6 The Lambda Calculus

The lambda abstraction and its copy rule come from a system invented in the 1930s by
Church, called the lambda calculus. Church developed the lambda calculus to study the
foundations of mathematics and logic. At one time Church hoped that the lambda cal-
culus would serve as a set-theoretic-like foundation for mathematics, but this goal proved
unachievable. In the 1960s, Strachey, Landin, and others observed that the lambda cal-
culus worked well as a notation for stating the semantic properties of computer program-
ming languages. This application has proved fruitful, and the lambda calculus stands
today as a fundamental tool for programming language design and analysis.

6.1 The Untyped Lambda Calculus

The lambda calculus is pleasant because it is so simple. Its syntax isin Figure 6.1. The
first construct in the syntax rule is called a lambda abstraction, the second is an applica-
tion (or combination), and the third is an identifier (or variable).

In the lambda abstraction Aly.E, the |; iscaled abinding identifier. The scope of
Alg is E, less those lambda abstractions within E whose binding identifiers are also
lop. Occurrences of Iy in E within Alg’s scope are said to be bound; an unbound
identifier isfree. Thefreeidentifiersinan expression, E, aredenoted by FV(E):

FV(\LE) = FV(E) -{ I}
FV(E, E,) = FV(E;) 0 FV(E,)
Fv() ={1}

Anexpression, E, isclosedif FV(E)=0.

The free identifiers in an expression can be affected by substitution. We write
[E{/1]E, to denote the substitution of E; for all free occurrencesof | in E,. Substitu-
tion is defined as usual:

166 Chapter 6: The Lambda Calculus

E O Expression
| O Identifier

Eu= ALE)| (E1Ey) | |

Figure6.1

[E/IJ\.E;) = ALE,

[E/IJAJE;) = AL[E/NE,, if 12J and JOFV(E)

[E/IJAJE;) = AK.[E/][K/JE,, if 123, JOFV(E), and K isfresh
[E/N(E, Ey) = [E/NE,; [E/I]E,

[E/NI = E

[E/1]3 = J, if J#I

Here are afew examples of lambda calculus expressions:

(AX. X)
AX (X (Y X))

(AX. (X X)(AY. 2))

X, (AY. (X (AX. (\Y. Y)))))

The piles of brackets prove tiresome, so we drop the outermost set and abbreviate nested
combinations ((E; E>) E3) to (E; E; E3). We abbreviate (Al.(E)) to (Al.E) as well.
Here are the abbreviated forms of the previous expressions:

AX. X
AX. X (Y X)

(AX. X X) (AY. 2)
AXAY. X (AX.AY.Y)

With this abbreviation, the scope of a binding identifier, I, in Al.--- extends from the
period that follows | to the first unmatched right parenthesis (or the end of the phrase,
whichever comes first), less any lambda abstractions with the same binding identifier.

So far, it is not clear what the expressions mean. Don’'t worry—they don’t mean
anything, yet! For the moment, the lambda calculusis just anotation of identifiers.

These rewriting rules manipulate |lambda expressions:

The Untyped Lambda Calculus 167

o-rule: AlLE OAN J[JI]E, if JOFV(E)
B-rule: (Al.E))E, O [Ex/IE;
n-rule: ALEI O E, if IOFV(E)

The a-rule suggests that the choice of binding identifier is unimportant; the [-rule says
that binding of an argument to a binding identifier is just substitution; and the n-rule
implies that all lambda cal culus expressions represent functions. The a-, -, and n-rules
make good sense for alogic of functions, and a good intuition to have is that the lambda
calculusis alanguage of purely functions.

We do not use the a- and n-rules for computation; for the moment, that leaves just
the B-rule. Hereisasample computation, where the substitutions are displayed:

Y. AX. (Y X)) Y) (AZ. X)
O [AZX/YIAX. (Y X)) Y

(A, [AZXI YI[AIX](Y X)) (AZX/Y]Y)
(A, [AZX/ Y](Y A)) AZ.X)

(A, (AZ. X)A) (AZ. X)

O [AZXIAJ((AZ. X)A)

= (\ZX)(AZX) O [AZX/Z]X = X

Say that an expression, E, contains the subexpression (Al.E;)E,; the subexpression is
called a (B-)redex; the expression [E,/I]E; isitscontractum; and the action of replacing
the contractum for theredex in E, giving E', iscalled a contraction or areduction step.

A reduction step is written EO E'. A reduction sequence is a series of reduction steps
E,0E0 ---0OK0O --- that has finite or infinite length. 1f the sequence has finite
length, starting at E; and ending at E,, n>0, wewrite E;0 “E,. (Notethat, for every
E, EO"E.) A lambda expression isin (B-)normal form if it contains no (B-)redexes.*

An expression has normal form if it can be rewritten to an expression in normal form. A
fun and time-consuming game is to rewrite lambda expressions into their normal forms.
But beware—not al expressions have normal forms. Here is afamous example that does
not:

XX X) AXXX) O AXXX) AX.XX) O (AX. X X) AX. X X) O

Here is another example that you should try: (AX. X (X X)) (AX. X (X X)); and yet
another: AF. (AX. F (X X))(AX. F (X X)). None of these has a normal form. It is no
coincidence that all of them use self-application—the application of an expression to

O If both the B- and n-rules were used in reduction sequences, we would say an expression isin fn-
normal form if it had no 3n-redexes.

168 Chapter 6: The Lambda Calculus

itself. It is through self-application that repetitive computation can be simulated in the
lambda calculus. Indeed, the third of the previous three examples is famous because it
can encode recursive function definitions. Cal it Y; a definition rec-
definef= ---f--- isencoded definef =Y(Af.---f---).

Arithmetic can be simulated in the lambda calculus. Although it is not our intention
to use the lambda calculus in this way, it is interesting that we can define the following
simulations of the natural numbers, called the ** Church numerals'’:

AS\Z.Z
AS\Z.SZ
AS A\Z. S(S2)

NI Rl ol

i: ASAZ S(S(---(SZ)---)), Srepeatedi times

Now we can encode numeric operations, such as the successor function, succ
=AN.AS AZ. S(N SZ), and addition, add =AM.AN. M succ N, and indeed, all of the
general recursive functions, in the sense that, if n is the Church numeral for number n,
then for every general recursive function f:IN - IN, we can construct a lambda expres-
sion, F, such that, for al nOIN, (Fn)O “f(n) (when f (n) is defined, otherwise (F)
has no normal form). This means the lambda calculus is as powerful a computation sys-
tem as any known. A consequence of this result is that it is impossible to mechanically
decide whether or not an arbitrary expression has anormal form. (If we could decide this
question, then we could solve the famous, undecidable *‘ halting problem.’”)
The -rule has several pleasing properties. The most important are these three:

6.1 Theorem (The Confluence Property)

For any lambda expression E, if EOE; and EOE,, then there exists alambda
expression, Ez, suchthat E;0"E; and E,0 "E; (modulo application of the a-
ruleto Ej).

This theorem implies that the order in which we reduce redexes is unimportant; all
reduction sequences can be made to meet at a common expression (up to renaming of
binding identifiers). But the confluence property does not say that all reduction
sequences must meet, only that they can be made to meet; for example, let A be
(AX. X X). For Eg = (AY.Z)(A D), wehave Ex[0 Z and Ej00 Ey. By the confluence pro-
perty, there must be some E; such that ZO "E; and E;0 "E;. Since Z isin normal
form, E; must be Z, and indeed, E,[J"Z. But notice that the reduction sequence
EoO EqO ---0OEO -+ never reaches Z, although the confluence property guaran-
tees that a reduction sequence E,0 “E, can be extended to E,0 “E,0 “Z. Thus, the
strategy for choosing redexesis significant. A key consequence of confluenceis

The Untyped Lambda Calculus 169

6.2 Coroallary (The Uniqueness of Normal Forms Property)

If E can be rewritten to some E' in norma form, then E' is unique (modulo
application of the a-rule).

The proof of this property is easy: If expression E would, in fact, reduce to distinct nor-
mal forms E; and E,, the confluence property tells us there is some Ez such that
E,0"%; and E,0"E;. But this is impossible, since E; and E, cannot be further
reduced.

Uniqueness of normal forms is crucial, because it gives a programmer a naive but
useful semantics for the lambda calculus: The ‘*meaning’’ of an expression is the normal
form to which it rewrites.

The confluence property is sometimes called the Church-Rosser property, after the
persons who first proved it. A proof of the confluence property is described in Section
6.8.

Finally, there is a particular rewriting strategy that always discovers a normal form,
if one exists. Say that the leftmost-outermost redex in an expression is the redex whose
A-symbol lies to the leftmost in the expression. (The redex is *‘leftmost-outermost’” in
the sense that, when the expression is drawn as a tree, the redex is outermost—it is not
embedded in another redex—and it is the leftmost of all the outermost redexes.) The
|eftmost-outermost rewriting strategy reduces the leftmost-outermost redex at each stage
until no more redexes exist.

6.3 Theorem (The Standardization Property)

If an expression has a norma form, it will be found by the leftmost-outermost
rewriting strategy.

Hereis an example of areduction by the leftmost-outermost strategy:

(Y. YY) (AX.X)(AZ.2))
O (AXX)AZ.Z)) (AXX)(AZ.2))
0 (A\ZZ) (AXX)AZ.Z)) O (AXX)(A\ZZ) O (A\Z.2)

The leftmost-outermost strategy is a ‘‘lazy evaluation’’ strategy—an argument is not
reduced until it finaly appears as the leftmost-outermost redex in an expression. Other
reduction strategies might arrive at anormal form in fewer steps. The previous reduction
is done quicker if we reduce the rightmost-innermost redex each time:

170 Chapter 6: The Lambda Calculus

(Y. Y Y) (AXX)(AZ.2))
0 (\Y.YY)(\z2.2)
0 (\2Z)(\2.Z) O (A\Z.Z)

The rightmost-innermost strategy roughly corresponds to ‘‘eager evaluation.”” But in
some cases the strategy will not discover a normal form, whereas the |l eftmost-outermost
strategy will, for example, (AY.Z)((AX. X X)(AX. X X)).

6.2 Call-by-Name and Call-by-Value Reduction

The B-rule in the previous section is sometimes titled the call-by-name (-rule because it
places no restriction on the argument, E,, of the redex (Al.E;)E,. Thereis an aterna
tive, the call-by-value 3-rule (or -val rule), which does restrict the form of E,.

Say that identifiers, |, and lambda abstractions, AIl.E, are Values. The call-by-
value B-rule reads as follows:

B-val: (ALLEj)E, O [Ey/I]E,, if E, isaVaue

This roughly corresponds to call-by-value evaluation of actual parameters in program-
ming languages. Here is a computation undertaken with the 3-val rule:

(AW, A)((AYAZ. Z Z)(AX. B)C) (AX. X X))
0 AW.A)(AY.AZ ZZ)C (AX.X X))

0 AW.A)(AZ ZZ)AX.X X))

O AW A)((AX X X)AX. X X))

O AWA)(AXXX)AX.XX)) O

At each stage there is only one redex, and the computation is nonterminating, since the
argument to AW will never reduceto aValue. Contrast the above reduction sequence to
one generated by the usual B-rule, which terminates in one step. Perhaps this suggests
that the 3-val ruleis not as ‘‘useful’’ as the B-rule, but Section 6.7 will show that the -
val rule is often the appropriate one for specifying the operational semantics of program-
ming languages.

A useful insight is that the 3-val rule can be coded as two rules:

Bval;: (A\.E)J O [JI]E,
Bval,: (A\LE)MIE) O [(AJE)/I]E,

Here, the notion of *‘Value'’ is encoded within the patterns of the two rules. Another
variant of the B-val ruleisjust 3-val,: Only lambda abstractions are Values. This variant

An Induction Principle 171

works well with a lambda calculus of closed expressions. Yet another variant arises
when additional phrases, such as arithmetic expressions, are added to the lambda cal-
culus. Inthe case of arithmetic, the numerals 0, 1, 2, and so on, are Vaues, and we have:

B-valz: (ALLEj)n O [n/I]E;, if n isanumera

When the 3-val rule is used, the purpose of a computation is to reduce an expression
to a Value. But Values differ from norma forms: An expression—even one without a
normal form—can reduce to more than one Value. An exampleis (AX.AY. (AZ.ZZ Z2)
(AZ.Z Z Z))A. Nonetheless, for typed programming languages, the notion of Value is
useful because the inputs and outputs for programs are typically phrases of type int, bool,
and the like. For these types, Values and normal forms coincide. Section 6.6 gives
details.

6.3 An Induction Principle

Proofs of properties of programming languages are usualy undertaken by structural
induction. But structural induction often fails to work when properties about substitution
must be proved. Let E;=E, meanthat E; and E, areidentical, modulo use of the a-
rule, and consider this example:

6.4 Proposition

For all identifiers, 1, and expressions, E; and E,, if |OFV(E;), then
[Ex/1]E1=E;.

Attempted proof: We use induction on the structure of E;. There are three cases:

(i) E;=J Assume | OFV(J). Thisimplies 1£J, so [E/1]J=J.

(i) E; =(Ey1Epp): Assume | OFV(E; Ep); then TOFV(Ey;) and | OFV(Ep).
Since [Ey/1](Eq1 Ei2) = ([Ex/ 11E11 [Eo/11E1,), the result follows immediately from
the inductive hypothesesfor E;; and Ejs.

(iii) E; =AJEq: Assume | OFV(AJE). If 1=, the result is immediate. If 1#£J
and JOFV(Ey), then [Ex/1J(AJEL) = AJ[Ey/1]Ey;). We have that | OFV(Ey),
so the result follows from the inductive hypothesis for E;;. Finally, consider when
[£J and JOFV(E,). Then, [Ey/IJ(AJE ;) = AK[E/1[K/JE11). Now, we are
stuck, because the inductive hypothesis applies only to E;; and not to [K/JE;,
which may be a different expression!

The technical problem with substitution is frustrating, since the renaming of J to K
in case (iii) is cosmetic and does not affect the structure of E;; at all. The problem has
motivated some researchers to replace explicit substitution by an implicit form (where

172 Chapter 6: The Lambda Calculus

substitution always, automatically, correctly occurs) or even to abandon identifiers and
substitution altogether and replace identifiers by numerical offsets, similar to the relative
addresses for variables that a compiler calculates. The exercises introduce these alterna-
tives. Here, we stick with substitution and sidestep the problem in the traditional way.
We define the rank of alambda calculus expression as follows:

rank(l) =0
rank(E; E,) = maxX{ rank(E,), rank(E,)} +1
rank(Al.E) = rank(E)+1

The definition of rank admits a useful induction principle:

6.5 Theorem (Induction on Rank)

To prove that a property, P, holds for all lambda calculus expressions, it suffices to
prove, for an arbitrary expression, Eg, with rank(Ey) =], that
if (for all expressions, E, suchthat rank(E)<j, P(E) holds),
then P(Ep) holds.

The soundness of induction on rank can be proved by means of mathematical induction;
this is left as an exercise. The utility of induction on rank is enhanced by the following
lemma.

6.6 Lemma

For all identifiers | and J and expressions E, rank(E) = rank([J/1]E).

Proof: The proof is by induction on the rank of E. For arbitrary j=0, we may assume,
for al expressons E such that rank(E')<j, that for al | and J,
rank(E') = rank([J/1]E'). We must show, when rank(E) =j, that for al | and J,
rank(E) = rank([J/ I]E). There arethree cases:

(i) E=K,anidentifier: Then rank([J/1]K) = 0=rank(K), whether or not | equals K.

(i) E=(E E): [JN(E; E) =([INE; [IIN]E). By the definition of rank, rank(E;)
< rank(E) and rank(E,) < rank(E), and by the inductive hypothesis, rank([J/1]E;)
=rank(E;) and rank([J/1]E,) = rank(E,); thisimplies the resuit.

(iii) E=(AK.E;): the only interesting case to consider of [J/IJ(AK.E;) iswhen [£K
but J=K. The resulting expression is (lamL.[J/1][L/JE;). Since
rank(E;) < rank(E), we have that rank([L/JE;) = rank(E;), by the inductive
hypothesis. But thisimplies rank([L /JE;) < rank(E), and by applying the induc-
tive hypothesis again, we have rank([J/I][L/JE;) = rank([L/JE;) = rank(E,).
Thisgivestheresult. []

With the aid of Lemma 6.6, we can view induction by rank as a form of structural

The Smply Typed Lambda Calculus 173

induction that is unaffected by cosmetic substitutions. We return to this point momen-
tarily, but first we perform the proof of Proposition 6.4.

Proof of Proposition 6.4: The proof is by induction on the rank of E;. For arbitrary
j=0, we assume, for all expressions E' such that rank(E')< |, that |1 0 FV(E') implies
[E5/1E'=E'. We must show the same result for E;, where rank(E;) =j. Now, E;
must have one of three forms:

(i) E; =J Thereasoning inthe*‘attempted proof’’ applies.

(i) E; =(Ej1Egp): The reasoning in the ‘‘attempted proof’’ applies, since
rank(E;;) < rank(E;) and rank(E;,) < rank(E,).

(iii) E; = (AJ.Eqq): If 1=J, thereasoning in the ‘‘attempted proof’’ applies. If 1#Jand
JOFV(E,), then the ‘‘attempted proof’’ reasoning applies, since rank(E;q)
<rank(E;). Finaly, if 1#£J and JOFV(E,), then [Ey/I](AJEy;) = (AK. [Ex/1]
[K/JE;;). By Lemma 6.6, rank([K/JE;;) = rank(Ey;) < rank(E;). Since
| OFV(E1y), it is easy to prove that | OFV([K/JE;;). Therefore, the inductive
hypothesis gives us [E,/I][K/JE;; = [K/JE;;. Since (AJEj;) = AK[K/JE),
this givestheresult. []

This proof looks almost exactly like a proof by structural induction where the only excep-
tion is when a cosmetic renaming of identifiers is necessary, so from here on, we write
proofs that use induction on rank as if they are structural induction proofs. Thanks to
Lemma 6.6, we obtain an additional inductive hypothesis for cosmetic substitutions like
[K/JE4;. Induction by rank will be essential to proofs of several standard results for the
lambda calculus.

6.4 The Simply Typed Lambda Calculus

An important extension to the lambda calculus is a typing system. The simply typed
lambda calculus is presented in Figure 6.2. Since the system is similar to the one in
Chapter 5, we do not consider examples.

When we write type expressions of the form 1, - (T, - T3), we usualy drop the
rightmost brackets and write 1, - T, > 13. The B-rule applies to the simply typed
lambda calculus:

B-rule: (Al:T.E)Ey) O [E)/IE,
When the 3-val rule is used, it reads as before, namely,

B-val rule: ((Al'T.Ey)Ey) O [Ey/1E,, if E; isaValue

where the notion of **Value'’ is defined recursively on the typesin the language:

174 Chapter 6: The Lambda Calculus

E 00 Expression

| O Identifier

10 Data-Type

1 O Primitive-Data-Type (for example, int)

E = AI'T.E) | (E1Ey) | |

T=1|T-Tp
nH{lt E:t MFE;:1; -1 nrE:t

(I FET et mHEin o
AlL1.BT -1, (B BE): 1,
Figure 6.2

Value(1) = aset of constants, for example, Value(int) ={0, 1, 2, ...}
Value(t; - To) ={(Al:11.E) | there exists tsuch that rtf- (A l:11.E): T4 - T, holds}

The simply typed lambda calculus has the confluence, uniqueness of normal forms, and
unicity of typing properties. Another notable property is that substitution preserves typ-

ing:

6.7 Lemma

For all 1, 14,75, 1, E;, and E,, if MFE,: 1, and B {I:1,} FE;: 1, hold, then
so does Tt [Ey/ I]E 14

Proof: The proof is by induction on the rank of E;, which has one of three forms:

(i) Ei=1:1f I =7 then [E/I]l =E,, and since Tt} E,:1,, theresult holds. If | #J,
then [E,/1]1J=J. We know that 1t8 {I:1,} |FJ14, but thisimplies (J14) [t , by
the typing rule for identifiers, implying Tt|-J:15.

(i) E; =(Eqy Epp): The typing rule for combinations implies that 1tH {l:1,}
FEi1:T12-11 and mH {l:t,} FE;»: 142 both hold, for some type 14,. The
inductive hypothesis for E;; yields m|[Ey/1]E11:T1o-T; and for Ep, yields
Tt [Ey/ 1]Eq2: T10. By thetyping rule for combinations, we get the result.

(iii) E; = (AJ1q1.Eqq) for 14 =141 - Tqp: There arethree subcases:

@ If 1 =3 wemust show Tt} (Al:T41.E11):T41 - T12. By hypothesis, we have
8 {1:1,} F(Al'144. Ef1): T11 - T12, and by the typing rule for abstractions we
know that mH {l:ty} B {I:T41} FE41: 1> holds. But m B {1y} H
{lty} =1 B {11}, so B {l:ty1} F E11: 11> holds aso, and thisimplies

The Smply Typed Lambda Calculus 175

the result.

(b) If 1#J and J isnotfreein E,, then we must show 1T |F(AJTy1. [Ex/1]Ey):
T41 »T1p. By reasoning similar to that in case (d), we know that
B {I:'1y} B {3111} FE11:T» holds. Since | #J, wedso have m B {J
111} B {1y} FE;1:112. By the inductive hypothesis on E;; we get
B {J 111} F[E/I]: 112, which impliesthe result.

(© If 123 and Jisfreein E,, wemust show Tt} (AK: T41. [Ex/ 1] [K/JEq,):
T11 —» T12, Where K isfresh. By hypothesis, wehave T B {I:1,} B {J 14;}
FEqq: T12. Since K is fresh, we can easily prove 8 {l:ty} B {J111}
B {K:t11} FE11: T12. (Theproof isleft asan exercise) Since |1, J, and K are
al digtinct, m B {K:t1} B {l:ity} B {Jt1} FEq:t holds dso. The
rulefor identifiersgivesus m B {K:ty1} B {111} FK:1y1, soweapply the
inductive hypothesis to E;;. This gives us mH {K: 141} B8 {l:14}
F[K/JE: T12. Next, we can apply the inductive hypothesis a second time,
thistime to [K/JE;;, and obtain m8 {K:t1} F[E/I] [K/JEq1: T12. The
typing rule for abstractions givesthe result. []

A consequence of the above lemma is that the (3-rule does not change the typing of an
expression. Asaresult, we obtain thisimportant theorem:

6.8 Theorem (The Subject Reduction Property)
If TFE;:T holdsand E,0"E,, then Tt|-E,:t holdsaswell.

Proof: It sufficesto show the result for E;O0 E,, asingle reduction step. The proof is by

induction on the structure of E;:

(i) E;=1: Thiscaseisimpossible.

(i) E; =Alty.Eyq: Clearly, E;10 Eq4', and the inductive hypothesis for E;; implies
the result.

(iii) E; = (Eqq Egp): If the reduction step is wholly within Eq;, thatis, E;;0 Ej;', then
the inductive hypothesis for E;; implies the result. A similar argument holds if
E,0 Epp'. The only other possibility is that E; is (AliT.E')E;, and E;
O [Eqp/ 1]E'. Then, the result follows from Lemma6.7. []

The Subject Reduction Property shows that the B-rule does not change the typing struc-
ture of an expression, hence type (re)checking is unnecessary during a reduction
sequence.

The next result about the simply typed lambda calculusis startling and crucial:

6.9 Theorem (The Strong Normalization Property)

If Tf-E: 1 holds, then every reduction sequence starting from E has finite length.

176 Chapter 6: The Lambda Calculus

The proof is nontrivial and will not be shown here; a presentation can be found in Hind-
ley and Seldin 1986 or Thompson 1991.

Two immediate consequences of the strong normalization property are: (i) every
well-typed term has a normal form; (ii) any rewriting strategy will find it. The reason for
strong normalization is that the typing system prevents the coding of self-application, the
method for simulating repetition. A term (X X) would have to be typed in a way that
the first occurrence of X hastype 1; - T, and the second occurrenceof X hastype Tt;.
But thisisimpossible with the rules for awell-typed expression.

Another major benefit of the typing system is that it allows us to reintroduce a deno-
tational semantics and easily prove two important soundness results. These are covered
in the next section.

6.5 Denotational Semantics and Soundness

The usual semantics for the simply typed lambda calculus is the lazy evaluation seman-
tics from Chapter 5:

[TtFALT. E 1 ->To]le =f, where fu =[mE {11} FE](e 8 {I=u})
and eH {I=u} ={I=u} O(e-{(=v) | (I=v) Ue})

[t E B tolle= (b By 1y - T2]l€) ([T Ez:i T1]l€)

[rtFl:tle=v, where (I=v) Oe

Asusual, let 1] be the set of values named by 1 (for example, [[int]] =Int), and let
[ty - I =Mt - M[to0l, that is, the set of functions from arguments in [[t;]] to
answersin [T,]-

The first important result is soundness of typing. As before, an environment, e, is
consistent with atype assignment, 1, if (l:1) [t exactly when (I=v) Oe and vO[T1].
Let Env, bethe set of those environments that are consistent with Tt

6.10 Theorem
If edEnv,, then [tHE: t]leO[T].

Proof: The proof is an induction on the structure of E. Thethree cases are:

(i) Anidentifier, I: We have mt|-1:0 and (I:0) It . The result follows because e is
consistent with Tt

(i) An application (E; E,): By the typing rule for applications and the inductive
hypothesis, we have [[TTFE;:1; - To]le Of[1; - 1] and [FEx:t]leO[T4]-
Thus, ([TtkE;: 1y - 1o]l€) ([Ex:ti]le) D6-].

(iii) An abstraction Al:t;.E: By the typing rule for abstractions, we have

Denotational Semantics and Soundness 177

nH {111} FE1,. Assumethat vO[14]], for an arbitrary v. Then, e B {I=v} is
consistent with 18 {l:t1}. By theinductive hypothesis, we have [Tt |FE: 15] (e
H {l=v}) O [t.]]. Since v is arbitrary, the function f(v) = [[m FE
Tz]](eE {|:V}) isin the set [[Tl - T2]]. D

The typing theorem gives a ‘‘road map’’ for the semantics of the typed lambda cal-
culus, telling us what form of value a well-typed expression represents. If we attempt to
use the above denotational semantics for the untyped lambda calculus (delete all typing
information), we encounter a significant problem: An expression like AX. X apparently
represents an identity function that can take all other functions—including itself,
(AX.X) (AX. X)—as arguments. This implies that the set theoretic representation of the
identity function is a set of argument, answer pairs of the form: I1d = {..., (Id, Id),
...}. Such a set is outlawed by the foundation axiom of set theory, so the well
definedness of the semantics for untyped lambda calculus falls into doubt. Thereis away
to repair the problem, due to Scott, and see a denotational semantics text for details.

The next important result, one that has been promised for several chapters, is the
proof of soundness of the 3-rule. Theresult isacorollary of the following:

6.11 Theorem (The‘‘Substitution Lemma’”)
For all edEnv,, [mH[E/IE:1i]le = [MB{lL}FE:T (e B {I=]m
FEz: 1o]l€}).

Proof: The proof is by induction on the rank of E;.

() E =X If J#I, the result is immediate. If J=I, then [[MF[E/I]l:t{]le =
[MFE:tJle=m8 {1} FL:y(eB {I=[r|FEx: 1] €}).

(||) El = (Ell ElZ): Since [E2/|](E11 ElZ) = ([EZ/I]Ell [EZ/I]E]_Z)! the result follows
from the inductive hypothesesfor E;; and Ej,.

(iii) E; = (AJTq1.Egp): If J=I, theresult is immediate. If J#1 and J is not freein
E,, then the result follows from the inductive hypothesis for E;,. Otherwise,
[t [Ex /1] (A JT11. Epp): Ty - Tiplle = [MEAK Ty [Eo /1] [K/JEp2i Tyg -~ Tiple = f,
such that f(V) = IIT[]_ |—[E2/|][K/J]E12:T12]]e11 where N = 1e=! {K:Tll} and
e, =eH {K=v}. Now, [K/JE;; has the same rank as E;,, so the inductive
hypothesis says that the previous vaue equals [Ty B {1:1o} F[K/JEp: 1](e;
B {I1=[n FE: le}) = [B {2} FIK/JEw: 1pll(er B {I=[n FE:
1,]e}), since K isnotin E,. Let T, = B {I:1,} and &, = ¢, B {l=[n
FE,: 15]le}; by the inductive hypothesis on E;,, the previous value equals
[B {X tu} FEw tel(e B {I=[nB {K: 1, I} FK! mle}) =
[8 {Jt} FEp (e B {J=v}) = [M8 {Ity, I11} FERIT](e B
{I = E: 1.]le} B {J=v}), since K doesnot appear in E;,. But thisvalueis
just g(v), where g =[mB {1} FAJT11-Ep): Tii-T2ll(e B {r=[1 FE:
Tolle}). O

178 Chapter 6: The Lambda Calculus

It follows immediately that [t ((Al:11. E)E): To]le = [[E;/1Ey: T2]le, and then a
proof like that of Theorem 6.8 yields

6.12 Theorem

For edENv,, mFE;:1 and E;0"E, imply [nFE;:tle=[n}E,: 1]e.

6.6 Lambda Calculuswith Constantsand Operators

To obtain facilities for repetition, arithmetic, and the like, we extend the simply typed
lambda calculus by a set of constants and operators. For arithmetic, we might add:

Eux= ---]0|21]2]]| (plusELE,) | (minusE; E)
along with the following typing rules:

nFEiint - mEEy:int nFEiint mFEy:int

;int, foral n=0 - j i
ik n:int, foral n TtF (plus E; E,):int Ttk (minus E; E):int

Symbolslike 0 and 1 that cannot be reduced are constants, and symbols like plus and
minus that take arguments and can be reduced are operators. An expression that adds 1
to 3 and then subtracts 2 is written (minus (plus 1 3) 2). If we prefer, we can define
operators as constants of function type, for example, Tt-plus:int - int - int and code
addition as ((plus 1) 3). Thedifferenceis often just a matter of style. In the terminology
of Section 6.2, wesay that 0,1, 2, ..., arethe Vauesfor the int-typed expressions; that
is, Value(int) ={0, 1, 2,...}. This particular set is specia, and we call it the set of
numerals.

Operators have little use without rewriting rules. For example, we want to show that
(minus (plus 13) 2) rewrites to (minus 4 2), which rewritesto 2. Here are the rewrit-
ing rulesfor plus and minus:

(plus m n) O m+n, where m and n are numerals,

and m+n isthe numeral that denotesthe sum of m and n
(minus m n) 0 m-n, where m and n are numerals,

and m-n isthe numeral that denotes the differenceof m and n

(For simplicity, we use natural numbers and natural number subtraction: If n>m, then
(minusmn) O 0.) Thetwo rules are call-by-value rules, like the ones in Section 6.2, and
they should be read as abbreviating two families of rewriting rules. For example, the rule
for plus abbreviatesthis family:

Lambda Calculus with Constants and Operators 179

(plus00) O O (plus1 1) 0 2
(plus01) O 1 (plus12) 0O 3
(plus 10 O 1

Rules like the ones above are called d-rules, and we use the term d—redex for an expres-
sion that can be reduced by a d-rule. General properties of d-rules are given in Section
6.8; for now, we take on faith that properties like confluence and subject reduction hold
for the smply typed lambda calculus extended by &-rules. We choose the leftmost-
outermost redex in an expression by picking that redex whose A-symbol or operator lies
to the leftmost in the expression.

We can aso add booleans, where Value(bool) = { true, false}:

)) 1t} E: bool
Tt}-true: bool Ti-false: bool T (noL B): bool
mFE;:int mFEsint mfE;ibool TFExT THEsT
1t} (equals E; E,): bool i (fE E Eg):t

We use these &-rules:

(equalsmm) O true, where m isanumeral

(equalsmn) O false, where m and n aredifferent numerals
(nottrue) O false (notfalse) O true
(iftrueE E)) O E; (iffalseE; Ey) O E,

Hereis aleftmost-outermost reduction that uses the (3-rule and the above d-rules:

(AX:boal. if X (minus2 1) (plus34)) (equals 0 1)
O (if (equals 01) (minus2 1) (plus 3 4))
O (iffalse(minus21) (plus34)) O (plus34) O 7

We now add an operator and &-rule to express repetition:

MFET1-1

GBI (fixE) O (E(fixE))

The &-rulefor fix has canceled the strong normalization property, since it is now possi-
ble to write expressions that have no normal forms. We do an example; let F name the
following expression:

AFAC:intint.AN:int. if (equalsN 0) 1 (times N (FAC (minus N 1)))

180 Chapter 6: The Lambda Calculus

Thus, (fixF) isarepresentation of the factorial function. We put it to work on the argu-
ment 2 and do aleftmost-outermost reduction:

(fixF) 2
O F (fixF) 2
= (AFAC:int—intAN:int. if (equalsN 0) 1 (timesN (FAC (minusN 1)))) (fix F) 2
O (AN:int. if (equalsN Q) 1 (timesN ((fix F) (minus N 1)))) 2
O if(equals20) 1 (times2 ((fix F) (minus 2 1)))
O iffalse 1 (times2 ((fix F) (minus 2 1)))
O times2 ((fix F) (minus2 1))
O times2 ((F (fix F)) (minus 2 1))
= times2
((AFAC:int — int.AN:int. if (equalsN 0) 1 (timesN (FAC (minusN 1)))) (fix F)
(minus 2 1))
times 2 ((AN:int. if (equalsN 0) 1 (timesN ((fix F) (minus N 1))))(minus 2 1))
times 2 (if (equals (minus2 1) 0) 1 (times(minus2 1)
((fix F) (minus (minus 2 1) 1))))
O times2(if (equals10) 1 (times(minus2 1) ((fix F) (minus (minus 2 1) 1))))
O times2 (if false 1 (times (minus2 1) ((fix F) (minus (minus 2 1) 1))))
u
O

O d

times 2 (times (minus 2 1) ((fix F) (minus (minus 2 1) 1)))
times 2 (times 1 ((fix F) (minus (minus 2 1) 1)))
O times2 (times1 ((F (fix F)) (minus (minus 2 1) 1)))

and so the reduction goes. You are invited to perform the remaining stages of rewriting;
the Value uncoveredis 2.

Since the example used leftmost-outermost reduction, a number of numerical
expressions, like (minus 2 1), were copied and reduced severa times. We will address
this efficiency question momentarily.

The 3- and &-rules for the arithmetic language form an operational semantics, since
the rules show how to compute an arithmetic expression to aValue. But the specific stra-
tegy of applying the rewriting rules (for example, leftmost-outermost, rightmost-
innermost) is unspecified by the rules themselves. The confluence property suggests that
the order of reductions should not be important, but efficiency questions and the possibil-
ity of nontermination means that it is. In the above example, the rightmost-innermost
reduction strategy might be tried to get a more efficient reduction sequence, but the reduc-
tion of (fixF)2 doesnot terminate. (Try it.)

Ideally, we should use a set of rewriting rules that are insensitive to reduction stra-
tegy, but thisis rarely achievable. 1n the above example, if the efficiency of the reduction
sequence is an issue, the 3-rule can be replaced by the 3-val rule. Since the numerals are

Operational Semantics for a Source Language 181

the only int-typed phrases that are Values, the [-val rule would force
(AN:int.---N -+ -)(minus21) to reduce to (AN:int.---N---)1 before it reduces to
---1---. But the B-val rule does not interact well with the previously stated rewriting
rule for fix. (Try it on the above example.) A variant of fix that is sometimes used with
the B-val ruleis

fix E O EQ@lt.fiXxEID)

where E must be typed (1; - 1) - (11 - T,). Another possiblity is to use the rec
operator and its rule from Chapter 2:

recl:t.E O [(recl:T.E)/I]E

A consequence of the latter ruleis, either recl:T.E must be a Value or else the rule 3-
val; must be dropped because identifiers no longer stand for Vaues.

When the call-by-value rules are used for computation, the strategy for reduction
changes from normal form discovery to Value discovery. In particular, reductions should
not be performed within a lambda abstraction, since a lambda abstraction is aready a
Vaue. For the call-by-value reduction rules in this section, a leftmost-outermost strategy
that does not reduce redexes within lambda abstractions always discovers Values, if they
exist.

If the call-by-value rules are not desired, there is an implementation technique for
the B-rule, known as call-by-need, which gives efficiency at least as good as the [3-val
rule. For a cal-by-need implementation, a phrase is implemented as a graph, and the
implementation of the B-rule upon (Al.E;)E, replacesall occurrencesof | in E; by a
pointer to E,’s subgraph. Since al occurrences of | point to the same subgraph, when-
ever any occurrence of | is computed, the sharing implies that all occurrences are com-
puted. Details are given in Wadsworth 1971 and Peyton-Jones 1987.

6.7 Operational Semanticsfor a Source Language

Section 1.8 stated that a programming language’ s denotational semantics can do double
duty as an operational semantics. In this section, we justify why this is so and demon-
strate that such an operational semanticsis asimply typed lambda cal culus with constants
and operators. The development is pedantic and can be skipped if the reader accepts
these claims.

The metalanguage for the operational semantics definition is the simply typed
lambda calculus with integers, booleans, locations, and stores. Integers and booleans
were presented in the previous section. Locations are the usual: loc;:intloc, for =0,
and Value(intloc) = {loc; | i=0}. There are no operations upon locations. The store
type has these constructions:

182 Chapter 6: The Lambda Calculus

mFEE;:int mFEEyint --- TFE,int

, for n=20
nf[E,, B, ..., E,0store

T E;:intloc 1t E,: store nFEiintloc mFEyint T Es: store
1t} (lookup E; E,):int T}~ (update E; E, E3): store

and Value(store) = {y, Ny, ..., Ny m=0and for dl 1<i<m, n; OValue(int)}. As
usua, a store like [3, 1, 700 defines a store that has 3 in loc;’s location, 1 in loc,’s
location, and 7 in locs’s location. The rewriting rules for the store operators are the
expected ones:

(lookup log; [y, Ny, .., Ny, N0 Oy
(update loc; n [y, Ny,.. ., Nj,..., N0 O [, Ny,...,N,..., N0

The arguments to lookup and update must be Va ues for the reductions to occur.
Now, we are ready to define the operational semantics of the source programming
language; we use the typing rulesin Figure 5.1 plus these two:

Ei:texp TFE: store E;:comm T E,: store
Tt [E;:texp] Es: T Tt} [E;:comm] E,: store

The semantics definition is a set of rewriting rules:

[Ei:=Ey:commfs O (update E; ([Ey:intexp]]s) s)
[Es;Ex:commls O [E,:comm]([E;:comm]s)
[while E; do E, od:comm]|s
O if (JE,boolexp]ls) (Twhile E; do E, od:comm[|([E,:comm]s)) s

[Ei+Ey:intexplls O (plus ([E;:intexp]ls) ([E,:intexp]ls))
[@L:intexp][s O (lookupL s)

where, for al of the aboverules, s isaVaue

Computations with the rewriting rules proceed like the calculations seen in earlier
chapters.

Since the metalanguage is the ssimply typed lambda calculus, we can reformat the
above rules with |lambda abstractions and compute with the 3-val rule:

Subtree Replacement Systems 183

[Ei:=E,:comm]] OA sstore (update E; ([E:intexp]s) s)
[Ey;Ex:comm] OA sstore. [[E;:comm]([E;:commys)

Now, the previous two typing rules are unneeded, because we can make the equivalences
comm = store — store and Texp = store - T.

The next step is to add abstractions, parameters, and blocks to the source program-
ming language. If we follow the lines of Chapter 5, then we add records and lambda
abstraction to the source programming language, creating a simply typed lambda calculus
of it. We focus upon lambda abstractions here, leaving records as an exercise. Once we
add lambda abstractions to the source language, we may add the B-rule for rewriting
them. The result is a substitution semantics, so named because the semantics of lambda
abstraction in the source language is understood by means of syntactic substitution, as
defined by the B-rule. In the terminomolgy of Chapter 2, a substitution semantics applies
the copy rule to a program with lambda abstractions, reducing the program into onein the
core language, and then uses the semantics of the core language to calcul ate the meaning.

Substitution semantics works fine, but insight can be gained from an environment
semantics, where an environment argument and its operations are added to the
metalanguage. The rewriting rules for the language are altered to include environments:

[Tt} Eq:=E,:comm]
OA eenvAssore (update ([Tt Eq:intloc]le) ([TtF Ey:intexples) s)
[TFE;Ex:comm]] O A eenvAsstore. [Tt Ey:commle([Ttf E;:comm]es)

[TtFALG.E:6;,-6,]] OA eenvAu:b,.[TtE {1:6:} FE:6,]|(bind | ue)
[MFEE:6,] OA eenv.([FEq:61-65]€) ([Tt E,04]€)
[rtF1:6] OA eenv.findle

bind and find are operations that insert and look up bindings in the environment; their
definitions are left as exercises. A technical point is that the B-rule can be applied to the
source language lambda abstractions, or the 3-val rule can be applied to the metalanguage
lambda abstractions and the end result is the same. In earlier chapters, this was called
soundness of the copy rules; here, it becomes a confluence result.

6.8 Subtree Replacement Systems

When a lambda calculus is extended by d-rules, one must verify that confluence, stan-
dardization, and other properties are preserved. The general version of a lambda

184 Chapter 6: The Lambda Calculus

calculus-like system is called a subtree replacement system (SRS).* In this and the next
section, we study subtree replacement systems and state general properties that imply
confluence and standardization. These properties can be used to verify that an operational
semantics for a programming language is worthwhile.

Say that alanguage, L, is defined by asingle syntax rule:

L = construction; | - - - | construction,, n> 0.

Languages defined by multiple syntax rules can also be studied, but it is simplest to work
with just one rule. Next, let the syntax rule be augmented by a set of variables
V={XVY2Z...}

Ly ::= construction, | -+ | construction, | V

and let L, be the language that results. Ly, isthe language of polynomials of L. That is,
apolynomia of L isan L-expression with zero or more variablesinit. For Ihs, rhsOL,,
we say that |hsO rhs is arewriting rule for L if Ihs and rhs are polynomials of L and
every variable that appears in rhs also appearsin Ihs. The rewriting rule is linear if no
variable appearsin Ihs more than once.

6.13 Definition

A (linear) subtree replacement system (SRS) is apair, (L, R), where L is a syntax
rule and Risaset of linear rewriting rulesfor L.

An example of an SRS follows:

(E == true | false | not E | if E; E; Eg,
{nottrue O false, not falseO true, iftrue X YO X, if false X YO Y})

For simplicity, we work with systems whose operators are in prefix form.
The systems are called subtree replacement systems because the expressions are
trees. We draw the trees so that the operators are at the roots. An exampleis

if
/]
not not true

true not

false

O Another name is term rewriting system, but we wish to emphasize the tree-like structure of the phrases
in the system.

Subtree Replacement Systems 185

which depicts if (not true) (not (not false)) true. A polynomial expression is an incom-
plete tree, where variables mark the places where subtrees need insertion. Rewriting rules
are tree transformers. When a tree matches the pattern defined by the left-hand side of a
rewriting rule, the variables in the left-hand side mark subtrees in the tree, and the marked
subtrees are used to build a new tree with the structure described by the right-hand side of
therule. These notions can be formalized.

A substitution, denoted by o, isaset of variable, polynomial pairs. The application
of a subgtitution, g, to a polynomial, E, written oE, is the replacement of al
occurrencesof X in E by polynomiadls, E', foral (X, E") [& . Anexample, interms of
the SRS above, is o={(X true), (Z, (not Y))}, E = iftrue X (not Z), and oE =
if true true (not (not Y)). Anexpression, E, matches apolynomial, p, if thereisasub-
stitution, o, suchthat op =E. Anexpressionisaredexif it matches lhs of arewriting
rule lhsO rhs, via a substitution g; the contractum is the expression orhs. The
replacement of the redex by its contractum is a contraction or reduction. These notions
are the same as the ones used with the lambda calculus, and we continue to use terms
such as‘‘normal form,”” *‘reduction sequence,”’ and so on.

Given a polynomial, p, we say that its pattern is p less its variables. For example,
the pattern of iftrue XY is iftrue[][], where the brackets mark the missing vari-
ables. The pattern of a polynomia shows the structure necessary for an expression to
match the polynomial. If an expression, E, is aredex by means of a rewriting rule,
IlhsO rhs, we say that the pattern of the redex is that subpart of E that matches the pat-
tern of |hs. For example, for redex iftrue falsetrue, the pattern of the redex is
iftrue[]1[1].

Recall the confluence property: For al E, if EOE; and EOE,, then thereis
some E; suchthat E;0"E; and E,0 "E;. Verifying that an arbitrary linear SRS has
confluence is undecidable, so we will state a criterion that is sufficient for confluence.
The notion behind the criterion is that rewriting rules should not *‘interfere’” with one
ancther.

Consider an SRS that contains this pair of rules;

f(gX)y O v
gal a

The expression f (g a) a can be reduced by thefirst ruleto a and by the second rule to
faa Can a and faa bereduced to the same expression? This cannot be done with
the two rules here, so the question of confluence depends upon the other rules of the SRS.
This situation is dangerous, and the danger arises because the two rules interfere with one
another—reducing a redex by the second rule aters aredex by the first rule. In contrast,
the rules

fXyody
ga O a

186 Chapter 6: The Lambda Calculus

do not interfere with each other, in the sense that, if an expression contains aredex by the
first rule and a redex by the second rule, the two redexes can be reduced in either order,
and the end result is the same. For example, fa(ga)lga andaso fa(ga)dfaa,
but then galda and faala For the expresson f(ga)a, we see that
f(ga)ald a and aso f(ga)al faalla Also, arewriting rule can interfere with
itself; for f (f X) 0 a, and the expression f (f (f a)), we see that the expression can be
reduced in two different ways that cannot be reconciled: f(f(fa))Ofa and
f(f(fa)Ula

A precise definition of the above intuition iss A par of rules
(Ihs; O rhsy, lhs, O rhs,) interfere if there is a substitution o such that alhs; contains
olhs, asasubtree and the pattern of alhs, overlapsthe pattern of clhs;. For the substi-
tution, o, to be meaningful, we assume that the variables in the two rules are distinct
(else we rename the variables to make them distinct). Also, since every rewriting rule
trivially ‘‘interferes’’ with itself, weignoretrivia self interference.

In the first example above, the substitution o={(X,a), (Y,a)} shows that the rules
interfere. No substitution can be found for the second example, because the rules do not
interfere. In the final example, after renaming the variable in the second occurrence of
the rule, we find that the substitution o ={(X, f a), (Y, a)} makes the rule pair
(f(fX)O a, f(fY)O a) interfere.

In practice, it is easy to see when apair of rulesinterfere; Build atree where the pat-
terns of the left-hand sides of the two rules overlap in the tree. In the first example, such
atreehasform f (g a) E, andinthethird examplethetreehasform f (f (f E)).

6.14 Definition

A linear SRSis orthogonal if no pair of its rewriting rules interfere.

Orthogonal systems are common and natural; the é-rule sets in Section 6.6 are examples.
The main result of this sectionis

6.15 Theorem
Every orthogonal SRS has the confluence property.

A core programming language is typically an orthogonal SRS, and the addition of lambda
abstraction preserves orthogonality, so Theorem 6.15 implies that the languages we
develop have semantics definitions that make the rewriting rules sound.

The remainder of this section is devoted to a proof of Theorem 6.15, and if you are
disinterested in its development, you may proceed to the next section.

A key notion is that of residual. Let R; and R, be redexesin an expression, E,
and say that R; isreduced, which wewriteas. EO RE'. The residuals of R, arethose
copiesof R, if any, remainingin E'. Weformalizethisas

Subtree Replacement Systems 187

6.16 Definition

For redexes R; and R, in E, and EO RE' the residuals of R, in E, written

res(R,), aredefined as

(i) If Ry are R, aredigoint subtreesin E, then res(R,) is the single copy of
R, in E.

(i) If Ry iswithin R, in E, and the patterns of R; and R, are digoint, then
res(R,) isthesingle copy of R, in E'. (But note that the subpart of R, that
contained R; ischanged.)

(iii) If R, iswithin Ry in E, and the patterns of R; and R, are digoint, then
res(R,) are those copies, if any, of R, in E' that were propagated by the
rewriting rule.

(iv) If thepatternsof R, and R, overlap, then res(R,) in E' isempty.

For example, for rules fXYDO hYY and gX0O a expressons E =
f(ga)(f(gb)(gc)) and E =f(ga)(h(gc)(gc)), and reduction step EO E', the
residual of g a isitssingle copy in E', g b hasno residuals, g ¢ has two residualsin
E', f(gb) (gc) hasnone (why?), andtheresidua of E in E' is E' itself.

A residua of aredex isitself aredex, and after several reduction steps, we say that
the descendants of a redex are the residuals of the residuals of . . . the redex, that is, the
“‘residual’’ definition is extended by transitivity. For example, for expression E above,
the descendantsof g ¢ in E;, where

E=f(ga)(f(gb)(gc) O f(ga)(h(gc)(gc)
0 h(h(gc)(@c)(h(gc)(ge) O h(ha(gce) (h(gc)(ge)) = Es

arethe three occurrencesof g c in Es.

An excellent way to track the descendants of aredex is by ‘‘coloring’’ them: If we
wish to monitor the descendants of a redex in a reduction sequence, we color the pattern
of the original redex with ared pencil, and at each reduction step, any redexes with red-
colored patterns that are copied into the next expression in the sequence are copied in
red. (If the reduction step contracts a redex with a red pattern, the pattern of the contrac-
tum is not colored red.) In the above example, if we wish to monitor the residuals of g ¢
in EO "E;, we color the **g” part of gc in E with red. Each reduction step copies
red patterns into red patterns, so it is easy to locate the three residualsin E; (and note
that the a in E; isnot colored red).

An important game to play is reduction-of-colored-redexes-only. Given expression
E, say that we color the patterns of some of the redexesin E and then generate a reduc-
tion sequence where only colored redexes are reduced. Stated formally, a complete
development of a set of redexes Sin an expression E is areduction sequence that at each
stage reduces a descendant of a redex in S until no more descendants exist. An intuitive
and useful result is

188 Chapter 6: The Lambda Calculus

R R,
I \ R I \
R O S
where S denotes the contractum of R
RO O res(R)
Ry Rs
A R T resR) / / \ \
R R O S S

Figure6.3

6.17 Proposition

Every complete devel opment must terminate.

Proposition 6.17 lets uswrite ECJ SE' to denote a complete development of S. When Sis
asingleton set, {R}, wewrite EO RE', asusual.

An obvious question to ask is. Does the order of reduction in a complete develop-
ment influence the final result? We will see that the answer is‘‘no,”” and the easiest way
to get to the answer is by way of the proof of confluence. Hereis the central property in
our proof of confluence:

6.18 Definition

A subtree replacement system has the closure property if, for every redex R that
contains another redex R', if RORR; and RORR,, then there exists some Ry
suchthat R0 "SRR, and R, PR;.

Figure 6.3 pictures the closure property. Closure formalizes the idea that rule pairs
should not interfere with each other. You are left with the straightforward (but crucial)
exercise of showing that every orthogonal SRS has the closure property.

Now, we show how confluence follows from closure. Say that an SRS has the
parallel moves property if, for redex sets SJS and S,, EO SE, and EO SZEZ imply that
there exists some E; such that E;0"™¥E; and E,0 "™™E,. That is, the parallel
moves property generalizes closure to sets of redexes. Momentarily, we show that clo-
sure and the parallel moves property are equivalent, but first we go to the main goal:

Subtree Replacement Systems 189

E O F, O F, -0 F, 0O F,
O
E, O Ey
O
E, O Ey
Em-1
O
Em -
Figure 6.4
6.19 Theorem

If an SRS has the parallel moves property, then it has confluence.

Proof: Our jobisto ‘‘tiletheplane’’ bounded by E, E,, and F, atthecorners, where
EDEDOEO ---0OE, and EO FOF0O ---0OF, mn=0. See Figure 6.4. Each
square in the figure will befilled by a“‘tile’’ created by the parallel moves property. For
example, we could tile the plane column by column; the first two tiles of the first column
would be (1) thetilewhose edgesare EO E;, EO Fy, E;0"Ey;, and F,0 “Eyy, where
E;; is the name of the new corner; (2) the tile whose edges are E;0 E,, E;0"Ey;,
E,0 "E,;, and Ey; 0 "E,, where E,; isthe new corner. The rest of the first column
uses tiles similar to that of tile (2). Each tile has aformat that matches the parallel moves
property. The second (and subsequent) columns are covered with tiles of the form:

Eij O "Egayj, EijO "Eig41y, Egenj D "Eganyeny, ad Eigagy 0 "Egagyey- O

To show the last, missing result, that closure and the parallel moves property are
equivalent, we must introduce yet another version of confluence. An SRS is weakly
confluent if EO E; and EO E, implies that thereis some E; such that E;0 "E; and
E,0 "E;. Weak confluence looks like confluence, but it is indeed weaker; the following
system is weakly confluent but not confluent:

al b al c
b O a bOd

The counter exampleto confluenceis all “c and ald “d. But an important result is

190 Chapter 6: The Lambda Calculus

6.20 Lemma

If an SRSis strongly normalizing (that is, it has no infinite reduction sequences) and
weakly confluent, then it is confluent.

Proof: Our proof of this result is somewhat informal, but it gives the main intuition. (A
precise proof is in Huet 1980.) As in the proof of Theorem 6.18, we tile the plane
bounded by E, E,, and F, at the corners, where EO E;0 E,O0 ---0 E, and
EOFHOFRO ---0F, mn=0. Clearly, we can lay the first tile, which is bounded at
its corners by E, E;, F;, and there is some E;yp, p=0, such that
ElD ElllD E112|:| e D DEllp and F]_D DE]_lp. NOW we W|Sh tO Ia.y at“e Underneath
the first one, but we need p tiles, not just one! We can lay the p tiles, but to tile under-
neath them, we will need q;;xQux - - - X0y, tiles, where each qy; represents the
number of tiles needed underneath the ith tile in the row above. Figure 6.5 pictures the
situation. Thereis danger of infinite regress. Perhaps the tiling underneath the initia tile
can never complete because an infinite number of tiles are ultimately needed. But this
would imply the existence of an infinite reduction sequence, which is impossible, since
the SRS is strongly normalizing. Hence, thetiling, astedious asit is, must complete. []

We use Lemma 6.20 to prove the last result:

6.21 Lemma

An SRS has closure iff it has the parallel moves property.

Proof: The “‘if’’ part is easy: A system with the parallel moves property has closure,
because closure is just the parallel moves property with redex sets that are singleton sets.
For the ‘‘only if'’ part, assume that the SRS has closure. We build a new, ‘‘colored
SRS’ such that its rewriting rules reduce redexes only when they are colored red. By
Proposition 6.17, the colored SRS has the strong normalization property. By the closure

E OF,
H d
By ========0 Eiu U Eypp O -~ 0 Eyp
H H

E, 0 -0 Epg

Figure 6.5

Subtree Replacement Systems 191

property, the colored SRS is weakly confluent, since the residuals of a colored redex are
aways colored. By Lemma 6.19, the SRS is confluent. But confluence in the colored
SRS isjust the parallel moves property in the origina SRS, when the redexes in the sets
S, and S, areexactly the onescolored red. []

The *“‘only if"" part of Lemma 6.21 is sometimes caled the ‘‘parallel moves lemma,”’
hence our use of theterm *‘ parallel moves property.”’

Perhaps you have noted that the (untyped or simply typed) lambda calculusis not an
SRS, in particular, the B-rule does not fit the format for arewriting rule. The problem is,
as usual, substitution. The closest we can come to formalizing the B-rule as a rewriting
ruleis

but neither the left-hand nor the right-hand side of the rule is a polynomial expression.
Apparently, what is needed is a form of variable that can match a tree whose leaves are
labeled by free occurrences of an identifier, I. We write such avariable as (X and code
the B-rule as

(AL,X)Y) O X

where X represents the tree that matches X when its free occurrences of | are
replaced by Y. (Note: We blithely ignore issues related to the clash of free and bound
identifiersl) A variable like X is sometimes called a ‘*higher-order variable,”” since it
uses argumentslike | and Y.

Now, the pattern of a3-redex is ((Al.,[1) []); that is, the pattern includes the com-
bination, the Al., and the free occurrences of |. We see that patterns of nested -redexes
can intertwine, but they cannot overlap, and in this sense the lambda calculus is an
orthogonal SRS. A crucial feature of this sense of orthogonality is that an outer 3-redex
remains a redex even if an inner redex is contracted and some of the outer redex’s free
identifiers are replicated or deleted.

An orthogonal SRS without lambda abstraction can be augmented by lambda
abstraction and the B-rule, and the result is an orthogonal system. (This assumes that the
syntax of lambda abstraction, combinations, and identifiers is new to the SRS; otherwise,
patterns of rewriting rules might overlap.) Also, the lambda calculus with the 3-val rule
can be seen as orthogonal, since 3-val can be written as a family of orthogonal rules, one
rule for each form of Vaue, for example,

ALX)n O X, where n isanumeral
AL X) true O X
ALX)ALY) O punX

192 Chapter 6: The Lambda Calculus

We will not formalize higher-order variables here; details can be found in Klop 1980
and Khasidashvili 1993. But it is worthwhile to ponder their origin. Identifiers, as used
in the lambda calculus, are not ordinary phrases—they are placeholders, or literaly,
““hole labels,’” because they label holes in a phrase where other phrases should be
inserted. Imagine a phrase that contains a number of holes; it should be possible to match
that phrase to a variable that remembers the locations of the holes. Thisisthe idea behind
thevariable, | X, where | marksthe holes.

If we develop this idea, we naturally represent a phrase, E, with holesin it as |E
(the traditional representation is (1)E) to state that E has holes and they are labeled by
I. The purpose of the A isto delimit or bind together the holes, so that when one hole is
filled by a phrase, all of them are filled smultaneously by the same phrase. We write
A(DE, alambda abstraction, to do this. This suggests there might be additional delim-
itersfor holesbesides A; theideais explored in Chapters 8-10.

6.9 Standardization

A second major property of an SRS is strong normalization. Unfortunately, strong nor-
malization is undecidable for an arbitrary SRS, and many natural systems lack the pro-
perty, anyway. So, we concentrate on a standardization property, that is, we demonstrate
arewriting strategy that always finds an expression’s normal form, if one exists.

We say that aredex, R, inanexpression, E, isoutermostif R isnot properly con-
tained in another redex within E. Notice that the residual of an outermost redex might
not itself be outermost; for the rules

fXal a
b O a
cd a

the expression fcb contains ¢ as an outermost redex, but the reduction of redex b,
giving f c a, meansthat c's residua is not outermost.

An outermost redex, R, in E is eliminated by areduction EOE' if either (i) R
has no residual in E, or (ii)) R's residual is not outermost in E'. Notice that an outer-
most redex might be eliminated only after several reduction steps; for example, the (des-
cendant of the) outermost redex b in the expression f ¢ b iseliminated in two reduction
stepsinthissequence: fcb O fab O faal a A reduction sequenceis called even-
tually outermost if every outermost redex that appears in some expression in the reduc-
tion sequence is eventually eiminated. The previous example is an eventually outermost
reduction sequence.

6.22 Theorem

If an SRSis orthogonal, then if an expression E has a normal form, then any even-
tually outermost reduction sequence starting from E will find it.

Sandardization 193

So, a proper rewriting strategy for an orthogonal SRS is one that computes eventually
outermost reduction sequences. One such strategy, called parallel outermost, reduces al
the outermost redexes in an expression at once, in parallel. Often the leftmost-outermost
strategy computes eventually outermost reduction sequences—as it did in the previous
section—but thisis not guaranteed. Consider these rewriting rules:

ifXYtrue O X
loop O loop
not false O true

and the expression if a loop (not false). The leftmost-outermost reduction strategy is
inadequatein this case.

But thereis aform of SRS for which leftmost-outermost reduction will discover nor-
mal forms if they exist. Say that arewriting rule, |hs[d rhs, isleft normal if no variable
in Ihs precedes a constant or operator in lhs. The first rule in the above example violates
this condition, because both X and Y precede the constant true. An orthogonal SRS is left
normal if al its rules are. The example SRSs in the previous section are left normal.
(The B-ruleis discussed below.)

6.23 Theorem

If an SRS is left normal, then leftmost-outermost reduction generates eventually
outermost reduction sequences.

Thus, leftmost-outermost reduction for aleft norma SRS will discover anormal form for
any expression that has one.

The intuition in the preceding development can be generalized to handle the B-rule,
since the rule is left norma in the sense that, when we write its left-hand side as
apply (Al.,X) Y (apply isan explicit operator that stands for application), we see that no
variable precedes the operators apply and Al. (The identifiers, I, in X are ‘‘hole
markers'’ and not constants in the usua sense.) The B-val rule is problematic, however,
because the goal of a reduction sequence that uses 3-val is to reduce a phrase to a Value,
which is not necessarily the same as a normal form. Also, when the B-val rule is written
asafamily of orthogonal rules, it is clear that 3-val is not |eft normal.

Given a left normal SRS, where Vaues are also normal forms, say that we add
lambda abstractions and the B-val rule. Then, the strategy of reducing the leftmost-
outermost redex not contained within the body of a lambda abstraction suffices for com-
puting a Value. The proof is nontrivial, but some intuition can be gained in terms of the
development in this section. The body of alambda abstraction should be invisible to the
rewriting rules, so imagine that the bodies of lambda abstractions are covered by boxes,
for example, AX. (AY.Y)A looks like AX.[] totherewriting rules. The box is akind of
constant, and this makes the (B-val rule left normal. Further, the lambda abstraction

194 Chapter 6: The Lambda Calculus

AX.[] isakind of normal form. The leftmost-outermost reduction strategy on phrases
with boxed lambda abstractions is exactly the strategy of reducing leftmost redexes not
contained within lambda abstractions. Such a strategy suffices for finding normal forms
and therefore Values.

Suggested Reading

Church 1941 remains a readable presentation of the lambda cal culus, although a beginner
might prefer Hindley and Seldin 1986, and the advanced reader might consult Barendregt
1984. Curry and Feys 1958 is a standard and important reference. The simply typed
lambda calculus is described in Hindley and Seldin 1986, and extensions are covered in
Barendregt and Hemerik 1990 and Barendregt 1992. Morris 1968 shows how to use o-
rules to model a core programming language. The approach led to denotational seman-
tics; see Strachey 1966, 1968, and 1973 for evidence. The standard reference for the -
val ruleis Plotkin 1975; see also Felleisen and Hieb 1992.

Fundamental concepts of subtree replacement systems can be found in Klop 1992
and Dershowitz and Jouannaud 1990; background can be found in Huet 1980, Huet and
Oppen 1980, and Klop 1980. The standardization results in this chapter are based on
O'Donnell 1977; another referenceis Dershowitz 1987.

Exercises

1.1. Abbreviate these lambda expressions by removing all superfluous parentheses:
a (AY. AX (Y 2DX)))AX. X))
b. AX ((AY. (AX. Y)Y))X))
C. (AY.(AZ A Y)IAX (X X))

1.2. Reinsert all parentheses in these lambda expressions:
a AX.(AY.YY)ZX
b. AY.YYY)AX X X)

1.3. a Using just the B-rule, reduce the expressions in Exercises 1.1 and 1.2 to their
B-normal forms. If an expression does not appear to have a normal form,
explain why.

b. Using the B- and n-rules, reduce the expressions in Exercises 1.1 and 1.2 to
their Bn-normal forms, if they exist.

1.4. Demonstrate that the a-ruleis crucia to Theorem 6.1, that is, confluence cannot be
strengthened to *‘for any lambda expression E, if EOE; and EOE,, then
there exists alambdaexpression E; suchthat E;0 "E; and E,0 E;.”

Exercises 195

1.5. Animportant consegquence of the standardization is that it can be used to prove that

1.6.

17.

1.8.

alambda expression does not have a normal form. Use induction on the length of
a leftmost-outermost reduction segquence to prove that these expressions do not
have normal forms:

a (AX XX)AX. X X)

b. (AX. F(X X))(AX. F(X X))

Using Church numerals and the encoding for the addition operation
a verify that add23 0 U5.
b. prove, by mathematical induction, for all mand n, that addmn O " mn.

c. let true be encoded by (AXAY.X) and false be encoded by (AXAY.Y).
Code an operation, not, such that_not false 0 “true and not true O " false.
Similarly, encode if such that iftrueE; E, DY E; and iffalseE; E, O E,.
Finally, encode logical conjunction and disjunction.

d. let eg0 be AN.N(AX false)true. Verify that eq000"true and
eq0 n+1 0 Pfalse.

e. code the multiplication and exponentiation operations on Church numerals.

f. The Church numerals simulate simple recursion on the natural numbers,
namely, nkg implements f (n), where: f(0)=k, and f(n+1)=g(f(n)).
Now, consider primitive recursion, which takes the form: f (0) =k, and
f(n+1) = g(n, f(n)). Show how to use Church numerals to encode primitive
recursion. (Hint: Consider thisform of simple recursive function

f(0)=(0,K

f(n+1) = (n+1, g(f(n)))
where f returns a pair, consisting of the argument value and its answer.
Simulate pairs, and use them to simulate primitive recursion.) Use your con-
struction to encode the predecessor (‘‘minus one’ ") function; the factorial func-
tion.

When B-reducibility is extended to a congruence relation, the result is -
convertibility. Let cnv be the reflexive, symmetric, transitive, substitutive closure
of the (a- and) B-rule(s). That is, E; cnv E, iff there exist E,, ..., E,; such
that, for all O<i<n, E O E,; or E.; O E. The Church-Rosser property is: If
E; cnv E,, then there is some E; such that E; O "E; and E,0"E; (modulo
application of the a-rule). Prove that the Church-Rosser property is equivalent to
the confluence property.

Read Exercise 1.6. Now, let Y =AF. AX. F(X X))(AX. F(X X)).
a Showthat Y F cnv F(Y F).
b. If you worked Exercise 1.6, proceed. Let pred be some lambda expression

196 Chapter 6: The Lambda Calculus

such that pred 000 Y0 and predn+1 0 "n. Use, pred, and the expressions
from Exercise 1.6 to encode the factoria function on Church numeras; to
encode Ackermann’s function on Church numerals. Note: Ackermann’s func-
tion is defined as follows:

ackOn=n+1
ack (m+1) 0=ackm1
ack (m+1) (n+1) = ack m (ack (n+1) n)

1.9. Hereisastructural operational semantics for the lambda calculus and its 3-rule. A
computation step is a proof of E; p E,, and a computation is a sequence of steps
E.PE, E;PE; -, E, 1P E, Herearetherules:

EiPE

M. E)E E/NE _—
(1)E P [EX/1]E; E.6PEE

a. Calculate the semantics of the expressions in Exercises 1.1 and 1.2. What reduc-
tion strategy is encoded by the semantics?

b. Alter the semantics so that any redex whatsoever can be selected for a computation
step. Provethat E;0"E, iff E; PE, p -+ P E,.
1.10 Hereisanatural semantics for the lambda calculus and its B-rule. A computation
isaproof of E; p E,. Thesearetherules:
E;pALE; [EJ/IE/'PE

AMLEPALE Ipl S ErE

a Cadculate the semantics of the expressions in Exercises 1.1 and 1.2. What reduc-
tion strategy is encoded by the semantics?

b.* Alter the semantics so that it encodes a leftmost-outermost reduction strategy;
provethis.

1.11. Hereis yet another logic for the lambda calculus, which we call the theory of -
reducibility (cf. Hindley and Seldin 1986). Its formulas are phrases of the form
E, p E,, and its axioms and rules follow:

ALEPAI[IVIIE, if 'DFV(E) (A\L.LE)EP[E,/1]JE, EpE

BPE BEPE EpE BEPE EPEs
E.EPE/'E ALEPALE E;p E;
a Provethat E; O"E, (withthe a- and B-rules) iff E; p E, holds.

b. The theory of B-convertibility is the theory of B-reducibility, wherethe *‘ p "’
symbol is changed to the ‘*="" symbol and this rule is added:

Ei=E
E,=E;

Exercises 197

1.12.

2.1

2.2

2.3.

Prove that E; cnvE, iff E; =E, holds. (See Exercise 1.7 for the definition
of cnv.)

An expression, E, is in head normal form if it has the form

(Ali Al - Al T E; Ep - - - Ey), mn20. | maybean Ij, 1<j<m, butitisnot

necessary; for example, AX. Y X isin head normal form. (See Barendregt 1984.)

a. Provethat Q =(AX. X X)(AX. X X) hasno head normal form but Y (see Exer-
cise 1.8) does. Hence, an expression that has no normal form can have a head
normal form.

The intuition is that expressions that have head normal forms are computationally
useful. Thiscan beformalized. A closed expression, E, is solvableiff there exist
expressions, E;, E,, ..., E,, n=0,suchthat (EE; E, - - - E,) cnv (AX. X).

b. Provethat Q isnot solvable (hint: use Theorem 6.3) but that Y is solvable.

c.* Prove, for every closed expression, E, that E is solvable iff E has a head
normal form.

For an expression, (Al;Al,. - Al ALLEQ) E; E; - - - E), m=0, n>0, say that
(A1.Eg)E; isthe head redex of the expression. The head redex reduction strategy
reduces the head redex at each stage of a reduction sequence.

d. Use Theorem 6.3 to prove that E has a head normal form iff the head redex
reduction strategy appliedto E terminates.

Anexpression, E, isinweak head normal formif it isin head normal formor itis
alambda abstraction. (See Abramsky 1990 or Peyton Jones 1987.)

e. Give an example of an expression that has weak head normal form but not
head normal form.

f. Define areduction strategy such that an expression, E, has weak head normal
form iff the reduction strategy appliedto E terminates. Provethis.

g. If you understand the implementation of a functional language like Lisp,
Scheme, or ML, comment as to which of the notions of normal form, head nor-
mal form, or weak head normal form is most suited to describing the imple-
mentation.

Apply the B-val rule to these examples:

a AX.AY.YY)AY. X XNAY.Y)(AX. X X))

b. AX. (AZ (AY.Y) X)(X X))(AX. X X)

Say that the 3-val rule is altered to read as follows:

(ALLE)E, O [E)/IE,, if Ey isinnormal form
Show that the confluence property fails. (Hint: Consider when E, is (X X).)

Define a reduction strategy for the B-val rule and prove that it discovers a Vaue

198

24.

25.

3.1

3.2.

Chapter 6: The Lambda Calculus

for an expression, if one exists.

If you worked Exercises 1.9, 1.10, or 1.11, proceed. Alter those semantics
definitions so that the B-val ruleis used in place of the B-rule.

Here is another logistic system for the lambda calculus. Let e stand for an environ-
ment of the usua form {l;=v4,...,1,=Vv,}. Configurations have the form
el-EO v. Herearethe axioms and inferencerules:

eF(ALE)M el EO efFl10v, if (I=v)Oe

eFE; M€, I,ED eFE,0v €8 {l=viFEOV
el (E.E)O v
The system is another natural semantics of the lambda calculus.
a Prover If {ly=vq,...,1,=v,} FEOV can be proved, then
va/lg, oo v/ IJEDO Pv
b. Show that the converse to Part a does not hold.
c. Describethe form of reduction strategy defined by the logistic system.

Let E;=E, meanthat E; and E, arethe same expression, modulo application of
the a-rule, and let E;0 "E, meanthat E; reduces, by means of the B-rule, to E,,
modulo applications of the a-rule. Use induction on rank to prove the following:

If JOFV(E,), then [Ey/ J[VI]E, =[Ey/ 1]E;.
If JOFV(E,), then [Ey/ 1][Es/ JE; =[([Ex/ 11E3) J[E,/ 1]E;.
[Eo/ I[Es/ 1]Eq = [([Eo/ 1]E)/ 1]Ey.

If E;0"E,, then [E;/1]E;0 HE,/ I]Es.

If E;0"E,, then [Es/1]E;0 YEs/ IE,.

® oo T

Following are three aternatives to the classic definition of substitution. For each,
(i) reformulatethe 3-rule; (ii) re-prove Exercise 3.1.

a. From Barendregt 1984, the ‘‘expressions’ of the lambda calculus are
equivalence classes with respect to the a-rule. Let [E], represent an
equivalence class. For example, the equivalence classes [AX.X], and
[AY.Y], arethesame‘‘expression.’”’ Substitution is defined asfollows:

[[Ela/1] [1]a = [Elq

[([Ela/1][Ja = [Ja. if F#

[[Ela/1][E1 BEpla =[Eq" Eo']a, Where [Ey']q = [[Ela/1] [E1]q,
and [E>']o =[[Elo/1] [E]a

[[Ela/11[AJ.E1]q =[AJE o
where J#1, J isnot freein E, and [E;']q =[[Elo/11[E1lq

Prove that the definition of substitution is well defined; that is: (i) for al

Exercises

41. a

199

expressions, E;, [[E]4/1][Ei]q isdefined; (ii) if expressions E; and E, are
a-convertible, then [[E]q/[Ei]la = [[Elo/[E2]o. The proof method for the
calculus is structural induction. Explain why structural induction is sound for
expressions-as-equival ence-classes.

From Stoughton 1984b, the expressions for the lambda calculus are the tradi-
tional ones. A substitution, g, is a mapping from identifiers to expressions.
For convenience, we represent a substitution as a (finite) set of the form
{I4=E4, ..., 1,=E,}. Wewrite o.l =E, when (I=E) [& , and write o.l =1
otherwise. Application of a substitution, g, to an expression, E, is written
oE. Itisdefined as

ol=al
0(E; By) = (0E; OEy)
o(ALLE)=(AJ.(c B {1=3})E)

where J isthe‘‘first’” identifier in an enumeration of all identifiers that do not
appear freein any o.l', for al I' OFV(AL.E). The proof method for the cal-
culus is structural induction. Define 6, o g; to be the mapping: (05 ° G7).l
=0,(04.1). Provethat for al o4, 05, and E, (0, ° 0;)E = 0,(04E).

From de Bruijn 1972 and Barendregt 1984, the expressions for the lambda cal-
culus have the following syntax:

E:=E E |AE|n for n>0
The intuition is that a numeral stands for an identifier that binds to the nth
enclosing lambda. For example, A1(A2149)1 represents
(AX. X (AY. XY F,)) Fq, where the free identifiers are enumerated as F4, F,

. Define [E;/n]E,. (Be careful about the ‘‘free identifiers” in E;.) The
proof method for the calculusis structural induction.

Prove the unicity of typing property for the simply typed lambda calculus: For
al m E,and 1, if T-E: T holds, then T isunique.

b. Provethatif mB {I:1} FE: T holds, then 8 {J1} |F[J/I]E:T" holds.

Prove that if mFE T holds and K is a fresh identifier, then

nH {K:1'} FE: T holds.

Prove the converse to Theorem 6.7: if T|FE,: 1, and mti|-[E»/1]E;: 14 hold,
thensodoes mHB {I:1,} FE;:14.

Provethat foral 1 I, and 1, that Ttf-(1 1): T cannot hold. Conclude from Part
dthat if T-E: 1 holds, then t|-EE: T cannot.

4.2. A useful tool for studying reduction strategies is the evaluation context (cf. Fel-
leisen and Hieb 1992). An evauation context is a phrase with a single ‘‘hole,”’
into which aredex canfit. Hereisasyntax rule for evaluation contexts:

X =111 (XE)

200

4.3.

51.

Chapter 6: The Lambda Calculus

E is alambda calculus expression, as usual, and [] is a hole; we write C[] to
denote an evaluation context.

a. Provethat if E; contains aB-redex, R, then E, can be derived in the form
C[R] iff R istheleftmost redex in E, not contained within alambda abstrac-
tion.

b. Say that areduction step, EO E', must match exactly this format:
CI(AlLE)Ey] O Cl[Ex/ NEq]
What reduction strategy is encoded by this rewriting rule?
c. Consider this syntax for evaluation contexts:
X =[] (XE) | (VX)
V = ALE ||
If the B-val rule is used in place of the B-rule (cf. Part b), what reduction stra-
tegy is defined?
d. We can perform simple proofs of reduction properties by induction on the

structure of evaluation contexts. Re-prove the subject-reduction property for
the reduction strategiesin Partsb and c.

Add records to the simply typed lambda calculus, with the syntax and typing rules

in Figure 5.2. Therewriting ruleis
with{1,=E;, 1,=E,, ..., I,=E,} doE O [Ei/11,Es/ 1y, ..., E/IL]E

So, parallel substitution is required.

a. Give acomplete, formal definition of parallel substitution for the ssimply typed
lambda calculus with records. (Take care with the definition of substitution
into awith expression!)

b. Definetherank of arecord expression and awith expression.

c. Reprove Theorem 6.4.

Confluence and strong normalization hold for this calculus.

Alter the lazy evaluation semantics of the lambda calculus in the following ways.
First, for ground type, 1, add the constant, loop, suchthat Ttf-loop:1 holds. Say
that [[rtf-loop:ile= 0. Next, replace the semantics eguations for lambda
abstraction and application by these:
[TtFEALT . E 11> T]le =1,
where f 0 =10
and fu =[[n8 {l:ty} FE (e B {I=u}), if uz 0O
[[T[I_El E2:92]]e: D, if [[T['_ El:Tl — T2]]e: O
[MFE; Ey:6,]le= ([t Eq: 6, - 6,]€) ([Tt Ey: 64]€), otherwise
Prove that the 3-val ruleis sound for this semantics but the B-ruleis not.

Exercises 201

6.1. Verify that the following expressions are well typed and reduce them to normal
forms, if normal forms exist.

a. (eguals (if (not(equals 3 2)) 4 (plus 5 (if true 6 7))) 8)
b. (AX:intAY:int. plus X Y))((if true (A X:int. plus X 1) (AY:int. Y)) 3)
c. (fix(AF:int-intAX:int. plus X (F (plus X 1)))) O

6.2. Use the fix operator to encode the multiplication function in terms of the addition
operator; use fix to encode exponentiation in terms of multiplication.

7.1. Caculate the substitution semantics and the environment semantics of these pro-
grams with the input store [0, 10
a. (AX:intloc. (A\P:comm- comm. X:=0; (P (X:=@X+1)))(A Q:comm. Q))loc;
b. whileloc;=0do (AA:intexp. loc,:=A)@loc; od
7.2. Say that the B-rule is used in place of the (3-val rule to reduce lambda abstractions
in the metalanguage. Does this make any difference to the semantics of the source
language?
8.1. Consider this SRS:
(E = a‘ b‘fE‘gElEQ,
{faO b, fbO a gX{EY)O gfY)@XX)})
a. Isthe SRS orthogonal ?

b. Calculate the residuals of (fa) at each stage in the leftmost outermost reduc-
tion sequence of g (fa) (f b).

c. Do a complete development of the redex set {(fa), (g(fa) (fh))} for
g (fa) (fb). Isthere more than one possible complete devel opment?

d. Doesthe SRS have the closure property? Confluence?

8.2. a. Givean example of an SRSthat is not orthogonal but has the closure property.
b. Give an example of an SRS that does not have closure but has confluence.

8.3. Verify that the rewriting rules in Section 6.6 form an orthogonal SRS.
8.4.* Prove Proposition 6.17.

8.5.* Without appealing to orthogonality, prove that the lambda calculus and its B-rule
have the closure property.

8.6. Thereis a close relationship between certain orthogonal SRSs and natural seman-
tics definitions. Theintuition is that a natural semanticsrule
E.pvi - EiPwy
OpE; -~ Enval---vn

202

9.1

9.2.

Chapter 6: The Lambda Calculus

corresponds to the rewriting rule opE, ---E, O f, ..., , where v;, ..., v, ae
Values.
a. Define the class of orthogonal SRSs and natural semantics definitions that

“*correspond’’ and give translations between the two.

An advantage of natural semantics definitions is that proofs about computa-
tions can be performed by induction on the structure of the proof trees. Based
on your answer to Part a, state an induction principle for proofs of computa-
tionsin orthogonal SRSs.

Which of these reduction strategies for orthogonal SRSs are eventually outermost?
Justify your answer.

a

Full reduction: At each stage, all redexesin an expression are reduced in paral-
lel.

Parallel innermost: At each stage, all redexes not containing other redexes are
reduced in paralldl.

Rightmost outermost: At each stage, the rightmost redex is reduced.

Round robin: A queue is kept of the redexes that were outermost at some stage.
At each stage, the front element of the queueis selected, and al residuals of the
redex are reduced. Any new outermost redexes are added to the queue. (The
queueisinitialized with all the outermost redexesin theinitial expression.)

Say that an SRS is not orthogonal. Will an eventually outermost reduction stra-
tegy always discover anormal form?

