
Comparing completeness properties of static

analyses and their logics

David A. Schmidt⋆

Kansas State University, Manhattan, Kansas, USA

Abstract. Static analyses calculate abstract states, and their logics val-
idate properties of the abstract states. We place into perspective the va-
riety of forwards, backwards, functional, and logical completeness used in
abstract-interpretation-based static analysis by giving examples and by
proving equivalences, implications, and independences. We expose two
fundamental Galois connections that underlie the logics for static analy-
ses and reveal a new completeness variant, O-completeness. We also show
that the key concept underlying logical completeness is covering, which
we use to relate the various forms of completeness.

When we use a static analysis, like data-flow analysis or model checking, to
validate a program for correctness or code improvement, we must carefully de-
fine the domain of properties the analysis can calculate so that it includes both
the goal properties we seek to validate as well as intermediate properties that
lead to the goals. Say we try to validate {?}y := −y; x := y + 1{isPositive(x)};
our analysis requires properties like isNegative to calculate a sound precondi-
tion: {isNegative(y)} y := −y {isPositive(y)} x := y + 1 {isPositive(x)}. But, is
the analysis complete — as expressive as possible? If we can express the proper-
ties, isNonNegative and isNonPositive , then a complete analysis calculates the
weakest precondition: {isNonPositive(y)} y := −y; x := y + 1 {isPositive(x)}.

The example suggests that “completeness” is a property of both static anal-
yses as well as logics. Thanks to Cousot and Cousot [6–8, 11], we have a well-
defined notion of functional completeness: it is when a static analysis’s abstract
state-transition function precisely mimicks the concrete state-transition function,
modulo the Galois connection between concrete and abstract domains.

Giacobazzi, Ranzato, and Scozarri [17] showed how to refine an abstract in-
terpretation to synthesize functionally complete transition functions; Giacobazzi
and Quintarelli [16] showed that there are, in fact, two, independent notions of
functional completeness — forwards and backwards. Cousot and Cousot [11] ap-
plied functional completeness to define the logical completeness of a logic that
judges abstract values as compared to the logic that judges the concrete values.
Recently, Ranzato and Tapparo [23, 24] applied Giacobazzi, et al.’s refinement
techniques to build logically complete abstract logics.

The present paper’s contribution is to place into perspective the variants of
forwards, backwards, functional, and logical completeness by giving examples

⋆
schmidt@cis.ksu.edu. Supported by NSF ITR-0086154 and ITR-0326577.

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ(pos) = {1, 2, 3, · · ·}
γ(zero) = {0}, etc.

α{−4,−1} = neg
α{2, 4, 6, 8, ...} = pos

α{−4,−1, 0} = any
α{0} = zero
α{} = none, etc.

Fig. 1. Galois connection for signs; equivalence classes circled

and by proving equivalences, implications, and independences. By exposing two
fundamental Galois connections that underlie logics for abstract values, we reveal
yet another completeness variant, O-logical-completeness. We also show that the
key concept underlying logical completeness notions is covering, which we use
to relate the various forms of completeness.

1 Galois connections and functional completeness

We use Galois connections to abstract concrete data into properties. A Galois
connection [8, 15] between two partially ordered sets, (C,⊆) and (A,⊑), written
C〈α, γ〉A, is a pair of functions, α : C → A and γ : A → C, such that for all
c ∈ C and a ∈ A,

c ⊆ γ(a) iff α(c) ⊑ a.

The adjunction is equivalently defined by requiring that α and γ are monotone
maps such that idC→C ⊑ γ ◦ α and α ◦ γ ⊑ idA→A.

C is the concrete domain and A is the abstract domain. γ’s adjoint, α, is
uniquely defined as α(c) = ⊓{a | c ⊆ γ(a)} and α’s adjoint must be γ(a) =
∪{c | α(c) ⊑ a}[15]. γ is an upper adjoint of a Galois connection iff it preserves
meets: γ(⊓T) = ∩a∈T γ(a), for all T ⊆ A. Similarly, α is a lower adjoint iff it
preserves joins: α(∪S) = ⊔c∈Sα(c), for all S ⊆ C [15].

Figure 1 displays the classic Galois connection that abstracts sets of integers
to their signs [8]. (In the Figure, C is P(Int) and A is Sign.) Each S ∈ P(Int)
is abstracted to α(S) ∈ Sign. Values like pos and any can be read as primitive
logical propositions (isPositive and true, respectively) or they can be used as
abstract arguments and answers to static-analysis functions (e.g. succ♯(zero) =
pos). The Galois connection is overapproximating because S ⊆ γ(α(S)), for all
S ∈ P(C).

The following little-known result [21] exposes the inner structure of Galois
connections:1 There is a Galois connection between (C,⊆) and (A,⊑) iff

1 In this paper, definitions and previously proved results are embedded into the text
narrative. New results and new variations of known results are stated as Propositions,

1. C is partitioned into equivalence classes, each class, p, having a unique maxi-
mal element, max (p); A is partitioned into equivalence classes, each class, q,
having a unique minimal element, min(q); the subposet of maximal elements
in C is order-isomorphic to the subposet of minimal elements in A.

2. For all c, c′ ∈ C, if c ⊆ c′, then max([c]α) ⊆ max ([c′]α), where [c]α is c’s
equivalence class.

3. For all a, a′ ∈ A, if a ⊑ a′, then min([a]γ) ⊑ min([a′]γ), where [a]γ is a’s
equivalence class.

Figure 1 illustrates the internal structure: α and γ partition their domains
into equivalence classes, where the images of the two functions are order-isomorphic.
Each concrete equivalence class “droops” from its canonical (maximal) element,
and each abstract class “floats” from its canonical (minimal) element. In Figure
1, α is onto (hence, γ is one-one), making Sign’s equivalence classes singletons.
The concrete domain’s canonical elements are ∅, {· · · ,−2− 1}, {0} {1, 2, 3, · · ·},
and Int . (This is γ’s image; α’s image is Sign.) When α is onto, the Galois
connection is characterized by γ ◦ α, a closure map [8, 17].

1.1 The internal logic defined by a Galois connection

For Galois connection, C〈α, γ〉A, say that c ∈ C has property a ∈ A, written
c |= a, iff c ⊆ γ(a) (equivalently, iff α(c) ⊑ a). Read the elements of A as
assertions in a logic with conjunction, because c |= a1 ⊓A a2 iff c |= a1 and
c |= a2. This is because γ preserves ⊓A as ∩C .

Other connectives might be present (e.g., disjunction), but this is not the
case for Sign in Figure 1, e.g., {0} |= neg⊔pos , but {0} 6|= neg and {0} 6|= pos ,
because γ fails to preserve ⊔. We will see that such “γ-preservations” lead to
one notion of completeness and that there is a dual notion of “α preservation.”

1.2 Sound abstract transformers

For Galois connection, C〈α, γ〉A, a state-transition function, f : C → C, can be
approximated: We say that a monotonic f ♯ : A → A is sound for f : C → C iff
α◦f ⊑C→A f ♯ ◦α, or equivalently, iff f ◦γ ⊑A→C γ ◦f ♯. That is, when α(c) = a,
f ♯(a) computes an answer that is weaker (with respect to ⊑A) than the name
of f(c)’s α-equivalence class: f

(c) f # α (c)()

()f(c)α
f #

f(c)c
α

α

α

This makes f ♯ an overapproximation of f : f(c) ⊆ γ(f ♯(α(c))). The map, f
♯
best =

α ◦ f ◦ γ, is the “best” abstraction of f in the sense that f
♯
best is sound for f and

f
♯
best ⊑A→A f ♯ for all sound f ♯ [8] — it is the best one can do with f , α, and γ.

Theorems, and Corollaries. Due to lack of space, some proofs are omitted but can
be found in the paper’s accompanying technical report [28].

For Sign in Figure 1, the transformer, succ∗ : P(Int) → P(Int) is soundly

abstracted by succ♯
0(a) = any , whereas the best abstract transformer is succ♯

best =

α ◦ succ∗ ◦ γ, where succ♯
best(zero) = succ♯

best(pos) = pos . (For f : C → C, define
f∗ : P(C) → P(C) as f∗(S) = {f(c) | c ∈ S}. Thus, for succ(n) = n + 1, we
have succ∗(S) = {n + 1 | n ∈ S}.)

1.3 Complete abstract transformers

When the inclusions that define soundness are strengthened into equalities, this
defines functional completeness: for f : C → C and f ♯ : A → A,

– f ♯ is backwards (B(α)-) complete for f iff α ◦ f = f ♯ ◦ α [8, 17]. That is, α

is a homomorphism that preserves f as f ♯.
– f ♯ is forwards (F(γ)-) complete for f iff f ◦ γ = γ ◦ f ♯ [16]. That is, γ is a

homomorphism that preserves f ♯ as f .

We say that f ♯ is B- (respectively, F-) complete when the α (resp. γ) is clear
from the context. The two completeness notions are not equivalent [16], and the
distinctions are subtle: For c, c′ ∈ C, write c ∼α c′ iff α(c) = α(c′).

– There exists a B-complete f ♯ for f iff for all c, c′ ∈ C, c ∼α c′ implies
f(c) ∼α f(c′). In this case, we say that f itself is B-complete.

For B-complete f ♯, f ♯(a) computes the α-equivalence class of f(c), for every
c ∈ γ(a), but the specific value within the equivalence class is lost. If f ♯ is

B-complete for f , then so is f
♯
best = α ◦ f ◦ γ. So, f itself is B-complete iff

α ◦ f = f
♯
best ◦ α. If α is onto and there is a B-complete f ♯ for f , then it is f

♯
best

[17].

– There exists an F-complete f ♯ for f iff for all c ∈ γ[A], f(c) ∈ γ[A].2 In this
case, we say that f itself is F-complete [16].

For F-complete f ♯, f ♯(a) computes the concrete value of f applied to the canon-
ical element, γ(a) ∈ C — it computes γ(f ♯(a)) — but the values and even
the equivalence-class names of the noncanonical elements in C are lost. If f ♯ is
F-complete for f , so is f

♯
best; f itself is F-complete iff f ◦ γ = γ ◦ f

♯
best. If γ is 1-1

and there is an F-complete f ♯ for f , then it is f
♯
best [16].

The existence of a B- and an F-complete f ♯ for f depend solely on the
Galois connection and f itself. Figure 2 graphs the behaviors of a B-complete
and an F-complete f : C → C on the equivalence classes of C induced by a
Galois connection. Based on Figures 1 and 2, we can readily verify some Sign-
completeness properties: square∗ is B-complete but not F-complete; negate∗ is
both B- and F-complete; succ∗ is neither;3 and enum∗ is F-complete but not
B-complete, where enum(n) = if (nmod2 = 0) then (n div2) else (n div (−2)).

When α is not onto (that is, γ is not 1-1), there can be multiple abstract
transformers f ♯ that are F-complete for f :

2 Please recall, for function f : C → C and set S ⊆ C, that f [S] denotes {f(s) | s ∈ S}.
3 where square(n) = n ∗ n and negate(n) = −n and succ(n) = n + 1

B-complete:
f

F-complete: f

Fig. 2. Behavior of a B-complete and an F-complete f : C → C

(a)

0γ ()f()

aqγ()

a0
γ ()

c0
c0f()

apγ()
f

f a

(b)

0f()

apγ()
a’pγ ()

aqγ()

a0
γ ()

c0 f

f

c

(c)

0

a0
γ ()

a1
γ () c’=

a0γ ()f()

aqγ()

apγ()

c0f()

f(c’)f

f

c

Fig. 3. Incompleteness (a) and its forwards (b) and backwards (c) refinements

Proposition 1. f ◦ γ = γ ◦ f ♯ iff, for all a ∈ A, (i) f(γ(a)) ∈ γ[A], and (ii)

f
♯
best(a) ∼γ f ♯(a).

Proof. The only-if-part is immediate: Since f ◦ γ = γ ◦ f ♯, then f(γ(a)) ∈ γ[A]
and γ ◦ α ◦ f ◦ γ = γ ◦ f ♯. For the if-part, by (ii) we have γ ◦ f ♯ = γ ◦ α ◦ f ◦ γ,
which equals f ◦ γ, by (i). 2

Proposition 2. α ◦ f = f ♯ ◦ α iff, (i) for all c, c′ ∈ C, c ∼α c′ implies f(c) ∼α

f(c′), and (ii) for all a ∈ α[C], f
♯
best(a) = f ♯(a).

Proof. Similar to the previous Proposition. 2

Say that f : C → C is not itself F-complete (see Figure 3(a)); to make it so,
we must ensure that f maps C-canonical arguments to C-canonical answers. To
do this, for each c ∈ γ[A] (that is, c = γ(a0)), where f(c) 6∈ γ[A], we make a
new equivalence class, ↓f(c)∩ [f(c)]α, in C whose maximal, canonical element is
f(c) = γ(a′

p), where a′
p is a new A-element.4 If we close the canonical elements

under ∩ (making even more new equivalence classes) and repeat until conver-
gence, then f becomes F-complete. This is the F-complete-shell construction [16,
23] — it adds elements by computing “forwards” from f . See Figure 3(b).

For example, since square∗ is not F-complete for Sign, we systematically
add to Sign new values that represent the canonical elements, {1, 4, 9, · · ·},
{1, 16, 81, · · ·}, {1, 256, 6561, · · ·}, . . .; this time, the procedure does not finitely
converge.

Dually, if f : C → C is not B-complete, we must make f map α-related
arguments to α-related answers. We can either split equivalence classes in f ’s
domain (the B-complete shell construction [17]) or merge equivalence classes in
f ’s range (the B-complete-core construction [17]).

4 Recall, for c ∈ C, that ↓c = {c′ ∈ C | c′ ⊆ c}.

Consider the former, and say there is some c0 ∈ C such that f(c0) 6∼α

f(max[c0]α). We compute the set, [c0]α ∩ f−1([f(c0)]α), and we select the max-
imal elements, c′, from this set as the canonical elements of new equivalence
classes, ↓ c′ ∩ [c′]α. If we close under ∩ and repeat until convergence, then f

becomes B-complete.5 The B-complete shell construction adds elements by com-
puting “backwards” from f . See Figure 3(c).

For example, succ∗ is not B-complete for Sign, because succ∗{−1,−2, ...} 6∼α

succ∗{−2}: the former maps into Int ’s equivalence class, and the latter maps into
the class of negative ints. [{−2}]α∩f−1[succ∗{−2}]α collects all nonempty sets of
negative numbers less than -1; the maximal set in this collection is {−2,−3, · · ·},
and this set becomes the canonical element of a new equivalence class. We repeat
the refinements and add these new canonical elements: {−i,−(i + 1), ...} and
{−i}, for all i > 1.

The shell constructions show that the match between f : C → C and Galois
connection α〈C, A〉γ must be “perfect” to achieve completeness.

The fixed point operators are well behaved with respect to completeness: Say
that when f ♯ is B- (resp., F-)complete for f , then G♯(f ♯) is B- (F-)complete for
G(f). We have

– α ◦ lfpG = lfpG♯ ◦ α, when α is continuous
– α ◦ gfpG = gfpG♯ ◦ α, when α is co-continuous and α(⊤) = ⊤
– lfpG ◦ γ = γ ◦ lfpG♯, when γ is continuous and γ(⊥) = ⊥
– gfpG ◦ γ = γ ◦ lfpG♯, when γ is co-continuous.

See Cousot and Cousot [8] and Ranzato and Tapparo [25] for elaboration.

2 Program logics

A logic for C consists of a set of assertions, L, and a judgement relation, |= ⊆
C ×L; we write c |= φ when (c, φ) is in the relation. For example, a |= based on
Figure 1 might give us {2, 4, 6} |= even and {4} |= any .

Section 1.1 noted that a Galois connection defines an “internal logic,” where
L = A and for all c ∈ C, c |= a iff c ⊆ γ(a) (iff α(c) ⊑ a). But most program
logics are extensions of A, and given a Galois connection, P(D)〈α, γ〉A — the
concrete domain is a powerset — we obtain this inductively defined logic:

1. an inductively defined set of assertions,

L ∋ φ ::= a | opi(φj)0<j≤ar(i), for i ∈ I

where opi has arity ar(i) ≥ 0, for every i ∈ I.

2. an inductively defined interpretation, [[·]] : L → P(D):

[[a]] = γ(a)

[[opi(φj)0<j≤ar(i)]] = gi([[φj]])0<j≤ar(i), where gi : P(D)ar(i) → P(D).

Given Galois connection, P(D)〈α, γ〉A, define L as follows:

a ∈ Prim = A (the primitive assertions)
L ∋ φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f]φ

[[·]] : L → P(D)

[[a]] = γ(a)
[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

[[[f]φ]] = p̃ref [[φ]]
where p̃ref (S) = {c ∈ D | f(c) ⊆ S}
and f : D → P(D) is a state-transition function

Fig. 4. An inductively defined precondition logic

For S ∈ P(D), define S |= φ iff S ⊆ [[φ]]. See the example in Figure 4. Using
Figures 4 and 1 and one-variable assignment programs, we can validate, for
example, the precondition assertion, {−2,−4, 0} |= [x := −x; x := x + 1]pos .

The logic defines program correctness and transformation properties, and
when we wish to validate a precondition assertion like S0 |= [f]φ (or a postcon-
dition assertion like f∗(S0) |= φ) via a static analysis, we use f ♯ : A → A to
approximate f∗ : P(D) → P(D) and we use a0 ∈ A to approximate S0. We then
attempt to validate a0 |= [f ♯]φ (resp., f ♯(a0) |=A φ):

– For P(D)〈α, γ〉A, a judgement relation, |=A ⊆ A × L, is γ-sound for |= ⊆
P(D) × L iff for all a ∈ A and φ ∈ L, a |=A φ implies γ(a) |= φ.

For example, a γ-sound |=A might validate that neg |=A [x := −x; x := x + 1]pos .

Define [[φ]]
A

= {a | a |=A φ}. Since γ is monotonic, it is natural to demand
that |=A be downclosed: a0 ⊑A a1 and a1 |=A φ imply a0 |=A φ. Downclosure is
central to soundness — here is a second definition of soundness that shows why:

– For P(D)〈α, γ〉A, |=A ⊆ A × L is α-sound for |= ⊆ P(D) × L iff for all
S ∈ P(D) and φ ∈ L, α(S) |=A φ implies S |= φ.

Proposition 3. If |=A is downclosed, then |=A is γ-sound for |= iff |=A is
α-sound for |=.

Proof. If-part: From γ-soundness and α(S) |=A φ, we infer that γ(α(S)) |= φ.
Since S ⊆ γ(α(S)), the downclosedness of |=A lets us deduce that S |= φ.

Only-if part: Assume a |=A φ. Since α(γ(a)) ⊑ a, we have α(γ(a)) |=A φ by
downclosedness. By α-soundness, we conclude that γ(a) |= φ. 2

Hereafter, we speak only of “soundness” and omit γ (resp., α).
Let (P↓(A),⊆) define the complete lattice of downclosed subsets of A, ordered

by subset inclusion, and for γ : A → P(D), define γ : P↓(A) → P(D) as
γ(T) = γ∗(T), that is, ∪a∈T γ(a).6 Here is yet another equivalent definition of

soundness, stated in terms of γ, [[·]] : L → P(D), and [[·]]A : L → P↓(A):

5 f must be chain continuous for the technique to converge correctly [16].
6 P↓(A) is in fact the disjunctive completion of A [8, 9], often used to lift a γ that

does not preserve ⊔A into a γ that preserves ∪P↓(A), in effect adding disjunction to
P↓(A)’s internal logic.

{ }

{...,−2,−1}

{0,1,2,3,...}

{...,−2,−1,0}

γ {neg,none}

{neg,zero,none} {neg,pos,none}

{zero,none}

{zero,pos,none}

{pos,none}

{neg,zero,pos,none}

{any,neg,zero,pos,none}

{none}

{ }

UI

P(Int) op
P (Sign) op

Fig. 5. Dualized disjunctive completion of Galois connection of signs

– [[·]]A is sound for [[·]] iff γ[[φ]]
A ⊆ [[φ]], for all φ ∈ L.

This definition suggests an adjunction using γ; there are two possible ones:

Proposition 4. For P(D), P↓(A), and γ : A → P(D),

1. P(D)〈αo, γ〉P↓(A) is a Galois connection, where αo(S) =
⋂
{T | S ⊆ γ(T)} =

↓{α{c} | c ∈ S} , where ↓T = {a | exists a′ ∈ T such that a ⊑ a′}.
2. P(D)op〈αu, γ〉P↓(A)op is a Galois connection, where αu(S) =

⋃
{T | γ(T) ⊆

S} = {a | γ(a) ⊆ S} , where (P,⊑P)op is (P,⊒P).

γ

αo

P (A)

UI
[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ
UI

P(D)

αo
[[]]ϕ

γ

αu

opP (A)

UI[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ UI

opP(D)

[[]]ϕαu

The one and the same γ is the upper adjoint of both Galois connections because
γ preserves both meets (intersections) and joins (unions) in P↓(A).7

Why two Galois connections? The one in Proposition 4(2) defines an under-

approximation such that when we define [[φ]]
A

= αu[[φ]], we underapproximate
the concrete logic. The Galois connection in Proposition 4(1) can be used to over-
approximate transforms, f∗ : P(D) → P(D), by f ♯ : P↓(A) → P↓(A). But the

logical interpretation, [[φ]]
A

= αo[[φ]], is sound iff, for all φ ∈ L, γ(αo[[φ]]) = [[φ]].
Figure 5 shows the completion of Sign to P↓(Sign)op. Here, αu is not onto,

which becomes significant later. Proposition 4 justifies the following:

Proposition 5. For φ ∈ L, the following are equivalent:

1. [[·]]A is sound for [[·]], that is, γ[[φ]]
A ⊆ [[φ]], that is, [[φ]]

A ⊆ αu[[φ]].

2. T ⊆ [[φ]]
A

implies γ(T) ⊆ [[φ]], for all T ∈ P↓(A).

3. αo(S) ⊆ [[φ]]
A

implies S ⊆ [[φ]], for all S ∈ P(D).

4. [[φ]] ⊆ S implies [[φ]]
A ⊆ αu(S), for all S ∈ P(D).

Proof. It is easy to prove Item 1 equivalent to each of 2, 3, and 4. Here is the
equivalence of 1 and 3:

1 implies 3: Assume αo(S) ⊆ [[φ]]A. By the definition of Galois connection,

S ⊆ γ[[φ]]
A
. By 1, S ⊆ φ.

7 If we use P(A) instead, we find that γ : P(A) → P(D) does not preserve meets.

3 implies 1: By the definition of the Galois connection, αo(γ[[φ]]A) ⊆ [[φ]]A.

Using 3 (set S = γ[[φ]]
A
), we have γ[[φ]]

A ⊆ [[φ]]. 2

The three adjunction maps, γ, αo, and αu, give us three ways to define soundness.
Items 3. and 4. in the Proposition justify the slogan that one “overapproximates
the model” and “underapproximates the logic” for sound static analysis.

Finally, we note that a soundness assertion of the form, “αo[[φ]] ⊆ [[φ]]A” is
faulty, because [[φ]] ⊆ γ(αo[[φ]]).

3 Logical completeness

In symbolic logic, one formal system, A, is L-sound for another formal system,
C, iff every property φ ∈ L that is validated in A can be validated in C. When
the converse holds true as well, then A is L-complete for C. In like fashion, we
might strengthen each of the implications in Items 2-4 in Proposition 5 into
equivalences: For [[·]] : L → P(D) and [[·]]

A
: L → P↓(A), we define these

properties:

– best preservation: for all φ ∈ L and T ∈ P↓(A), T ⊆ [[φ]]
A

iff γ(T) ⊆ [[φ]].

– strong preservation: for all φ ∈ L and S ∈ P(D), S ⊆ [[φ]] iff αo(S) ⊆ [[φ]]
A
.

– lower preservation: for all φ ∈ L and S ∈ P(D), [[φ]] ⊆ S iff [[φ]]
A ⊆ αu(S).

In particular, strong preservation asserts for all c ∈ D, {c} |= φ iff there exists
some a0 ∈ A8 such that c ∈ γ(a0) and a0 |=A φ — every c that “makes φ

hold” can be validated by |=A (and a0). In contrast, best preservation states
that a |=A φ iff for all c ∈ γ(a), {c} |= φ — every a that “makes φ hold” can be
validated by |=A. We soon see that lower-preservation is equivalent, surprisingly,
to strong preservation.

The obvious question to ask is, “What is the relationship between the above
logical preservation properties and functional completeness?” Working from the
Galois connection, P(D)op〈αu, γ〉P↓(A)op, and the functions, [[·]] : L → P(D)

and [[·]]A : L → P↓(A), we calculate these definitions of functional completeness:9

– [[·]]A is B(αu)-complete for [[·]] iff αu[[φ]] = [[φ]]
A

– [25] [[·]]A is F(γ)-complete for [[·]] iff [[φ]] = γ[[φ]]
A

This strengthens into equalities the subset inclusions in Item 1, Proposition 5.
As before, we use the terms, “B-complete” and “F-complete,” as abbreviations
for B(αu)-complete and F(γ)-complete, respectively.

The relationships within this soup of definitions go as follows:

Theorem 6. For P(D)〈α, γ〉A, [[·]] : L → P(D), and [[·]]A : L → P↓(A),

– B-complete iff best preservation

8 Indeed, the a0 is αo{c}.
9 We use implicitly the identity Galois connection on arguments from L.

F-complete and not B-complete:

UI

[]]ϕαu

[[]]ϕ A

[[]]ϕ Aγ[[]]ϕ =

[

B-complete and not F-complete:

[]]ϕ A

[[]]ϕ Aγ

[

UI

[[]]ϕαu [[]]ϕ A=

Fig. 6. Independence of F- and B-completeness of interpretation functions

– F-complete iff strong preservation iff lower preservation

Proof. The results follow from application of the definitions and the properties
of Galois connections. Here is the proof that F-completeness is equivalent to
lower preservation; thanks to Proposition 5, we need only prove the following:

(i) F-completeness and [[φ]]A ⊆ αu(S) imply [[φ]] ⊆ S: Assume [[φ]]A ⊆

αu(S); then, γ[[φ]]
A ⊆ γ(αu(S)) ⊆ S, by definition of Galois connection. By

F-completeness, γ[[φ]]A = [[φ]] ⊆ S.

(ii) Lower preservation implies [[φ]] ⊆ γ[[φ]]
A
: By definition of Galois connec-

tion, [[φ]]A ⊆ αu(γ[[φ]]A). By lower preservation (what was proved in (i), where

we set S = γ[[φ]]
A
), we have the result.

Here is a second example, which shows the equivalence of F-completeness
and strong preservation:

(iii) F-completeness and S ⊆ [[φ]] imply αo(S) ⊆ [[φ]]
A
: Assume S ⊆ [[φ]]; then

S ⊆ γ[[φ]]
A
, by F-completeness. The definition of Galois connection gives us the

result: αo(S) ⊆ αo(γ[[φ]]A) ⊆ [[φ]]A.

(iv) Strong preservation implies [[φ]] ⊆ γ[[φ]]
A
: Using the definition of strong

presevation (what was proved in (iii), where we set S = [[φ]]), we have that

αo[[φ]] ⊆ [[φ]]
A
. By the definition of Galois connection, we get [[φ]] ⊆ γ(αo[[φ]])) ⊆

γ[[φ]]
A
, which is the result.

Finally, here is the proof of equivalence between B-completeness and best
preservation:

(v) B-completeness and γ(T) ⊆ [[φ]] imply T ⊆ [[φ]]
A
: From the assumption

and the definition of Galois connection, we get T ⊆ αu(γ(T)) ⊆ αu[[φ]] ⊆ αu[[φ]].

By B-completeness, αu[[φ]] = [[φ]]
A
, and we have the result.

(vi) Best preservation implies αu[[φ]] ⊆ [[φ]]
A
: By the Galois connection,

γ(αu[[φ]]) ⊆ [[φ]]
A
. By best preservation (set T = αu[[φ]]), we get the result.

2

B- and F-completeness are independent, as shown by Figure 6. The first diagram
shows how F-completeness holds yet B-completeness fails when there are distinct
assertions in P↓(A) that concretize to the same set. For example, say that a |=A

φ1 ∨ φ2 iff a |=A φ1 or a |=A φ2 (cf. Figure 4). Consider [[neg ∨ zero ∨ pos]]A and

[[any ∨ neg ∨ zero ∨ pos]]
A
, which denote different sets in P↓(Sign)op but both

concretize to Int . This is F-complete but not B-complete.

The absence of B-completeness in an abstract logic is a famous trouble spot,
e.g., we are asked to validate any |=A neg ∨ zero ∨ pos — the above definition
fails to do so, and a focus or materialization operation [14, 26] must be em-
ployed to decompose any into a set of covering cases, such as {neg, zero, pos}
(because γ(any) ⊆ γ(neg) ∪ γ(zero) ∪ γ(pos)), and a proof-by-cases analysis is
undertaken.10

The second diagram shows that F-completeness can fail when there is some
[[φ]] that cannot be exactly expressed in P↓(A). For example, without altering
Sign, add to L the new assertion, equals1 , such that [[equals1]] = {1}, and

define [[equals1]]A = αu[[equals1]] = {none}. F-completeness fails. The absence
of F-completeness produces spurious counterexamples, e.g., a static analysis of

x:= 1; if x=1 then safe() else error()

using Sign announces that error() is reachable. This false counterexample
is eliminated by counterexample guided abstraction refinement [2, 3, 27]), which
adds new values to Sign (in this case, one), moving towards F-completeness [16].

In the previous section, we noted that the set inclusion, αo[[φ]] ⊆ [[φ]]
A
,

does not guarantee soundness. Nonetheless, starting from Galois connection,
P(D)〈αo, γ〉P↓(A), we define yet one more variant of functional completeness:

[[·]]A is B(αo)-complete for [[·]] iff αo[[φ]] = [[φ]]
A
.

For clarity, we use O-complete as a synonym for B(αo)-complete. O-completeness
is again independent from F-completeness, but with the concept of a covering,
we can make many connections:

– For [[·]] : L → P(D) and γ : Q → P(D), γ covers [[·]] iff for all φ ∈ L,
[[φ]] ∈ γ[Q].

– For [[·]]
A

: L → P↓(A) and α : P → P↓(A), α covers [[·]]
A

iff for all φ ∈ L,

[[φ]]
A ∈ α[P].

Proposition 7. Let α, γ be the adjoints of a Galois connection. Then,

– γ covers [[·]] iff γ(α[[φ]]) = [[φ]] for all φ ∈ L

– α covers [[·]]A iff α(γ[[φ]]
A
) = [[φ]]

A
for all φ ∈ L.

Proof. The results hold because each equivalence class in P(D) (resp., P↓(A))
holds exactly one value that lies in the image of γ[P↓(A)] (resp., α[P(D)]). 2

Propositions 1, 2, and 7 characterize completeness:

Theorem 8. Let α, γ be the adjoints of a Galois connection:

– [[·]]
A

is F(γ)-complete for [[·]] iff γ covers [[·]] and [[φ]]
A ∼γ α[[φ]], for all

φ ∈ L.

10 In theory, the redundant elements in A can be removed by applying the backwards-
complete-core construction, closing the sets in P↓(A) under join.

– [[·]]A is B(α)-complete for [[·]] iff α covers [[·]]A and [[φ]]A ∼γ α[[φ]], for all
φ ∈ L.

Proof. The first result is a direct translation of Proposition 1, where [[·]]
♯
best =

α ◦ [[·]] ◦ idL, that is [[φ]]♯best = α[[φ]], for φ ∈ L.
The second result follows less directly. In Proposition 2, Clause (i) becomes

φ = φ′ implies [[φ]] = [[φ′]], so only Clause (ii) remains: show α[[φ]] = [[φ]]A iff α

covers [[·]]
A

and [[φ]]
A ∼γ α[[φ]]. The if-part is immediate; for the only-if-part,

α covers [[·]]
A
, because α[[φ]] = [[φ]]

A
implies that α(γ[[φ]]

A
) = α[[φ]] = [[φ]]

A
(cf.

the proof of Prop. 7). This is because all three values must live in the same
equivalence class, and there is exactly one α-image point in the class. Next,
γ[[φ]]

A
= γ(α[[φ]]) by applying γ. 2

Both forms of completeness require the same, best equivalence-class precision
and vary only on the covering properties of α and γ.

Corollary 9.

– If [[·]]A is F-complete for [[·]] and αu covers [[·]]A, then [[·]]A is B-complete.

– If [[·]]A is B-complete for [[·]] and γ covers [[·]], then [[·]]A is F-complete.

– If [[·]]A is F-complete for [[·]] and αo covers [[·]]A, then [[·]]A is O-complete.

– If [[·]]
A

is O-complete for [[·]] and γ covers [[·]], then [[·]]
A

is sound and
F-complete.

The Corollary explains why Ranzato and Tapparo, who work exclusively with
onto α functions, gravitate to proving F-completeness results [23–25].

4 Inductively defined abstract logics

Given [[·]] : L → P(D), we can define [[·]]A : L → P↓(A) to be [[φ]]
A

= αu[[φ]], and
consequently, a |=A φ iff γ(a) ⊆ [[φ]], but this definition is not inductively defined
and is unlikely to be finitely computable. Assuming that L is defined inductively,
we denote its inductive abstract interpretation as [[·]]Aind : L → P↓(A) and define
it as

[[opi(φj)0<j≤ar(i)]]
A
ind = g

♯
i([[φi]]

A
ind)0<i≤ar(i)

where g
♯
i : P↓(A) → P↓(A) is sound for gi : P(D) → P(D).

For example, based on Figure 4, we might define

[[a]]Aind = αu(γ(a))
[[φ1 ∧ φ2]]

A
ind = [[φ1]]

A
ind ∩P↓(A) [[φ2]]

A
ind

[[φ1 ∨ φ2]]
A
ind = [[φ1]]

A
ind ∪P↓(A) [[φ2]]

A
ind

[[[f]φ]]Aind = p̃ref♯ [[φ]]Aind

It is well known that such a [[·]]Aind is sound for [[·]] and also that, for all gi

and g
♯
i , if each g

♯
i is B-complete (respectively, F-complete) for gi, then [[·]]Aind is

B-complete (F-complete) for [[·]]. Because the fixed-point operators are well
behaved, we can easily add recursively defined operators to the logic [11, 25].

For a logic with operators, opi, and interpretations, gi, we define each g
♯
i best =

αu ◦ gi ◦ γar(i) : P↓(A)ar(i) → P↓(A) so that

[[opi(φj)0<j≤ar(i)]]
A
best = g

♯
i best([[φj]]

A
best)0<j≤ar(i)

Call this inductively defined interpretation, [[·]]Abest.

Corollary 10. [[·]]Abest is F-complete for [[·]] iff γ covers [[·]].

Corollary 11. If γ covers [[·]], then [[·]]Abest is B-complete for [[·]].

So, there is one crucial abstract interpretation where F-completeness implies B-
completeness. No dual result is known where B-completeness implies F-completeness.
Indeed, it is always the case that αu covers [[·]]Abest, so there is no relation between

the B-completeness of [[·]]Abest and αu-covering.

5 Applications

5.1 L = A

A standard static analysis computes on A-values and also uses them as the
assertions of a correctness or transformation logic.

Given C〈α, γ〉A, use the Galois connection’s internal logic: L = A, and c |= a

iff c ⊆ γ(a). Although the abstract judgement, a′ |=A a iff γ(a′) ⊆ γ(a), would
be best, one typically settles for its computable variant, a′ |=A a iff a′ ⊑ a, that

is, [[a]]
A

= ↓a. This makes [[·]]
A

F(γ)-complete (and sound!) for [[·]]. But [[·]]
A

might not be O-complete nor B-complete:

Proposition 12. For all a ∈ A, αo(γ(a)) ⊆ ↓a ⊆ αu(γ(a)). But when α is
onto, the second inclusion is an equality.

Proof. The two subset inclusions hold because γ(a) = γ(↓a). For the equality, we
note that αu(γ(a)) = {a′ | γ(a′) ⊆ γ(a)}, and we must prove that γ(a′) ⊆ γ(a)
implies a′ ⊑ a. But α(γ(a′)) ⊑ α(γ(a)), and since α is onto, α(γ(a′)) = a′

(similarly for a). 2

Say that f(c0) |= ap holds, and we try to show this by validating f
♯
best(a0)) |=A

ap, where a0 = α(c0), but we fail. Since f
♯
best(a0) ⊑ ap iff f(γ(a0)) ⊆ γ(ap), we

must adjust either ap or a0; see Figure 3(a).
Perhaps we “weaken” ap by making f(γ(a0)) itself into a new canonical

element, i.e., A gets the new element, a′
p, such that γ(a′

p) = f(γ(a0)). This makes

f
♯
best(a0) |=A a′

p hold as well as f
♯
best(a0) |=A ap ⊔ a′p. This is an F-refinement

step; see Figure 3(b).
Or we “strengthen” a0 to a new element, a1: Let c′ be a maximal element

from the set, f−1[γ(ap)]α ∩ [γ(a0)]α and define γ(a1) = c′. Now, α(c0) = a1, and

f
♯
best(a1) |=

A ap holds. This is a B-refinement step; see Figure 3(c).

5.2 Partition domains

An abstract domain used in model checking is the partition domain [3, 23, 24]:
Let D and A be discretely ordered sets, and let δ : D → A be an onto function;
δ defines the equivalence relation, c ∼δ c′ iff δ(c) = δ(c′), and it partitions D,
where A are the partition names. Define γ : A → P(D) as γ(a) = δ−1(a). There
is no Galois connection. The logic looks like Figure 4 but includes negation:

[[¬φ]] = ∼ [[φ]]

(∼ is set complement.) As usual, {c} |= φ iff c ∈ [[φ]].
From γ, we define γ, αo, and αu. Since P(A) is a Boolean lattice and γ is

1-1, we have that γ preserves ∪, ∩, and ∼. In addition, [[·]]A, defined as

[[a]]
A

= αu(γ(a))

[[¬φ]]A = ∼ [[φ]]A
[[φ1 ∧ φ2]]

A
= [[φ1]]

A ∩ [[φ2]]
A

[[φ1 ∨ φ2]]
A = [[φ1]]

A ∪ [[φ2]]
A

is F(γ)-complete and equals [[·]]Abest. Since both αu and αo cover [[·]]A, the logic
is also B- and O-complete.

The usual application of a partition domain is to model checking, and the
usual model-checking logic includes the modality, [f]φ, for f : D → P(D) (cf.
Figure 4), which is abstracted by a sound f ♯ : A → P(A) as follows:

[[[f]φ]]
A

= p̃re
f

♯

best

[[φ]]
A
, where p̃ref♯(T) = {a′ | f ♯(a′) ⊆ T}.

We know that p̃re
f

♯

best

= (p̃ref)♯
best = αu ◦ p̃ref ◦ γ [29]. The definition is sound

but might not be complete.
The following holds for all abstract domains (not just partition domains):

Theorem 13. For p̃ref : P(D) → P(D), f : D → P(D), and f∗ : P(D) →
P(D), defined as f∗(S) = ∪c∈Sf(c),

1. p̃ref is F(γ)-complete iff f∗ is B(αo)-complete.
2. p̃ref is B(αu)-complete iff f∗ is F(γ)-complete.

Proof. We first prove 2. For the if-part, assume f∗ is F-complete; we must
show αu(p̃ref (S)) ⊆ (αu ◦ p̃ref ◦ γ)(αu(S)). When we expand the definitions
in the subset inclusion, we learn that we must assume f∗[γ(a)] ⊆ S and prove
f∗(γ(a)) ⊆ γ(αu(S)). The assumption expands to γ(αu(f∗(γ(a))) ⊆ γ(αu(S)).
Now, its left-hand side equals γ(αu(f∗(γ(↓a)))). Since f∗ is F-complete, this
equals f∗(γ(a)) and gives the result.

For the only-if-part, we must show for all S ∈ γ[P↓(A)] that f∗(S) ∈
γ[P↓(A)], that is, f∗(γ(αu(S))) ⊆ (γ ◦αu ◦ f∗)(γ(αu(S))). Now, f∗(γ(αu(S))) =
f∗(∪a∈αu(S)). By the B-completeness of p̃ref , which can be stated as, for all S,
f∗(γ(a)) ⊆ S iff f∗(γ(a)) ⊆ γ(αu(S)), we can instantiate S = f∗(γ(αu(S))),
and we have that f∗(γ(a)) ⊆ (γ ◦ αu)(f∗(γ(αu(S)))); the left-hand side equals
∪a∈αu(S)f

∗(γ(a)). Since f∗ preserves unions, the result follows.

We next prove 1. For the if-part, we must show that p̃ref (γ(T)) = (γ ◦ αu ◦
p̃ref ◦ γ)(T). When we expand the definitions in the equation, we discover that
we must prove ∪{S | f∗(S) ⊆ γ(T)} ⊆ ∪{γ(a) | f∗(γ(a)) ⊆ γ(T)}. (Soundness
gives us the ⊇ inclusion.)

So, for arbitrary S0, assume that f∗(S0) ⊆ γ(T). Since f∗ is B-complete,
we have that f∗(S0) ∼αo

f∗(γ(αo(S0))). We also have S0 ⊆ γ(αo(S0)). Since
f∗(S0) ⊆ γ(T), and the latter is a maximal point in its equivalence class, we
have that f∗(γ(αo(S0))) ⊆ γ(T) as well, implying that γ(αo(S0)) lies in the goal
set, {γ(a) | f∗(γ(a)) ⊆ γ(T)}.

For the only-if-part, we must show αo(f
∗(γ(αo(S)))) ⊆ αo(f

∗(S)) for all S ∈
P(D). First consider the set, GS = p̃ref (γ(αo(f

∗(S)))); we have that S ⊆ GS ,
because f∗(S) ⊆ γ(αo(f

∗(S))) and p̃ref (f∗(S)) ⊇ S. Since p̃ref is F-complete,
we have GS ∈ γ[P↓(A)], and we also have γ(αo(S)) ⊆ GS .

This implies f∗(γ(αo(S))) ⊆ γ(αo(f
∗(S))), by the definition of p̃ref . We

apply αo and obtain (αo ◦ f∗ ◦ γ ◦ αo)(S) ⊆ (αo ◦ γ ◦ αo ◦ f∗)(S) = αo(f
∗(S)),

which is the result. 2

Giacobazzi and Quintarelli [16] (and Mastroeni [20]) show how to apply the F-
complete shell construction to additive (continuous) f to achieve Item 1 above.

Recall that pref (S) = ∼ p̃ref (∼S) [19]; When pref is not F-complete, Ran-
zato and Tapparo apply the F-complete-shell construction to pref [23]. The
resulting abstract domain is still partitioned and its γ preserves ∼, so the equiv-
alence, ∼ pref (∼S) = p̃ref (S), yields F-completeness for p̃ref , too. γ is 1-1 as
well (it preserves ∼), meaning αo is onto, giving B-completeness.

5.3 Predicate abstraction

When an abstract domain is generated from a set, A, of assertions for variables
within a program (e.g., x>y, ¬(y=0), ...), it is called a predicate abstraction [1,
2, 18, 27]. The resulting static analysis annotates program points with sets of
predicates that hold true at the program points.

We begin with the concrete state set, D, predicate set, A, and judgement
relation, |= ⊆ D × A. Think of A as a “subbasis” for domain generation. We
generate the Galois connection, P(D)〈α, γ〉P(A)op, where α(S) = {a | S |= a}
(it maps S to all the predicates that hold true for S) and γ(T) = ∩a∈T {c | c |=
a}. (To understand γ, read T ∈ P(A)op as

∧
a∈T a.) The Galois connection is

overapproximating, so f ♯ : P(A)op → P(A)op computes sound postconditions
for f∗ : P(D) → P(D). The logical assertions are conjunctions,

L ∋ φ ::=
∧

T , where T ∈ P(A)

interpreted by P(A)’s internal logic: for c ∈ D, {c} |=
∧

T iff c ∈ γ(T).
The definition of the abstract judgement is crucial: if it is merely T |=A

∧
T ′

iff T ′ ⊆ T , then we have F(γ)-completeness but likely lose B(αu)-completeness,
because it is possible that a1 6= a2 and γ{a1} ⊆ γ{a2}, e.g., γ{x>2} ⊆ γ{x>0}
but x>2 6|=A x>0. For this reason, implementations typically employ theorem
provers that enforce T |=A φ iff T ⇒ φ (that is, the prover uses T to deduce φ).

A second situation where completeness can fail is the calculation of impre-
cise postconditions. Suppose that we fail to prove f ♯(a0) |= φ. As we know
from Section 5.1, we can either weaken φ or strengthen a0. The latter is usu-
ally chosen, and we know that the B-complete refinement of f∗ corresponds to
the F-complete refinement of p̃ref (Theorem 13 and [16]). This is the standard
predicate-abstraction refinement strategy [2, 27].

Disjunctive predicate abstraction: We can add disjunction to the predicate-
abstraction domain by constructing the disjunctive completion of P(A)op. The
elements of P↓(P(A)op) are downclosed sets of sets of A-elements. Read such a
T ∈ P↓(P(A)op) as the disjunctive normal form (DNF),

∨
T∈T

(
∧

a∈T a).
This coincides with the definition of γ : P↓(P(A)op) → P(D), which is

γ(T) =
⋃

T∈T γ(T) =
⋃

T∈T (
⋂

a∈T γ(a)). Since the sets are downclosed (here,
closed under superset), both union (disjunction) and intersection (conjunction)
operations automatically normalize to DNF.11

Disjunctive completion gives us the Galois connection, P(D)〈αo, γ〉P↓(P(A)op),
completing the “basis” elements from P(A)op to DNF elements [2]. The Galois
connection supports this logic and its two interpretations:

φ ::= a |
∧

i>0 φi |
∨

i>0 φi

[[a]] = γ{a}
[[
∧

i≥0 φi]] =
⋂

i≥0 [[φi]]

[[
∨

i≥0 φi]] =
⋃

i≥0 [[φi]]

[[a]]
A

= {T ∈ P(A)op | T ⇒ a}

[[
∧

i>0 φi]]
A

=
⋂

i>0 [[φi]]
A

[[
∨

i>0 φi]]
A =

⋃
i>0 [[φi]]

A

We have F(γ)-completeness, but B(αu)-completeness typically fails for disjunc-
tion, for the reasons given above.

6 Related Work

As noted in the Introduction, Galois-connection-based functional completeness
was defined by Cousot [6] and Cousot and Cousot [8]. Mycroft [22] was per-
haps the first to use B-completeness to define logical completeness; at the same
time, Clarke, Grumberg, and Long [4] defined “exactness,” stated in terms of
homomorphisms, h : D → A: h(c) |=A φ iff c |= φ, which is strong preservation.

Abstractions of state-transition systems led both Cleaveland, Iyer, and Yanke-
vich [5] and Dams, Gerth, and Grumberg [13] to define an “optimal” abstract
transition system as one that proves the most sound logical properties of a
concrete system. Their definitions are not Galois-connection based but use the
definition of strong preservation and yield strong preservation when Galois-
connections are present.

Cousot and Cousot [10] formalized B-functional completeness and showed
that it is preserved in inductively defined interpretations; they applied the results

11 An implementation of DNF will likely employ the normalization law, S ∧ (
∨

i
Ti) ⇔∨

i
(S ∧ Ti), instead of using downclosed sets of sets.

to proving logical B-completeness of a family of temporal logics and showing that
B-completeness is preserved by fixed-point operators [11].

Giacobazzi, Ranzato, and Scozzari [17] defined an iterative method for abstract-
domain completion so that transfer functions are B-complete. Giacobazzi and
Quintarelli [16] introduced F-completeness, defined its completion method, and
used it to formalize counter-example-guided-abstraction refinement [3].

A thorough study of logical F-completeness (strong preservation) has been
undertaken by Ranzato and Tapparo: for the class of partition domains, they
showed that the minimal refinement of a partition domain to possess all sound
properties of its corresponding concrete domain is iterative F-completion [23].
They also showed that the Paige-Tarjan algorithm for constructing a minimal
bisimular abstract-transition system is an instance of F-completion [24]. Finally,
they formalized strong preservation as logical F-completeness and showed that
F-completeness is preserved by fixed-point operators [25]. The present paper was
inspired by their work.

Finally, in his thesis [12], Dams proposed yet one more variant of logical
completeness — Dams’s strong preservation is defined as follows:

for all c ∈ D and a ∈ A, c ∈ γ(a) iff (for all φ, a |=A φ iff c |= φ).

For sets A and D, onto δ : D → A, and γ(a) = δ−1, Dams’s strong preservation
implies both strong and best preservation.

Acknowledgements: I am grateful for discussions with Dennis Dams, Roberto
Giacobazzi, Michael Huth, Isabella Mastroeni, Kedar Namjoshi, Francesco Ran-
zato, and Francesco Tapparo. Anindya Banerjee and the referees gave helpful
suggestions for improving the paper.

References

1. T. Ball, A. Podelski, and S.K. Rajamani. Boolean and cartesian abstractions for
model checking C programs. In TACAS’01, pages 268–283. LNCS 2031, 2001.

2. T. Ball, A. Podelski, and S.K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In TACAS’02, pages 158–172. Springer
LNCS 2280, 2002.

3. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV’00, pages 154–169. Springer LNCS 1855, 2000.

4. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

5. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model
checking. In Proc. SAS’95. Springer LNCS 983, 1995.

6. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. PhD
thesis, University of Grenoble, 1978.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. POPL, pages 238–252, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. 6th ACM Symp. POPL, pages 269–282, 1979.

9. P. Cousot and R. Cousot. Higher-order abstract interpretation. In Proceedings
IEEE Int. Conf. Computer Lang., 1994.

10. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game theoretic
form. In Proc. CAV’95, pages 293–308. Springer LNCS 939, 1995.

11. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proc. 27th ACM
Symp. on Principles of Programming Languages, pages 12–25. ACM Press, 2000.

12. D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

13. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Prog. Lang. Systems, 19:253–291, 1997.

14. D. Dams and K. Namjoshi. The existence of finite abstractions for branching time
model checking. In Proc. IEEE Symp. LICS’04, pages 335–344, 2004.

15. B.A. Davey and H.A Priestley. Introduction to Lattices and Order, 2d ed. Cam-
bridge Univ. Press, 2002.

16. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refine-
ments in abstract model checking. In SAS’01, pages 356–373. LNCS 2126, 2001.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. ACM, 47:361–416, 2000.

18. S. Graf and H. Saidi. Verifying invariants using theorem proving. In Proc. CAV’96,
Springer LNCS 1102, 1996.

19. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for verification of concurrent systems. Formal Methods in System
Design, 6:1–36, 1995.

20. I. Mastroeni. Abstract non-interference: an abstract-intepretation-based approach
to secure information flow. PhD thesis, University of Verona, IT, 2006.

21. A. Melton, G. Strecker, and D. Schmidt. Galois connections and computer science
applications. In Category Theory and Computer Programming, pages 299–312.
Springer LNCS 240, 1985.

22. A. Mycroft. Completeness and predicate-based abstract interpretation. In Proc.
ACM Symp. Partial Evaluation (PEPM’93), pages 179–185, 1993.

23. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract in-
terpretation. In Proc. ESOP, LNCS 2986, pages 18–32. Springer, 2004.

24. F. Ranzato and F. Tapparo. An abstract interpretation-based refinement algorithm
for strong preservation. In TACAS’05, LNCS 3440, pages 140–156. Springer, 2005.

25. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based op-
erators by abstract interpretation. In Proc. Conf. VMCAI’06, LNCS 3855, pages
332–347. Springer Verlag, 2006.

26. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24:217–298, 2002.

27. H. Saidi. Model checking guided abstraction and analysis. In Proc. SAS’00, pages
377–396. Springer LNCS 1824, 2000.

28. D.A. Schmidt. Comparing completeness properties of static analyses and their
logics. Technical Report 06-03, Kansas State University, 2006.

29. D.A. Schmidt. Underapproximating predicate transformers. In Proc. SAS’06,
LNCS. Springer, 2006.

