
Comparing
completeness properties
of static analyses and their logics

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Abstract interpretation: computing on properties

readInt(x)

if x>0 :

x:= pred(x)

x:= succ(x)

writeInt(x)

Q: Is output pos?

A: abstractly interpret
domain Int by
Sign = {neg, zero, pos, any}:

readSign(x)

if isPos(x):

x:= pred♯(x)

x:= succ♯(x)

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any

succ♯(any) = any

and

pred♯(neg) = neg

pred♯(zero) = neg

pred♯(pos) = any

pred♯(any) = any

To answer the question, calculate the static analysis :
{zero 7→ pos, neg 7→ any, pos 7→ any, any 7→ any}

The Question is decided only for zero — the static analysis is sound
but incomplete.

(-: / 2

Let Sign ′ = {neg,≤0, zero,≥0, pos, any}

readInt(x)

if x>0 :

x:= pred(x)

x:= succ(x)

writeInt(x)

readSign(x)

if isPos(x):

x:= pred♯(x)

x:= succ♯(x)

writeSign(x)

where

succ♯(pos) = pos

succ♯(≥0) = pos (-:

succ♯(zero) = pos

succ♯(≤0) = any

succ♯(neg) = ≤0 (-:

succ♯(any) = any

and

pred♯(neg) = neg

pred♯(≤0) = neg (-:

pred♯(zero) = neg

pred♯(≥0) = any

pred♯(pos) = ≥0 (-:

pred♯(any) = any

The static analysis on Sign ′:

neg 7→ neg (-: ≤0 7→ any zero 7→ pos

pos 7→ pos (-: any 7→ any ≥0 7→ any)-:

(-: / 3

Summary of the talk

1. Every static analysis employs an abstract domain, and
every abstract domain possesses an internal logic.

2. Abstract state transformers must be sound, and perhaps
they are Backwards- Forwards-complete.

3. Most program logics extend an internal logic, and their
abstractions must be sound.

4. There are both over- and underapproximating Galois
connections for approximating program logics; these define
F-, B-, and O-logical-completeness.

5. The completeness notions are independent (and the
independences are significant), but coverings are used to
relate them.

(-: / 4

Concrete data abstracts to (logical) properties

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ(pos) = {1, 2, 3, · · ·}

γ(zero) = {0}, etc.

γ(any) = Int, etc.

α{2, 4, 6, 8, ...} = pos

α{−4,−1, 0} = any

α{0} = zero

α{} = none, etc.

(P(Int),⊆)〈α, γ〉(Sign,⊑) is a Galois connection: γ interprets
the properties, and α(S) = ⊓{a | γ(a) ⊆ S} maps concrete set S

to the property that best describes it [CousotCousot77] .

We use such structures to do static analysis.

(-: / 5

A Galois connection defines an internal logic

For (PC,⊆)〈α, γ〉(A,⊑), S ∈ PC, and a ∈ A, define

S |= a iff S ⊆ γ(a) iff α(S) ⊑ a

Example: For Sign, {2, 8} |= pos.

A Galois connection defines a logic with conjunction:

φ ::= a | φ1⊓φ2

because γ preserves ⊓ as ∩ (that is, γ(a1⊓a2) = γ(a1) ∩ γ(a2)):

S |= a1⊓a2 iff S |= a1 and S |= a2.

Example: In Sign, {2, 5} |= pos ⊓ any.

But the logic for Sign excludes disjunction, e.g.,

{0} |= any = neg ⊔ pos, yet {0} 6|= neg and {0} 6|= pos. This is because

γ does not preserve ⊔ as ∪.

(-: / 6

Abstract transformers compute on properties

For f : PC → PC, f♯ : A → A is sound iff

α ◦ f ⊑ f♯ ◦ α iff f ◦ γ ⊑ γ ◦ f♯

α
f #α (S)

f(S)S
f

α
a

(a)

f #
f #(a)

f

γγ

γ

α and γ act as semi-homomorphisms; f♯ is a postcondition
transformer.

Example: For succ : P(Int) → P(Int), succ{0} = {1},
succ♯(zero) = pos.

Consequences: f(S) |= f♯(α(S)) and f(γ(a)) |= f♯(a).

For example, {0} |= zero and succ{0} |= succ♯(zero) = pos.

f
♯
best = α ◦ f ◦ γ is the best — strongest postcondition — transformer

in A’s internal logic.

(-: / 7

(Functional) completeness:
from semi-homomorphism to homomorphism

For f : PC → PC, f♯ : A → A:

Backwards(α)-completeness
[Cousots79,GiacobazziJACM00] :

α ◦ f = f♯ ◦ α

α
#α (S)

f(S)S
f

α
f

α is a homomorphism from PC to

A — it preserves f as f♯.

Corollary: f♯(α(S)) ⊑ a iff
f(S) |= a.
That is, we can decide proper-

ties of f in A.

Forwards(γ)-completeness
[GiacobazziQuintarelli01] :

f ◦ γ = γ ◦ f♯

γ
#

γ (a)

f #(a)

f

a

γ
f

γ is a homomorphism from A to

PC — it preserves f♯ as f.

Corollary: S |= f♯(a) iff S ⊆

f(γ(a)).
That is, f♯ is a logical connective

in A’s internal logic (like ⊓ is).

(-: / 8

A typical program logic extends A’s internal logic

Given Galois connection, (P(D),⊆)〈α, γ〉(A,⊑), define L as follows:

a ∈ Prim = A (the primitive assertions)

L ∋ φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f]φ

The interpretation, [[·]] : L → P(D), is defined as

[[a]] = γ(a)

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

[[[f]φ]] = p̃ref[[φ]]

where p̃ref(S) = {c ∈ D | f(c) ⊆ S},

and f : D → P(D) is a state-transition

function

Say that S |= φ iff S ⊆ [[φ]].

φ1 ∨ φ2 and [f]φ might not fall in A’s internal logic. (E.g., for Sign,
there is no ∪ : Sign × Sign → Sign such that
γ(neg∪pos) = [[φ1 ∨ φ2]].)

(-: / 9

Q: How do we approximate [[·]] : L → P(D)?
A: Define [[·]]A : L → P↓(A)

Given (P(D),⊆)〈α, γ〉(A,⊑), we have two relevant Galois
connections between P(D) and P↓(A):

Define γ(T) = ∪a∈T γ(a).

γ

αo

P (A)

UI
[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ
UI

P(D)

αo
[[]]ϕ

Overapproximating
abstraction:
αo(S) =

⋂
{T | S ⊆ γ(T)}

= ↓{α{c} | c ∈ S}

where

↓T = {a | exists a ′ ∈ T, a ⊑ a ′}.

γ

αu

opP (A)

UI[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ UI

opP(D)

[[]]ϕαu

Underapproximating
abstraction:
αu(S) =

⋃
{T | γ(T) ⊆ S}

= {a | γ(a) ⊆ S}

where

(P,⊑P)op is (P,⊒P).

(-: / 10

Abstracted, underapproximated logic

This is the best inductively defined underapproximation:

γ

αu

opP (A)

UI[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ UI

opP(D)

[[]]ϕαu

[[a]]
A

best = αu(γ(a))

[[φ1 ∧ φ2]]
A

best = [[φ1]]
A

best(αu ◦ ∩ ◦ γ2)[[φ2]]
A

best

[[φ1 ∨ φ2]]
A

best = [[φ1]]
A

best(αu ◦ ∪ ◦ γ2)[[φ2]]
A

best

[[[f]φ]]
A

best = (αu ◦ p̃ref♯ ◦ γ)[[φ]]
A

best

But it is not finitely computable in A....

(-: / 11

Here is a less precise, but sound and finitely computable
underapproximation for Sign:

γ
{ }

α

{...,−2,−1}

{0,1,2,3,...}

{...,−2,−1,0}

{neg,none}

{neg,zero,none} {neg,pos,none}

{zero,none}

{zero,pos,none}

{pos,none}

{neg,zero,pos,none}

{any,neg,zero,pos,none}

{none}

{ }

UI

u

P(Int) op
P (Sign) op

[[a]]
Sign

= ↓{a} = {a ′ | a ′⊑a}

[[φ1 ∧ φ2]]
Sign

= [[φ1]]
Sign ∩ [[φ2]]

Sign

[[φ1 ∨ φ2]]
Sign

= [[φ1]]
Sign ∪ [[φ2]]

Sign

[[[f]φ]]
Sign

= p̃ref♯[[φ]]
A

We have soundness: αu[[φ]] ⊇ [[φ]]
Sign

best ⊇ [[φ]]
Sign , for all φ.

(-: / 12

Logical soundness and completeness

[[·]]A : L → P↓(Sign) is sound for [[·]] : L → P(D) iff

γ[[φ]]
A ⊆ [[φ]] iff [[φ]]

A ⊆ αu[[φ]]

ϕ []]ϕ

]][[ϕ A

UI
γid

ϕ

[

id

[]]ϕ

]][[ϕ A
UI

α u

ϕ

ϕ [

There are two forms of completeness of [[·]]A for [[·]]:

Forwar ds-completeness
[RanzatoTapparo06] :

γ[[φ]]
A

= [[φ]]

ϕ

][[ϕ A

γ

[[]]ϕ

id

ϕ]

Backwards-completeness
[CousotCousot00] :

[[φ]]
A

= αu[[φ]]

id

[]]ϕ

]][[ϕ A

α u

ϕ

ϕ [

(-: / 13

Strong, best, and lower preservation

F-complete: γ[[φ]]
A

= [[φ]]

ϕ

][[ϕ A

γ

[[]]ϕ

id

ϕ]

B-complete: [[φ]]
A

= αu[[φ]]

id

[]]ϕ

]][[ϕ A

α u

ϕ

ϕ [

� best preservation: for all φ ∈ L and T ∈ P↓(A),
T ⊆ [[φ]]A iff γ(T) ⊆ [[φ]].

� strong preservation: for all φ ∈ L and S ∈ P(D),
S ⊆ [[φ]] iff αo(S) ⊆ [[φ]]A.

� lower preservation: for all φ ∈ L and S ∈ P(D),
[[φ]] ⊆ S iff [[φ]]A ⊆ αu(S).

Theorem:

� B-complete iff best preservation

� F-complete iff strong preservation iff lower preservation

(-: / 14

The two forms of completeness are independent

F-complete and not B-complete:

UI

[]]ϕαu

[[]]ϕ A

[[]]ϕ Aγ[[]]ϕ =

[

B-complete and not F-complete:

[]]ϕ A

[[]]ϕ Aγ

[

UI

[[]]ϕαu [[]]ϕ A=

Absence of B-completeness: we fail to validate
any ∈ [[neg ∨ zero ∨ pos]]Sign. We must use a focus operation:
focus(any) = {neg, zero, pos} and validate
a ∈ [[neg ∨ zero ∨ pos]]Sign, for all a ∈ focus(any) [Dams04,Sagiv02] .

Absence of F-completeness: Say that eq1 ∈ L and [[eq1]] = {1},
making [[eq1]]Sign = {none}. Then, a static analysis of

x:= 1; if x=1 then safe() else error()

announces error() is reachable. Counterexample guided abstraction
refinement (CEGAR) repairs the problem by adding new elements to
Sign [Ball02,Clarke00,Saidi00] .

(-: / 15

O-completeness: subset-inclusion completeness

For P(D)〈αo, γ〉P↓(A),

γ

αo

P (A)

UI
[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ
UI

P(D)

αo
[[]]ϕ

the inclusion,
αo[[φ]] ⊆ [[φ]]

A

does not ensure soundness. Nonetheless, we can define one
more variant of completeness (which is sound):

[[·]]A is B(αo)-complete for [[·]] iff αo[[φ]] = [[φ]]
A.

We use O-complete as a synonym for B(αo)-complete.

(-: / 16

With coverings, we make many connections

For [[·]] : L → P(D) and γ : Q → P(D),

γ covers [[·]] iff for all φ ∈ L, [[φ]] ∈ γ[Q].

For [[·]]A : L → P↓(A) and α : P → P↓(A),

α covers [[·]]A iff for all φ ∈ L, [[φ]]A ∈ α[P].

Theorem:

� If [[·]]A is F-complete for [[·]] and αu covers [[·]]A, then [[·]]A

is B-complete.

� If [[·]]A is B-complete for [[·]] and γ covers [[·]], then [[·]]A is
F-complete.

� If [[·]]A is F-complete for [[·]] and αo covers [[·]]A, then [[·]]A

is O-complete.

� If [[·]]A is O-complete for [[·]] and γ covers [[·]], then [[·]]A is
sound as well as F-complete.

(-: / 17

An application: partition domains

Let D and A be discretely ordered sets, and let δ : D → A be an onto

function, defining the partition, c ∼δ c ′ iff δ(c) = δ(c ′). Define

γ : A → P(D) as γ(a) = δ−1(a). We have this propositional logic:

[[a]] = γ(a)

[[¬φ]] = ∼ [[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

The abstract logic,

[[a]]A = αu(γ(a))

[[¬φ]]A = ∼ [[φ]]A

[[φ1 ∧ φ2]]
A = [[φ1]]

A ∩ [[φ2]]
A

[[φ1 ∨ φ2]]
A = [[φ1]]

A ∪ [[φ2]]
A

is F-complete and equals [[·]]Abest. Since both αu and αo cover [[·]]A,

the logic is also B- and O-complete.

(-: / 18

The usual application of a partition domain is to model checking,

whose logic includes the modality, [f]φ, for f : D → P(D), which is

abstracted by a sound f♯ : A → P(A) as follows:

[[[f]φ]]A = p̃re
f
♯
best

[[φ]]A, where p̃ref♯(T) = {a ′ | f♯(a ′) ⊆ T }.

We know that p̃re
f
♯
best

= (p̃ref)
♯
best = αu ◦ p̃ref ◦ γ [Schmidt06] .

The definition is sound but might not be complete — this depends on

f:

Theorem: For p̃ref : P(D) → P(D), f : D → P(D), and
f∗ : P(D) → P(D), defined as f∗(S) = ∪c∈Sf(c),

1. p̃ref is F(γ)-complete iff f∗ is B(αo)-complete.

2. p̃ref is B(αu)-complete iff f∗ is F(γ)-complete.

(-: / 19

Summary

1. Every static analysis employs an abstract domain, and
every abstract domain possesses an internal logic.

2. Abstract state transformers must be sound, and perhaps
they are Backwards- Forwards-complete.

3. Most program logics extend an internal logic, and their
abstractions must be sound.

4. There are both over- and underapproximating Galois
connections for approximating program logics; these define
F-, B-, and O-logical-completeness.

5. The completeness notions are independent (and the
independences are significant), but coverings are used to
relate them.

(-: / 20

References This talk: www.cis.ksu.edu/̃ schmidt/papers

1. E.M. Clarke, et al. Counterexample-guided abstraction refinement. CAV’00.

2. P. Cousot and R.Cousot. Systematic design of program analysis frameworks.
POPL’79.

3. P. Cousot and R.Cousot. Temporal abstract interpretation. POPL’00.

4. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. J. ACM 47(2000).

5. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and
refinements in abstract model checking. SAS’01.

6. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based
operators by abstract interpretation. VMCAI’06.

7. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM TOPLAS 24(2002).

8. D.A. Schmidt. Comparing completeness properties of static analyses
and their logics. APLAS’06.

(-: / 21

