Comparing completeness properties of static analyses and their logics

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Abstract interpretation: computing on properties

<pre>readInt(x)</pre>		readSign(x)
if x>0 :	A: abstractly interpret domain Int by Sign = {neg, zero, pos, any}:	<pre>if isPos(x):</pre>
<pre>x:= pred(x)</pre>		$x := pred^{\sharp}(x)$
x := succ(x)		$x := succ^{\sharp}(x)$
writeInt(x)		writeSign(x)
Q: Is output pos?		(II)

 $succ^{\sharp}(pos) = pos$ $pred^{\sharp}(neg) = neg$ $succ^{\sharp}(zero) = pos$ $pred^{\sharp}(zero) = neg$ where $succ^{\sharp}(neg) = any$ and $succ^{\sharp}(any) = any$ $pred^{\sharp}(pos) = any$ $pred^{\sharp}(any) = any$ $pred^{\sharp}(any) = any$

To answer the question, calculate the static analysis:

 $\{zero \mapsto pos, neg \mapsto any, pos \mapsto any, any \mapsto any\}$ The Question is decided only for zero — the static analysis is *sound* but *incomplete*.

Let Sign' = {neg, ≤ 0 , zero, ≥ 0 , pos, any}

readInt(x)
if x>0 :
 x:= pred(x)
x:= succ(x)
writeInt(x)

succ[‡](pos) = pos succ[‡](≥ 0) = pos (-: succ[‡](zero) = pos where succ[‡](≤ 0) = any succ[‡](neg) = ≤ 0 (-: succ[‡](any) = any readSign(x)
if isPos(x):
 x:= pred[#](x)
 x:= succ[#](x)
 writeSign(x)

pred[#](neg) = neg pred[#](≤ 0) = neg (-: pred[#](zero) = neg and pred[#](≥ 0) = any pred[#](pos) = ≥ 0 (-: pred[#](any) = any

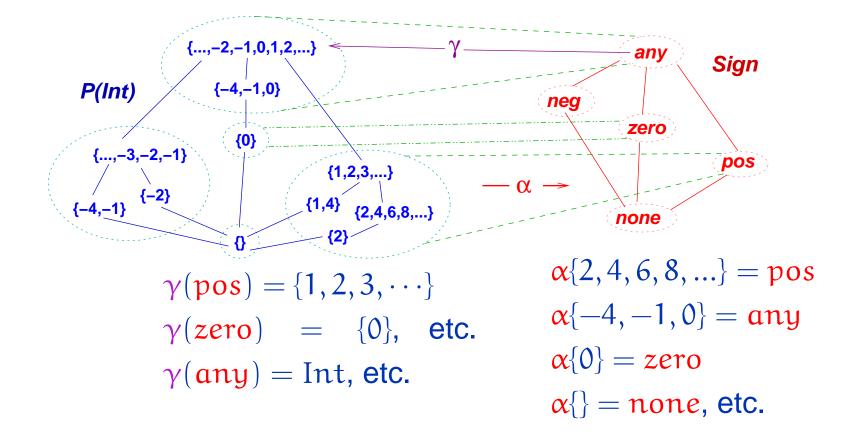
The static analysis on Sign':

neg \mapsto neg (-: $\leq 0 \mapsto$ anyzero \mapsto pospos \mapsto pos (-: any \mapsto any $\geq 0 \mapsto$ any)-:

Summary of the talk

- 1. Every static analysis employs an *abstract domain*, and every abstract domain possesses an *internal logic*.
- 2. Abstract state transformers must be *sound*, and perhaps they are *Backwards- Forwards-complete*.
- 3. Most program logics *extend* an internal logic, and their abstractions must be sound.
- There are both over- and underapproximating Galois connections for approximating program logics; these define *F-, B-*, and *O-logical-completeness*.
- 5. The completeness notions are independent (and the independences are significant), but *coverings* are used to relate them.

Concrete data abstracts to (logical) properties



 $(\mathcal{P}(Int), \subseteq) \langle \alpha, \gamma \rangle$ (Sign, \sqsubseteq) is a *Galois connection*: γ interprets the properties, and $\alpha(S) = \Box \{ \alpha \mid \gamma(\alpha) \subseteq S \}$ maps concrete set S to the property that best describes it [CousotCousot77].

We use such structures to do static analysis.

A Galois connection defines an internal logic

For $(PC, \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq), S \in PC$, and $\alpha \in A$, define

 $S \models a \text{ iff } S \subseteq \gamma(a) \text{ iff } \alpha(S) \sqsubseteq a$

Example: For Sign, $\{2, 8\} \models pos$.

A Galois connection defines a logic with conjunction:

 $\phi ::= \mathbf{a} | \phi_1 \Box \phi_2$

because γ preserves \sqcap as \cap (that is, $\gamma(a_1 \sqcap a_2) = \gamma(a_1) \cap \gamma(a_2)$):

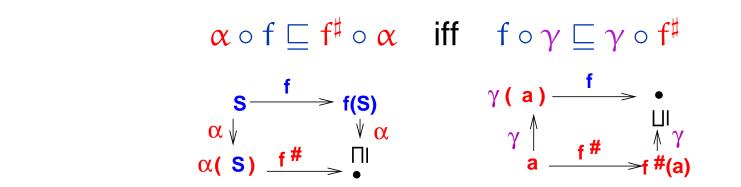
 $S \models a_1 \sqcap a_2$ iff $S \models a_1$ and $S \models a_2$.

Example: In Sign, $\{2,5\} \models pos \sqcap any$.

But the logic for Sign excludes disjunction, e.g., $\{0\} \models any = neg \sqcup pos$, yet $\{0\} \not\models neg$ and $\{0\} \not\models pos$. This is because γ does not preserve \sqcup as \cup .

Abstract transformers compute on properties

For $f : PC \to PC$, $f^{\sharp} : A \to A$ is *sound* iff



 α and γ act as *semi-homomorphisms*; f[#] is a *postcondition transformer*.

Example: For succ : $\mathcal{P}(Int) \rightarrow \mathcal{P}(Int)$, succ $\{0\} = \{1\}$, succ $^{\ddagger}(zero) = pos$.

Consequences: $f(S) \models f^{\sharp}(\alpha(S))$ and $f(\gamma(\alpha)) \models f^{\sharp}(\alpha)$.

For example, $\{0\} \models zero$ and $succ\{0\} \models succ^{\ddagger}(zero) = pos$.

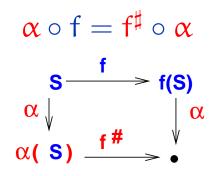
 $f_{best}^{\sharp} = \alpha \circ f \circ \gamma$ is the best — strongest postcondition — transformer in A's internal logic.

(Functional) completeness: from semi-homomorphism to homomorphism

For $f : PC \rightarrow PC$, $f^{\sharp} : A \rightarrow A$:

Backwards(*α***)-completeness**

[Cousots79,GiacobazziJACM00]:



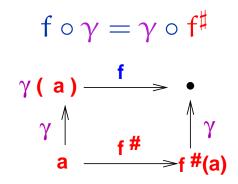
 α is a homomorphism from PC to A — it preserves f as f^{\$\$}.

Corollary: $f^{\sharp}(\alpha(S)) \sqsubseteq \alpha$ iff $f(S) \models \alpha$.

That is, we can *decide* properties of f in A.

Forwards(γ)-completeness

[GiacobazziQuintarelli01]:



 γ is a homomorphism from A to PC — it preserves f^{\sharp} as f.

Corollary: $S \models f^{\sharp}(\alpha)$ iff $S \subseteq f(\gamma(\alpha))$.

That is, f^{\sharp} is a logical connective in A's internal logic (like \sqcap is).

A typical program logic extends A's internal logic

Given Galois connection, $(\mathcal{P}(D), \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq)$, define \mathcal{L} as follows:

 $a \in Prim = A$ (the primitive assertions)

 $\mathcal{L} \ni \varphi ::= \mathbf{a} | \phi_1 \wedge \phi_2 | \phi_1 \vee \phi_2 | [f] \varphi$

The interpretation, $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(D)$, is defined as

$$\begin{split} \llbracket a \rrbracket = \gamma(a) & \llbracket [f] \varphi \rrbracket = \widetilde{pre}_{f} \llbracket \varphi \rrbracket \\ \llbracket \varphi_{1} \land \varphi_{2} \rrbracket = \llbracket \varphi_{1} \rrbracket \cap \llbracket \varphi_{2} \rrbracket & \text{where } \widetilde{pre}_{f}(S) = \{c \in D \mid f(c) \subseteq S\}, \\ \llbracket \varphi_{1} \lor \varphi_{2} \rrbracket = \llbracket \varphi_{1} \rrbracket \cup \llbracket \varphi_{2} \rrbracket & \text{and } f : D \to \mathcal{P}(D) \text{ is a state-transition} \\ & \text{function} \end{split}$$

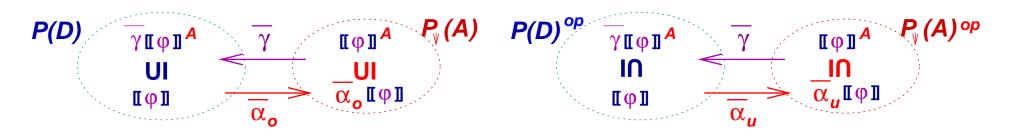
Say that $S \models \phi$ iff $S \subseteq \llbracket \phi \rrbracket$.

 $\phi_1 \lor \phi_2$ and [f] ϕ might not fall in A's internal logic. (E.g., for Sign, there is no \cup : Sign \times Sign \rightarrow Sign such that $\gamma(\text{neg}\cup\text{pos}) = [\phi_1 \lor \phi_2]$.)

Q: How do we approximate $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(D)$? A: Define $\llbracket \cdot \rrbracket^{A} : \mathcal{L} \to \mathcal{P}_{\downarrow}(A)$

Given $(\mathcal{P}(D), \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq)$, we have *two* relevant Galois connections between $\mathcal{P}(D)$ and $\mathcal{P}_{\downarrow}(A)$:

Define $\overline{\gamma}(\mathsf{T}) = \bigcup_{\mathfrak{a} \in \mathsf{T}} \gamma(\mathfrak{a}).$



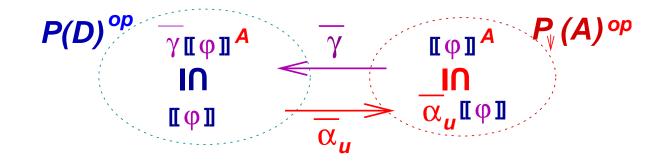
Overapproximating abstraction: $\overline{\alpha_{o}}(S) = \bigcap\{T \mid S \subseteq \overline{\gamma}(T)\}\$ $= \bigcup\{\alpha\{c\} \mid c \in S\}$ where

 $\downarrow T = \{ a \mid exists a' \in T, a \sqsubseteq a' \}.$

Underapproximating abstraction: $\overline{\alpha_{u}}(S) = \bigcup \{T \mid \overline{\gamma}(T) \subseteq S\}$ $= \{a \mid \gamma(a) \subseteq S\}$ where $(P, \sqsubseteq_{P})^{op} \text{ is } (P, \sqsupseteq_{P}).$

Abstracted, underapproximated logic

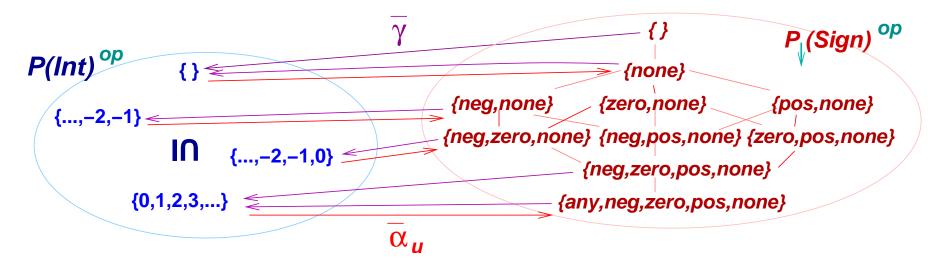
This is the best inductively defined underapproximation:



$$\begin{split} \llbracket \mathbf{a} \rrbracket_{\text{best}}^{\mathbf{A}} &= \overline{\alpha_{u}}(\gamma(\mathbf{a})) \\ \llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{\text{best}}^{\mathbf{A}} &= \llbracket \phi_{1} \rrbracket_{\text{best}}^{\mathbf{A}} (\overline{\alpha_{u}} \circ \cap \circ \overline{\gamma}^{2}) \llbracket \phi_{2} \rrbracket_{\text{best}}^{\mathbf{A}} \\ \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{\text{best}}^{\mathbf{A}} &= \llbracket \phi_{1} \rrbracket_{\text{best}}^{\mathbf{A}} (\overline{\alpha_{u}} \circ \cup \circ \overline{\gamma}^{2}) \llbracket \phi_{2} \rrbracket_{\text{best}}^{\mathbf{A}} \\ \llbracket \llbracket f \rrbracket \phi \rrbracket_{\text{best}}^{\mathbf{A}} &= (\overline{\alpha_{u}} \circ \widetilde{\text{pre}}_{\mathbf{f}^{\sharp}} \circ \overline{\gamma}) \llbracket \phi \rrbracket_{\text{best}}^{\mathbf{A}} \end{split}$$

But it is not finitely computable in A....

Here is a less precise, but sound and finitely computable underapproximation for Sign:



$$\begin{bmatrix} a \end{bmatrix}^{\text{Sign}} = \bigcup \{a\} = \{a' \mid a' \sqsubseteq a\}$$
$$\begin{bmatrix} \phi_1 \land \phi_2 \end{bmatrix}^{\text{Sign}} = \llbracket \phi_1 \rrbracket^{\text{Sign}} \cap \llbracket \phi_2 \rrbracket^{\text{Sign}}$$
$$\begin{bmatrix} \phi_1 \lor \phi_2 \rrbracket^{\text{Sign}} = \llbracket \phi_1 \rrbracket^{\text{Sign}} \cup \llbracket \phi_2 \rrbracket^{\text{Sign}}$$
$$\begin{bmatrix} [f] \phi \rrbracket^{\text{Sign}} = \widetilde{\text{pre}}_{f^{\sharp}} \llbracket \phi \rrbracket^{\text{A}}$$

We have soundness: $\overline{\alpha_{u}}[\![\phi]\!] \supseteq [\![\phi]\!]_{\text{best}}^{\text{Sign}} \supseteq [\![\phi]\!]_{\text{best}}^{\text{Sign}}$, for all ϕ .

Logical soundness and completeness

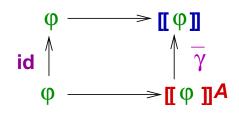
 $\begin{bmatrix} \cdot \end{bmatrix}^{A} : \mathcal{L} \to \mathcal{P}_{\downarrow}(\text{Sign}) \text{ is sound for } \llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(D) \text{ iff}$ $\overline{\gamma} \llbracket \varphi \rrbracket^{A} \subseteq \llbracket \varphi \rrbracket \quad \text{iff} \quad \llbracket \varphi \rrbracket^{A} \subseteq \overline{\alpha_{u}} \llbracket \varphi \rrbracket$ $\stackrel{\varphi \longrightarrow \llbracket \varphi \rrbracket}{\underset{\substack{id \\ \varphi \longrightarrow \llbracket \varphi \rrbracket^{A}}} \stackrel{\varphi \longrightarrow \llbracket \varphi \rrbracket}{\underset{\substack{id \\ \varphi \longrightarrow \llbracket \varphi \rrbracket^{A}}}} \stackrel{\varphi \longrightarrow \llbracket \varphi \rrbracket}{\underset{\substack{id \\ \varphi \longrightarrow \llbracket \varphi \rrbracket^{A}}}} \stackrel{\varphi \longrightarrow \llbracket \varphi \rrbracket$

There are two forms of *completeness* of $[\cdot]^A$ for $[\cdot]^A$

Forwards-completeness

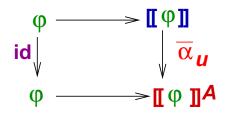
[RanzatoTapparo06]:

 $\overline{\boldsymbol{\gamma}}[\![\boldsymbol{\varphi}]\!]^{\mathsf{A}} = [\![\boldsymbol{\varphi}]\!]$



Backwards-completeness [CousotCousot00] :

$$\llbracket \phi \rrbracket^{\mathcal{A}} = \overline{\alpha_{u}} \llbracket \phi \rrbracket$$



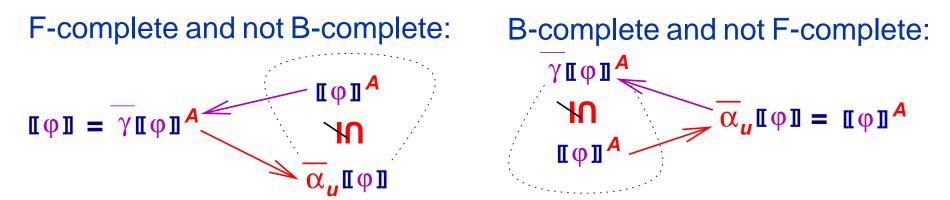
Strong, best, and lower preservation

- ♦ *best preservation:* for all $\phi \in \mathcal{L}$ and $\mathsf{T} \in \mathcal{P}_{\downarrow}(\mathsf{A})$, $\mathsf{T} \subseteq \llbracket \phi \rrbracket^{\mathsf{A}}$ iff $\overline{\gamma}(\mathsf{T}) \subseteq \llbracket \phi \rrbracket$.
- ♦ strong preservation: for all $\phi \in \mathcal{L}$ and S ∈ $\mathcal{P}(D)$, S ⊆ $\llbracket \phi \rrbracket$ iff $\overline{\alpha_o}(S) \subseteq \llbracket \phi \rrbracket^A$.
- ♦ *lower preservation:* for all $\phi \in \mathcal{L}$ and $S \in \mathcal{P}(D)$, $\llbracket \phi \rrbracket \subseteq S$ iff $\llbracket \phi \rrbracket^A \subseteq \overline{\alpha_u}(S)$.

Theorem:

- B-complete iff best preservation
- F-complete iff strong preservation iff lower preservation

The two forms of completeness are independent



Absence of B-completeness: we fail to validate $any \in [neg \lor zero \lor pos]^{Sign}$. We must use a *focus* operation: $focus(any) = \{neg, zero, pos\}$ and validate $a \in [neg \lor zero \lor pos]^{Sign}$, for all $a \in focus(any)$ [Dams04,Sagiv02].

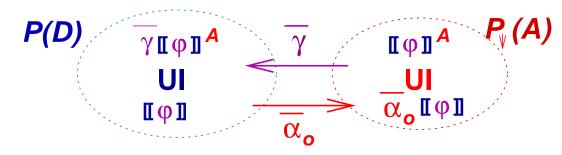
Absence of *F*-completeness: Say that $eq1 \in \mathcal{L}$ and $[eq1] = \{1\}$, making $[eq1]^{Sign} = \{none\}$. Then, a static analysis of

x:= 1; if x=1 then safe() else error()

announces error() is reachable. *Counterexample guided abstraction refinement (CEGAR)* repairs the problem by adding new elements to Sign [Ball02,Clarke00,Saidi00].

O-completeness: *subset-inclusion completeness*

For $\mathcal{P}(\mathsf{D})\langle \overline{\alpha_o}, \overline{\gamma} \rangle \mathcal{P}_{\downarrow}(\mathsf{A})$,



the inclusion,

$\overline{\boldsymbol{\alpha}_{o}}[\![\boldsymbol{\varphi}]\!] \subseteq [\![\boldsymbol{\varphi}]\!]^{\mathsf{A}}$

does not ensure soundness. Nonetheless, we can define one more variant of completeness (which *is* sound):

 $\llbracket \cdot \rrbracket^{\mathsf{A}}$ is $B(\overline{\alpha_{\mathsf{o}}})$ -complete for $\llbracket \cdot \rrbracket$ iff $\overline{\alpha_{\mathsf{o}}}\llbracket \varphi \rrbracket = \llbracket \varphi \rrbracket^{\mathsf{A}}$.

We use *O-complete* as a synonym for $B(\overline{\alpha_o})$ -complete.

With coverings, we make many connections

For $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(D)$ and $\overline{\gamma} : \mathbb{Q} \to \mathcal{P}(D)$, $\overline{\gamma} \text{ covers } \llbracket \cdot \rrbracket$ iff for all $\phi \in \mathcal{L}$, $\llbracket \phi \rrbracket \in \overline{\gamma}[\mathbb{Q}]$. For $\llbracket \cdot \rrbracket^{\mathsf{A}} : \mathcal{L} \to \mathcal{P}_{\downarrow}(\mathbb{A})$ and $\overline{\alpha} : \mathbb{P} \to \mathcal{P}_{\downarrow}(\mathbb{A})$, $\overline{\alpha} \text{ covers } \llbracket \cdot \rrbracket^{\mathsf{A}}$ iff for all $\phi \in \mathcal{L}$, $\llbracket \phi \rrbracket^{\mathsf{A}} \in \overline{\alpha}[\mathbb{P}]$. **Theorem:**

- ♦ If [[·]^A is F-complete for [[·]] and α_u covers [[·]^A, then [[·]^A is B-complete.
- ♦ If [[·]]^A is B-complete for [[·]] and y
 covers [[·]], then [[·]]^A is F-complete.
- If $[\cdot]^A$ is F-complete for $[\cdot]$ and $\overline{\alpha_o}$ covers $[\cdot]^A$, then $[\cdot]^A$ is O-complete.
- ♦ If [[·]]^A is O-complete for [[·]] and y
 covers [[·]], then [[·]]^A is sound as well as F-complete.

An application: partition domains

Let D and A be discretely ordered sets, and let $\delta : D \to A$ be an onto function, defining the *partition*, $c \sim_{\delta} c'$ iff $\delta(c) = \delta(c')$. Define $\gamma : A \to \mathcal{P}(D)$ as $\gamma(a) = \delta^{-1}(a)$. We have this propositional logic:

$\llbracket a \rrbracket = \gamma(a)$	$\llbracket \phi_1 \land \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cap \llbracket \phi_2 \rrbracket$
$\llbracket \neg \varphi \rrbracket = \sim \llbracket \varphi \rrbracket$	$\llbracket \phi_1 \lor \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket$

The abstract logic,

 $\llbracket \mathbf{a} \rrbracket^{A} = \overline{\alpha_{u}}(\gamma(\mathbf{a})) \qquad \llbracket \phi_{1} \land \phi_{2} \rrbracket^{A} = \llbracket \phi_{1} \rrbracket^{A} \cap \llbracket \phi_{2} \rrbracket^{A}$ $\llbracket \neg \phi \rrbracket^{A} = \sim \llbracket \phi \rrbracket^{A} \qquad \llbracket \phi_{1} \lor \phi_{2} \rrbracket^{A} = \llbracket \phi_{1} \rrbracket^{A} \cup \llbracket \phi_{2} \rrbracket^{A}$

is F-complete and equals $[\cdot]_{best}^{A}$. Since both $\overline{\alpha_{u}}$ and $\overline{\alpha_{o}}$ cover $[\cdot]^{A}$, the logic is also B- and O-complete.

The usual application of a partition domain is to model checking, whose logic includes the modality, $[f]\phi$, for $f : D \to \mathcal{P}(D)$, which is abstracted by a sound $f^{\sharp} : A \to \mathcal{P}(A)$ as follows:

$$\llbracket [f] \varphi \rrbracket^{A} = \widetilde{\text{pre}}_{f_{\text{best}}^{\sharp}} \llbracket \varphi \rrbracket^{A}, \text{ where } \widetilde{\text{pre}}_{f^{\sharp}}(\mathsf{T}) = \{ \mathfrak{a}' \mid f^{\sharp}(\mathfrak{a}') \subseteq \mathsf{T} \}.$$

We know that $\widetilde{pre}_{f_{best}^{\sharp}} = (\widetilde{pre}_{f})^{\sharp}_{best} = \overline{\alpha_{u}} \circ \widetilde{pre}_{f} \circ \overline{\gamma}$ [Schmidt06]. The definition is sound but might not be complete — *this depends on* f:

Theorem: For $\widetilde{pre}_f : \mathcal{P}(D) \to \mathcal{P}(D)$, $f : D \to \mathcal{P}(D)$, and $f^* : \mathcal{P}(D) \to \mathcal{P}(D)$, defined as $f^*(S) = \bigcup_{c \in S} f(c)$,

- 1. $\widetilde{\text{pre}}_{f}$ is $F(\overline{\gamma})$ -complete iff f^* is $B(\overline{\alpha_o})$ -complete.
- 2. $\widetilde{\text{pre}}_{f}$ is B($\overline{\alpha_{u}}$)-complete iff f^{*} is F($\overline{\gamma}$)-complete.

Summary

- 1. Every static analysis employs an *abstract domain*, and every abstract domain possesses an *internal logic*.
- 2. Abstract state transformers must be *sound*, and perhaps they are *Backwards- Forwards-complete*.
- 3. Most program logics *extend* an internal logic, and their abstractions must be sound.
- There are both over- and underapproximating Galois connections for approximating program logics; these define *F-, B-*, and *O-logical-completeness*.
- 5. The completeness notions are independent (and the independences are significant), but *coverings* are used to relate them.

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. E.M. Clarke, et al. Counterexample-guided abstraction refinement. CAV'00.
- 2. P. Cousot and R.Cousot. Systematic design of program analysis frameworks. POPL'79.
- 3. P. Cousot and R.Cousot. Temporal abstract interpretation. POPL'00.
- 4. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. *J. ACM* 47(2000).
- 5. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model checking. SAS'01.
- 6. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based operators by abstract interpretation. VMCAI'06.
- 7. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. *ACM TOPLAS* 24(2002).
- 8. D.A. Schmidt. Comparing completeness properties of static analyses and their logics. APLAS'06.