: goto(s1, S) = s+

1 :: s3.

= {s+

1 :: s3 ::](s3)} = {s+

1 :: s3 :: s4}
The reduction, S → [S], splits the stack into two cases:
(i) there are multiple s1s within s+

1 ; (ii) there is only one s1:
= (i){s+

1 :: goto(s1, S)} ∪ (ii){goto(s0, S)}
= {s+

1 :: s3, s5}

Fig. 5. Iterative solution with folded parse stacks, depicted as regular expressions

The result, X3(s0) = {s5, s
+
1 :: s3}, asserts that the string at X3 might be a well-formed S

phrase or it might contain a surplus of unmatched left brackets.
At the end of the calculation in Figure 5, the reduction of S → [S] is done on the folded stack

segment, s+

1 :: s3 :: s4, that is, the complete stack is 0 s1 s3 s4
s

, meaning that three states
must be popped: we traverse s4, s3, and s1, and follow the links from the last state, s1, to see what

the remaining stack might be. There are two possibilities: 10 ss
and s0 . We compute the

result for each case, as shown in the Figure.

This tag not to be removed under penalty of law.

A set of parse stacks can be soundly approximated by a single, abstract stack: For label set Σ, a Σ-labelled

graph, g, is a tuple, 〈nodesg , edgesg , labelg〉, where

– nodesg is a set of nodes,
– edgesg ⊆ nodesg × nodesg is a set of directed edges (at most one per source, target node pair),
– and labelg : nodesg → Σ assigns a label to each node.

Let GraphΣ be the set of Σ-labelled graphs.

An abstract stack is a triple, (g, bot, top), such that g ∈ GraphΣ and bot, top ∈ nodesg mark the bottom
and top nodes of the stack. Let AbsStackΣ be the set of abstract stacks labelled with Σ-values.

Example: the stack, s1 :: s1 :: s3, is modeled as (〈{a, b, c}, {(c, b), (b, a)}, [a 7→ s1, b 7→ s1, c 7→ s3]〉, a, c).

An abstract stack, (g, bot, top) ∈ AbsStackΣ, concretizes to a set of parse stacks:

γ(g, bot, top) = {st ∈ P(Σ+) | st is a finite path through g from top to bot}

Two abstract stacks, G1 = (g1, bot1, top1) and G2 = (g2, bot2, top2), are composed by :: into the disjoint
union of g1 and g2 plus one new edge from bot2 to top1:

G1 :: G2 = (〈nodesg1 ⊎ nodesg2 ,

edgesg1 ∪ edgesg2 ∪ {(bot2, top1)},
labelg1 + labelg2 〉, bot1, top2)

An abstract stack is folded (widened) by merging all nodes that share the same label, in effect, equating
the nodes with the labels:

fold(g, bot, top) = (〈{s ∈ Σ | ∃n ∈ nodesg , labelg(n) = s},
{(s, s′) | ∃(n, n′) ∈ edgesg , labelg(n) = s, labelg(n

′) = s′},
λs.s〉, labelg(bot), labelg(top))

The abstract interpretation of flow equation, Xi = Ei, is the function,
Xi : Σ → Pfin(AbsStackΣ), defined as

Xi(s) = {fold(p) | p ∈ [[Ei]](s)}.

This interpretation is sound for the abstract collecting semantics in Figure 4.

A set of abstract stacks can be further abstracted into a single stack of form, GraphΣ ×P(Σ)×P(Σ), by
unioning the stacks’ node sets, edge sets, bot-values and top-values. The resulting ”stack” is a subgraph

of the parser’s goto-controller.

Fig. 6. Abstract interpretation defined in terms of abstract, folded, parse stacks

PHP program String−flow
Analyzer

Abstract
Parser

ocamlyacc
reference
grammar

data−flow
equations

LALR(1) table

parsed OK

parsing ERR

hot spot

PHP

Fig. 7. Implementation

4 Implementation and experiments

The implementation is in Objective Caml. The front end of Minamide’s analyzer for PHP [6] was
modified to accept a PHP program with a hot-spot location and to return data-flow equations with
string operations for the hot spot. ocamlyacc produces an LALR(1) parsing table, and the abstract
parser uses the data-flow equations and the parsing table to parse statically the strings generated
by the PHP program. Abstract parsing works directly on characters (not tokens), so the reference
grammar is written for scannerless parsing. (Performance was good enough for practical use.)

We applied our tool to a suite of PHP programs that dynamically generate HTML documents, the
same one studied by Minamide [6], using a MacOSX with an Intel Core 2 Duo Processor (2.56GHz)
and 4 GByte memory:

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077

We manually identified the hot spots and ran our abstract parser for each hot spot. Since we do
not yet have parse-error recovery, each time a parse error was identified by our analyzer, we located
the source of the error, fixed it, and tried again until no parse errors were detected.

All the false-positive alarms were caused by ignoring the tests within conditional commands. The
parsing time shown in the table is the sum of all execution times needed to find all parsing errors
for all hot spots. The reference grammar’s parse table took 1.323 seconds to construct; this is not
included in the analysis times.

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077

The alarms are classified below:

classification occurrences

open/close tag syntax error 11
open/close tag missing 45

superfluous tag 5
improperly nested 14

misplaced tag 5
escaped character syntax error 2

All in all, our abstract parser works without limiting the nesting depth of tags, validates the syntax
reasonably fast, and is guaranteed to find all parsing errors reducing inevitable false alarms to a
minimum.

Minamide excluded one PHP application, named tagit, from his experiments [6], since tagit

generates an arbitrary nesting depth of tags. In principle, our abstract parser should be able to
validate tagit, but we also excluded tagit from our studies because the current version of our
abstract parser checks that string-update operations satisfy an update-invariance property (a string
update must preserve the existing parse). Unexpectedly (to us!), so many string updates in tagit

violated update invariance that our abstract parser generated too many false-positives to be helpful.
We can eliminate these false positives with some easy finite-machine theory: every string update,

e.g.,
x = ...

replace(pattern, target, x)

defines a f.s.a.-transducer (pattern is an f.s.a.; target is the f.s.a.’s output; x is the input). For
each such transducer that appears in flow-equation generation, we compose the transducer with the
LR-parse controller, itself a transducer. The compound transducer directs the abstract parse.

We are implementing this technique, which can also be used for input validation and sharpening
the results of tests in conditional commands.

We are also implementing reference grammars for applications that generate XML structures.

5 Conclusion

Injection and cross-site-scripting attacks can be reduced by analyzing the programs that dynamically
generate documents [9]. In this paper, we have improved the precision of such analyses by employing
LR-parsing technology to validate the context-free grammatical structure of generated documents.

A parse tree is but the first stage in calculating a string’s meaning. The parsed string has
a semantics (as enforced by its interpreter), and one can encode this semantics with semantics-
processing functions, like those written for use with a parser-generator. (Tainting analysis — tracking
unsanitized data — is a simplistic semantic property that is encoded this way.) The semantics can
then be approximated by the static analysis so that abstract parsing and abstract semantic processing
proceed simultaneously.

This talk is saved at www.cis.ksu.edu/∼schmidt/papers/hometalks.html

The paper was published at the 2009 Static Analysis Symposium (Springer LNCS 5673). The
paper is saved locally at www.cis.ksu.edu/∼schmidt/papers

References

1. G. Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In Proc. Int’l. Conf. Software

Maintenance, Oxford, 1999.
2. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Static analysis for dynamic XML. In Proc. PLAN-

X-02, 2002.
3. E. Duesterwald, R. Gupta, and M.L. Soffa. A practical framework for demand-driven interprocedural

data flow analysis. ACM TOPLAS, 19:992–1030, 1997.
4. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In Proc. 3rd ACM

SIGSOFT Symp. Foundations of Software Engg., 1995.
5. N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal function graphs.

In Proc. 13th Symp. POPL, pages 296–306. ACM Press, 1986.
6. Y. Minamide. Static approximation of dynamically generated web pages. In Proc. 14th ACM Int’l Conf.

on the World Wide Web, pages 432–441, 2005.
7. P. Thiemann. Grammar-based analysis of string expressions. In Proc. ACM workshop Types in languages

design and implementation, pages 59–70, 2005.
8. G. Wassermann, C. Gould, Z. Su, and P. Devanbu. Static checking of dymanically generated queries in

database applications. ACM Trans. Software Engineering and Methodology, 16(4):14:1–27, 2007.
9. G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulnerabilities.

In Proc. ACM PLDI, pages 32–41, 2007.

