
Model-CheckingA Tutorial IntroductionMarkus M�uller-Olm1, David Schmidt2, and Bernhard Ste�en11 Dortmund University, Department for Computer Science, FB 4, LS 5,44221 Dortmund, Germany,fmmo,steffeng@ls5.cs.uni-dortmund.de2 Kansas State University, Department of Computing and Information Sciences,Manhattan, Kansas 66506, USA,schmidt@cis.ksu.eduAbstract. In the past two decades, model-checking has emerged asa promising and powerful approach to fully automatic veri�cation ofhardware systems. But model checking technology can be usefully ap-plied to other application areas, and this article provides fundamentalsthat a practitioner can use to translate veri�cation problems into model-checking questions. A taxonomy of the notions of \model," \property,"and \model checking" are presented, and three standard model-checkingapproaches are described and applied to examples.1 IntroductionIn the last two decades model-checking [11, 34] has emerged as a promising andpowerful approach to automatic veri�cation of systems. Roughly speaking, amodel checker is a procedure that decides whether a given structure M is amodel of a logical formula �, i.e. whether M satis�es �, abbreviated M j= �.Intuitively,M is an (abstract) model of the system in question, typically a �niteautomata-like structure, and �, typically drawn from a temporal or modal logic,speci�es a desirable property. The model-checker then provides a push-buttonapproach for proving that the system modeled by M enjoys this property. Thisfull automation together with the fact that e�cient model-checkers can be con-structed for powerful logics, forms the attractiveness of model-checking.The above \generic" description of model-checking leaves room for re�ne-ment. What exactly is a model to be checked? What kind of formulas are used?What is the precise interpretation of satisfaction, j=? We present a rough mapover the various answers to these questions, and in the process, we introduce themain approaches.The various model-checking approaches provide a cornucopia of generic deci-sion procedures that can be applied to scenarios that go far beyond the problemdomains for which the approaches were originally invented. (The work of of someof the authors on casting data ow analysis questions as model-checking prob-lems is an example [35].) We intend to provide a practitioner with a basis she

2 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�en
x=0
y=2

x=1
y=1

x=2
y=0Fig. 1. Example Kripke structurecan use to translate problems into model structures and formulas that can besolved by model checking.The rest of this article is organized as follows: In the next section we dis-cuss the model structures underlying model-checking|Kripke structures, labeledtransition systems and a structure combining both called Kripke transition sys-tems. Section 3 surveys the spectrum of the logics used for specifying propertiesto be automatically checked for model structures. We then introduce three basicapproaches to model-checking: the semantic or iterative approach, the automata-theoretic approach, and the tableau method. The paper �nishes with a numberof concluding remarks.2 ModelsModel-checking typically depends on a discrete model of a system|the system'sbehavior is (abstractly) represented by a graph structure, where the nodes rep-resent the system's states and the arcs represent possible transitions between thestates. It is common to abstract from the identity of the nodes. Graphs aloneare too weak to provide an interesting description, so they are annotated withmore speci�c information. Two approaches are in common use: Kripke struc-tures, where the nodes are annotated with so-called atomic propositions andlabeled transition systems (LTS), where the arcs are annotated with so-calledactions. We study these two structures and introduce a third called Kripke tran-sition systems, which combines Kripke structures and labeled transition systemsand which is often more convenient for modeling purposes.Kripke Structures. A Kripke structure (KS) over a set AP of atomic propositionsis a triple (S;R; I), where S is a set of states, R � S�S is a transition relation,and I : S ! 2AP is an interpretation. Intuitively the atomic propositions, whichformally are just symbols, represent basic local properties of system states; Iassigns to each state the properties enjoyed by it. We assume that a set ofatomic propositions AP always contains the propositions true and false and that,for any state s, true 2 I(s) and false =2 I(s). A Kripke structure is called totalif R is a total relation, i.e. if for all s 2 S there is a t 2 S such that (s; t) 2 Rotherwise it is called partial. For model-checking purposes S and AP are usually�nite.Figure 1 displays an example Kripke structure whose propositions take theform, var = num; the structure represents the states that arise while the pro-gram's components, x and y, trade two resources back and forth.Kripke structures were �rst devised as a model theory for modal logic [5, 25],whose propositions use modalities that express necessity (\must") and possibil-

Model-Checking 3ity (\may"). In this use of a Kripke structure, the states correspond to di�erent\worlds" in which di�erent basic facts (the atomic propositions) are true; tran-sitions represent reachability between worlds. The assertion that some fact ispossibly true is interpreted to mean there is a reachable state (world) in whichthe fact holds; the assertion that a fact is necessarily true means that the factholds in all reachable worlds. Kripke showed that the axioms and rules in dif-ferent systems of modal logics correspond to properties that hold in di�erentclasses of Kripke structures [28, 29]. These logical settings for Kripke structures(in particular, the notion of \worlds") can provide useful guidance for expressingcomputing applications as Kripke structures [5, 16].Labeled Transition Systems. A labeled transition system (LTS) is a triple T =(S;Act;!), where S is a set of states, Act is a set of actions, and!� S�Act�Sis a transition relation. A transition (s; a; s0) 2!, for which we adopt the moreintuitive notation s a! s0, states that the system can evolve from state s tostate s0 thereby exchanging action a with its environment. We call s a! s0 atransition from s to s0 labeled by action a, and s0 is an a-successor of s. In anLTS, the transitions are labeled with single actions, while in a Kripke structure,states are labeled with sets of atomic propositions. Labeled transition systemsoriginate from concurrency theory, where they are used as an operational modelof process behavior [33]. In model-checking applications S and Act are usually�nite.Fig. 3 displays two small examples of labeled transition systems that displaythe actions a vending machine might take.Kripke Transition Systems. Labels on arcs appear naturally when the labelingmodels the dynamics of a system, whereas labels on node appear naturally whenthe labeling models static properties of states. There are various ways to encodearc labelings by node labelings and vice versa. (One of them is described below.)And, logical considerations usually can be translated between these two repre-sentations. For these reasons, theoretical analyses study just one form of labeling.For modeling purposes, however, it is often natural to have both kinds of labelingavailable. Therefore, we introduce a third model structure that combines labeledtransition systems and Kripke structures.A Kripke transition system (KTS) over a set AP of atomic propositions is astructure T = (S;Act;!; I), where S is a set of states, Act is a set of actions,!� S � Act � S is a transition relation and I : S ! 2AP is an interpretation.For technical reasons we assume that AP and Act are disjoint. Kripke transitionsystems generalize both Kripke structures and labeled transition systems: AKripke structure is a Kripke transition system with an empty set of actions,Act, and a labeled transition system is a Kripke transition system with a trivialinterpretation, I .Kripke transition systems work well for modeling sequential imperative pro-grams for data ow analysis purposes, as they concisely express the impliedpredicate transformer scheme: nodes express the predicates or results of theconsidered analysis, and edges labeled with the statements express the nodes'

4 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�en
i=y

z:=z+x
i:=i+1

{z=x*y}

z:=0
i:=0

i!=y

{true}

{i!=y, z=i*x}

{z=i*x}
i=y

{i,y}

z:=z+x
i:=i+1

{}

z:=0
i:=0

i!=y

{z,i,x,y}

{y}

Fig. 2. Two Kripke transition systems for a programinterdependencies. If data ow analysis is performed via model-checking, Kripketransition systems thus enable to use the result of one analysis phase as inputfor the next one.Figure 2 shows two Kripke transition systems for the program, z:=0; i:=0;while i!=y do z:=z+x; i:=i+1 end. Both systems label arcs with programphrases. The �rst system uses properties that are logical propositions of theform, var = expr; it portrays a predicate-transformer semantics. The secondsystem uses propositions that are program variables; it portrays the results of ade�nitely-live-variable analysis.Any Kripke transition system T = (S;Act;!; I) over AP induces in a nat-ural way a Kripke structure KT which codes the same information. The ideais to associate the information about the action exchanged in a transition withthe reached state instead of the transition itself. This is similar to the classictranslation of Mealy-Automata to Moore-Automata. Formally, KT is the Kripkestructure (S � Act; R; I 0) over AP [Act with R = f(hs; ai; hs0; a0i) j s a0! s0gand I 0(hs; ai) = I(s) [fag. Logical consideration about T usually can straight-forwardly be translated to considerations about KT and vice versa. Therefore,logicians usually prefer to work with the structurally more simple Kripke struc-tures. Nevertheless, the richer framework of Kripke transition systems is oftenmore convenient for modeling purposes.Often we may want to designate a certain state s0 2 S in a KS, LTS, or KTSas the initial state. Intuitively, execution of the system starts in this state. Astructure together with such a designated initial state is called a rooted structure.3 LogicsThe interpretation, I , in a Kripke transition system de�nes local properties ofstates. Often we are also interested in global properties connected to the transi-tional behavior. For example, we might be interested in reachability properties,like, \Can we reach from the initial state a state where the atomic propositionP holds?" Temporal logics [17, 36] are logical formalisms designed for expressingsuch properties.

Model-Checking 5
coin coin

teacoffee

coin

teacoffee

Fig. 3. Two vending machinesTemporal logics come in two variants, linear-time and branching-time. Linear-time logics are concerned with properties of paths. A state in a transition systemis said to satisfy a linear-time property if all paths emanating from this statesatisfy the property. In a labeled transition system, for example, two states thatgenerate the same language satisfy the same linear-time properties. Branching-time logics, on the other hand, describe properties that depend on the branchingstructure of the model. Two states that generate the same language but by us-ing di�erent branching structures can often be distinguished by a branching-timeformula.As an example, consider the two rooted, labeled transition systems in Fig. 3,which model two di�erent vending machines o�ering tea and co�ee. Both ma-chines serve co�ee or tea after a coin has been inserted, but from the customer'spoint of view the right machine is to be avoided, because it decides internallywhether to serve co�ee or tea. The left machine, in contrast, leaves this decisionto the customer. Both machines have the same set of computations (maximalpaths): fhcoin; co�eei; hcoin; teaig. Thus, a linear-time logic will be unable todistinguish the two machines. In a branching-time logic, however, the property,\a co�ee action is possible after any coin action" can be expressed, which di�er-entiates the two machines.The choice of using a linear-time or a branching-time logic depends on theproperties to be analyzed. Due to their greater selectivity, branching-time logicsare often better for analyzing reactive systems. Linear-time logics are preferredwhen only path properties are of interest, as when analyzing data-ow propertiesof graphs of imperative programs.3.1 Linear-Time LogicsPropositional linear-time logic (PLTL) is the basic prototypical linear-time logic.It is often presented in a form to be interpreted over Kripke structures. Itsformulae are constructed as follows, where p ranges over a set AP of atomicpropositions: � ::= p j :� j �1 _ �2 j X(�) j U(�;) j F(�) j G(�)

6 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�en� j= p i� p 2 I(�0)� j= :� i� � 6j= �� j= �1 _ �2 i� � j= �1 or � j= �2� j= X(�) i� j�j > 1 and �1 j= �� j= U(�;) i� there is k, 0 � k < j�j, with �k j= and for all i, 0 � i < k, �i j= �� j= F(�) i� there is k, 0 � k < j�j, with �k j= � j= G(�) i� for all k with 0 � k < j�j, �k j= Fig. 4. Semantics of PLTLPLTL formulas are interpreted over paths in a Kripke structure K = (S;R; I)over AP. A �nite path is a �nite, non-empty sequence � = h�0; : : : ; �n�1i ofstates �0; : : : ; �n�1 2 S such that (�i; �i+1) 2 R for all 0 � i < n � 1. n iscalled the length of path, denoted by j�j. An in�nite path is an in�nite sequence� = h�0; �1; �2 : : :i of states in S such that (�i; �i+1) 2 R for all i � 0. Thelength of an in�nite path is 1. For 0 � i < j�j, �i denotes the i-th state in path�, and �i is h�i; �i + 1; : : :i, the tail of the path starting at �i. In particular,�0 = �. A path in a Kripke structure is called maximal if it cannot be extended.In particular, every in�nite path is maximal.In Fig. 4, we present an inductive de�nition of when a path, �, in a Kripkestructure K = (S;R; I) satis�es a PLTL formula, �. Intuitively, � satis�es anatomic proposition, p, if its �rst state does; atomic propositions represent localproperties. : and _ are interpreted in the obvious way; further Boolean connec-tives may be introduced as abbreviations in the usual way, e.g., �1 ^ �2 can beintroduced as :(:�1 ^ :�2).The modality X(�) (\next �") requires the property � for the next situationin the path; formally, X(�) holds if � holds for the path obtained by removingthe �rst state. G(�) (\generally �" or \always �") requires � to hold for allsituations; F(�) (\�nally �") for some (later) situation. Thus G and F provide akind of universal (resp., existential) quanti�cation over the later situations in apath. U(�;) (\� until ") requires to become true at some later situation and� to be true at all situations visited before. This operator sometimes is called\strong until" because it requires to become true �nally. This is di�erent fora variant of the until modality, called \weak until," because the formula holdstrue when � is true forever. Strong- and weak-until can be de�ned from eachother using F and G:U(�;) =WU(�;) ^ F() and WU(�;) = U(�;) _ G(�) :They are also (approximate) duals::U(�;) =WU(: ;:� ^ :) and :WU(�;) = U(: ;:� ^ :) :

Model-Checking 7�X(�): �G(�):F(�):U(�;):WU(�;):
� � � ���� � . . . or

�
� � � � � . . .�� � . . .�Fig. 5. Illustration of linear-time modalitiesMoreover, F can easily be de�ned in terms of U, and G in terms of WUF(�) = U(true; �) and G(�) =WU(�; false) ;and F and G are duals:F(�) = :G(:�) and G(�) = :F(:�) :The meaning of the modalities is illustrated in Fig. 5.While the basic structures of a linear-time logic are paths, the model-checkingquestion usually is presented for a given Kripke structure. The question is thento determine, for each state, whether all paths emanating from the state satisfythe formula. Sometimes, one restricts the question to certain kinds of paths,e.g., just in�nite paths, or maximal �nite paths only, or all (�nite or in�nite)maximal paths. Perhaps the most common case is to consider in�nite paths intotal Kripke structures.Variants of PLTLmay also be de�ned for speaking about the actions in a KTSor LTS. A (�nite) path in a KTS or LTS is then a non-empty alternating sequence� = hs0; a1; s1; : : : ; sn�1i of states and actions that begins and ends with a stateand satis�es si ai+1! si+1 for i = 0; : : : ; n� 1. Again we call j�j = n the length ofpath �, �i stands for si, and �i denotes the path hsi; ai+1; si+1; : : : ; sn�1i. In�nitepaths are de�ned similarly. With these conventions, PLTL can immediately beinterpreted on such extended paths with the de�nition in Fig. 4. We may nowalso extend the syntax of PLTL by allowing formulas of the form (a), where ais an action in Act. These formulas are interpreted as follows:� j= (a) i� j�j > 1 and a1 = a ;where a1 is the �rst action in �.3.2 Branching-Time LogicsHennessy-Milner Logic. Hennessy-Milner logic (HML) is a simple modallogic introduced by Hennessy and Milner in [24, 33]. As far as model-checking is

8 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�en......aa ahai�: �aa a[a]�: ���Fig. 6. Illustration of branching-time modalitiesconcerned, Hennessy-Milner logic is limited because it can express properties ofonly bounded depth. Nevertheless, it is of interest because it forms the core ofthe modal �-calculus, which appears in the next section.HML is de�ned over a given set, Act, of actions, ranged over by a. Formulasare constructed according to the grammar,� ::= true j false j �1 ^ �2 j �1 _ �2 j [a]� j hai�The logic is interpreted over labeled transition systems. Given an LTS T =(S;Act;!), we de�ne inductively when state s 2 S satis�es HML formula �:s j= true s 6j= falses j= �1 ^ �2 i� s j= �1 and s j= �2s j= �1 _ �2 i� s j= �1 or s j= �2s j= [a]� i� for all t with s a! t, t j= �s j= hai� i� there is t with s a! t and t j= �All states satisfy true and no state satis�es false. A state satis�es �1 ^ �2 ifit satis�es both �1 and �2; it satis�es �1 _ �2 if it satis�es either �1 or �2 (orboth). The most interesting operators of HML are the branching time modalities[a] and hai. They relate a state to its a-successors. While [a]� holds for a stateif all its a-successors satisfy formula �, hai holds if an a-successor satisfyingformula � exists. This is illustrated in Fig. 6. The two modalities provide a kindof universal and existential quanti�cation over the a-successors of a state.As introduced above, HML has as its atomic propositions only true and false.If HML is interpreted on a KTS T = (S;Act;!; I) over a certain set of atomicpropositions, AP, we may add atomic formulae p for each p 2 AP. These formulasare interpreted as follows: s j= p i� p 2 I(s)Moreover, it is sometimes useful in practice to use modalities [A] and hAithat range over set of actions A � Act instead of single actions. They can beintroduced as derived operators:[A]� def= â2A[a]� hAi� def= _a2Ahai� :We also write [] for [Act] and h i for hActi. A version of HML suitable for Kripkestructures would provide just the modalities [] and h i.

Model-Checking 9Modal �-Calculus. The modal mu-calculus [27] is a small, yet expressivebranching-time temporal logic that extends Hennessy-Milner logic by �xpointoperators. Again it is de�ned over a set, Act, of actions. We also assume a givenin�nite set Var of variables. Modal �-calculus formulas are constructed accordingto the following grammar:� ::= true j false j [a]� j hai� j �1 ^ �2 j �1 _ �2 j X j �X : � j �X : �Here, X ranges over Var and a over Act. The two �xpoint operators, �X and �X ,bind free occurrences of variable X . We will apply the usual terminology of freeand bound variables in a formula, closed and open formulas, etc. Given a least(resp., greatest) �xpoint formula, �X : � (�X : �), we say that the � (�) is theformula's parity.The above grammar does not permit negations in formulas. Of course, nega-tion is convenient for speci�cation purposes, but negation-free formulas, knownas formulas in positive form, are more easily handled by model-checkers. In mostlogics, formulas with negation can easily be transformed into equivalent formulasin positive form by driving negations inwards to the atomic propositions withduality laws like:hai� = [a]:� ; :(�1 ^ �2) = :�1 _ :�2 , and :(�X : �) = �X ::�[:X=X]But there is a small complication: We might end up with a subformula of theform :X from which the negation cannot be eliminated. We avoid this problemif we pose this restriction on �xpoint formulas: in every �xpoint formula, �X : �or �X : �, every free occurrence of X in � must appear under an even number ofnegations. This condition ensures that the meaning of � depends monotonicallyon X , which ensures the well-de�nedness of the semantics of �xpoint formulas.Modal mu-calculus formulae are interpreted over labeled transition systems.Given an LTS T = (S;Act;!), we interpret a closed formula, �, as that subsetof S whose states make � true. To explain the meaning of open formulas, weemploy environments, partial mappings � : Var part:! 2S , which interpret the freevariables of � by subsets of S. �(X) represents an assumption about the set ofstates satisfying the formula X . The inductive de�nition of MT (�)(�), the setof states of T satisfying the mu-calculus formula � w.r.t. environment �, is givenin Fig. 7. The meaning of a closed formula does not depend on the environment.We write, for a closed formula � and a state s 2 S, s j=T � if s 2 MT (�)(�) forone (and therefore for all) environments.Intuitively, true and false hold for all, resp., no states, and ^ and _ areinterpreted by conjunction and disjunction. As in HML, hai� holds for a states if there is an a-successor of s which satis�es �, and [a]� holds for s if all itsa-successors, satisfy �. The interpretation of a variable X is as prescribed by theenvironment. The least �xpoint formula, �X : �, is interpreted by the smallestsubset x of S that recurs when � is interpreted with the substitution of x for X .Similarly, the greatest �xpoint formula, �X : �, is interpreted by the largest suchset. These sets can be characterized as the least and greatest �xpoints, �x�F�;�

10 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enMT (true)(�) = SMT (false)(�) = ;MT ([a]�)(�) = fs j 8s0 : s a! s0) s0 2 MT (�)(�)gMT (hai�)(�) = fs j 9s0 : s a! s0 ^ s0 2MT (�)(�)gMT (�1 ^ �2)(�) =MT (�1)(�) \MT (�2)(�)MT (�1 _ �2)(�) =MT (�1)(�) [MT (�2)(�)MT (X)(�) = �(X)MT (�X : �)(�) = �x�F�;�MT (�X : �)(�) = �x�F�;�Fig. 7. Semantics of modal mu-calculusand �x�F�;�, of the functional F�;� : 2S ! 2S de�ned byF�;�(x) =MT (�)(�[X 7! x])Here, �[X 7! x] denotes, for a set x � S and a variableX 2 Var, the environmentthat maps X to x and that coincides on the other variables with �. We now mustreview the basic theory of �xpoints.3.3 Fixpoints in Complete LatticesA convenient structure accommodating �xpoint construction is the completelattice, i.e., a non-empty, partially ordered set in which arbitrary meets and joinsexist. We assume the reader is familiar with the basic facts of complete lattices(for a thorough introduction see the classic books of Birkho� and Gr�atzer [3,21]).We now recall some and results directly related to �xpoint theory. Let (A;�A)and (B;�B) be complete lattices and C a subset of A. C is a chain if it is non-empty and any two elements of C are comparable with respect to �A. A mappingf 2 (A! B) is monotonic if a �A a0 implies f(a) � f(a0) for all a; a0 2 A. Themapping is _-continuous if it distributes over chains, i.e., for all chains C � A,f(_C) = _ff(c) j c 2 Cg. The notion of ^-continuity is de�ned dually. Both _-and ^-continuity of a function imply monotonicity. ? and > denote the smallestand largest elements of a complete lattice. Finally, a point a 2 A is called a�xpoint of a function f 2 (A ! A) if f(a) = a. It is a pre-�xpoint of f iff(a) � a and a post-�xpoint if a � f(a).Suppose that f : A ! A is a monotonic mapping on a complete lattice(A;�). The central result of �xpoint theory is the following [40, 31]:Theorem 1 (Knaster-Tarski �xpoint theorem). If f : A ! A is a mono-tonic mapping on a complete lattice (A;�), then f has a least �xpoint �x�f

Model-Checking 11as well as a greatest �xpoint �x�f which can be characterized as the smallestpre-�xpoint and largest post-�xpoint respectively:�x�f =^fa j f(a) � ag and �x�f =_fa j a � f(a)g :For continuous functions there is a \constructive" characterization that con-structs the least and greatest �xpoints by iterated application of the function tothe smallest (greatest) element of the lattice [26]. The iterated application of fis inductively de�ned by the two equations f0(a) = a and f i+1(a) = f(f i(a)).Theorem 2 (Kleene �xpoint theorem). For complete lattice (A;�), if f :A! A is _-continuous, then its least �xpoint is the join of this chain:�x�f =_ff i(?) j i � 0g :Dually, if f is ^-continuous, its greatest �xpoint is the meet of this chain:�x�f =^ff i(>) j i � 0g :In the above characterization we have f0(?) � f1(?) � f2(?) � � � � and,dually, f0(>) � f1(>) � f2(>) � � � �. As any monotonic function on a �nitelattice is both _-continuous and ^-continuous, this lets us e�ectively calculateleast and greatest �xpoints for arbitrary monotonic functions on �nite com-plete lattices: The least �xpoint is found with the smallest value of i such thatf i(?) = f i+1(?); the greatest �xed point is calculated similarly. This observa-tion underlies the semantic approach to model-checking described in Sect. 4.3.The following variant of Kleene's �xpoint theorem shows that the iterationcan be started with any value below the least or above the greatest �xpoint;it is not necessary to take the extremal values ? and >. This observation canbe exploited to speed up the �xpoint calculation if a safe approximation is al-ready known. In particular, it can be used when model-checking nested �xpointformulas of the same parity (see Sect. 4.3.Theorem 3 (Variant of Kleene's �xpoint theorem). Suppose that f : A!A is a _-continuous function on complete lattice (A;�), and a 2 A. If a � �x�f ,then �x�f = Wff i(a) j i � 0g :Dually, if f is ^-continuous and �x�f � a, then �x�f = Vff i(a) j i � 0g :In the context of the modal mu-calculus, the �xpoint theorems are appliedto the complete lattice, (2S ;�), of the subsets of S ordered by set-inclusion.With the expected ordering on environments (� v �0 i� dom� = dom�0 and�(X) � �0(X) for all X 2 dom�), we can prove that F�;� must be monotonic.Thus, the Knaster-Tarski �xpoint theorem ensures the existence of �x�F�;� and�x�F�;� and gives us the following two equations that are often used for de�ningsemantics of �xpoint formulas:MT (�X : �)(�) = Tfx � S j MT (�)(�[X 7! x]) � xgMT (�X : �)(�) = Sfx � S j MT (�)(�[X 7! x]) � xg

12 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enFor �nite-state transition systems, we have the Kleene �xpoint theorem:MT (�X : �)(�) = SfF i�;�(;) j i � 0gMT (�X : �)(�) = TfF i�;�(S) j i � 0gThese characterizations are central for the semantic approach to model-checking described in Sect. 4.3.It is simple to extend the modal mu-calculus to work on Kripke transitionsystems instead of labeled transition systems: We allow the underlying atomicpropositions p 2 AP as atomic formulas p. The semantic clause for these formulaslooks as follows: MT (p)(�) = fs 2 S j p 2 I(s)g :If we replace the modalities [a] and hai by [] and h i we obtain a version of themodal mu-calculus that �ts to pure Kripke structures as model structures.Computational Tree Logic. Computational Tree Logic (CTL) was the �rsttemporal logic for which an e�cient model-checking procedure was proposed[11]. Its syntax looks as follows:� ::= p j :� j �1 _ �2 j AU(�;) j EU(�;) j AF(�) j EF(�) j AG(�) j EG(�)CTL has the six modalities AU;EU;AF;EF;AG;AF. Each takes the form QL,where Q is one of the path quanti�ers A and E, and L is one of the linear-timemodalities U, F, and G. The path quanti�er provides a universal (A) or existential(E) quanti�cation over the paths emanating from a state, and on these paths thecorresponding linear-time property must hold. For example, the formula EF(�)is true for a state, s, if there is a path, �, starting in s on which � becomestrue at some later situation; i.e., the path � has to satisfy � j= F(�) in the senseof PLTL. In contrast, AF(�) holds if on all paths starting in s � becomes true�nally.The meaning of the CTL modalities can be expressed by means of �xpointformulas. In this sense, CTL provides useful abbreviations for frequently usedformulas of the modal �-calculus. Here are the �xpoint de�nitions of the Umodalities: AU(�;) def= �X : (_ (� ^ []X ^ h itrue))EU(�;) def= �X : (_ (� ^ h iX)) :The F modalities can easily be expressed by the U modalitiesAF(�) def= AU(true; �) EF(�) def= EU(true; �) :and the G modalities are easily de�ned as the duals of the F modalities:AG(�) def= :EF(:�) EG(�) def= :AG(:�) :

Model-Checking 13By unfolding this de�nitions, direct �xpoint characterizations of the F and Gmodalities can easily be obtained.The above described version of CTL operates on pure Kripke structures. ForLTSes and KTSes it is less useful, as it does not specifying anything about thelabels on arcs. We might extend CTL's modalities by relativizing them withrespect to sets of actions A � Act|the the path quanti�ers consider only thosepaths whose actions come from A; all other paths are disregarded. In the follow-ing system, e.g.,
ts u

ba

c

Pthe state s satis�es AFfa;bg(P), as the path hs; a; t; b; ui is taken into account.But s does not satisfy AFfa;cg(P) as here only the path hs; a; ti is considered.Again these modalities can be de�ned by �xpoint formulas, for example:AGA(�) def= �X : � ^ [A]X and EFA(�) def= �Y : � _ hAiY :4 Model Checking4.1 Global vs. Local Model-CheckingThere are two ways in which the model-checking problem can be speci�ed:Global model-checking problem: Given a �nite model structure,M ,and a formula, �, determine the set of states in M that satisfy �.Local model-checking problem: Given a �nite model structure, M ,a formula, �, and a state s in M , determine whether s satis�es �.While the local model-checking problem must determine modelhood of asingle state the global problem must decide modelhood for all the states in thestructure. Obviously, solution of the global model-checking problem comprisessolution of the local problem, and solving the local model-checking problemfor each state in the structure solves the global model-checking problem. Thus,the two problems are closely related, but global and local model-checkers havedi�erent applications.For example, a classic application of model-checking is the veri�cation ofproperties of models of hardware systems, where the hardware system containsmany parallel components whose interaction is modeled by interleaving. Thesystem's model structure grows exponentially with the number of parallel com-ponents, a problem known as the state-explosion problem. (A similar problemarises when software systems, with variables ranging over a �nite domain, areanalyzed|the state space grows exponentially with the number of variables.)In such an application, local model-checking is usually preferred, because theproperty of interest is often expressed with respect to a speci�c initial state|alocal model checker might inspect only a small part of the structure to decide

14 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enBranching-time Linear-time Global LocalSemantic methods X XAutomata-theoretic methods X X XTableau methods X X XFig. 8. Classi�cation of model-checking approachesthe problem, and the part of the structure that is not inspected need not evenbe constructed. Thus, local model-checking is one means for �ghting the state-explosion problem.For other applications, like the use of model-checking for data-ow analysis,one is really interested in solving the global question, as the very purpose of themodel-checking activity is to gain knowledge about all the states of a structure.(For example, in Figure 2, the structure is the ow graph of the program to beanalyzed, and the property speci�ed by a formula might be whether a certainvariable is \de�nitely live.") Such applications use structures that are rathersmall in comparison to those arising in veri�cation activities, and the state-explosion problem holds less importance. Global methods are preferred in suchsituations.4.2 Model-Checking ApproachesModel checking can be implemented by several di�erent approaches; prominentexamples are the semantic approach, the automata-theoretic approach, and thetableau approach.The idea behind the semantic (or iterative) approach is to inductively com-pute the semantics of the formula in question on the given �nite model. Thisgenerates a global model-checker and works well for branching-time logics likethe modal mu-calculus and CTL. Modalities are reduced to their �xpoint de�-nitions, and �xpoints are computed by applying the Kleene �xpoint theorem tothe �nite domain of the state powerset.The automata-theoretic approach is mainly used for linear-time logics; it re-duces the model-checking problem to an inclusion problem between automata.An automaton, A�, is constructed from formula, �; A� accepts the paths satisfy-ing �. Another automaton, AM , is constructed from the model, M , and acceptsthe paths exhibited by the model. M satis�es � i� L(AM) � L(A�). This prob-lem can in turn be reduced to the problem of deciding non-emptiness of a productautomaton which is possible by a reachability analysis.The tableau method solves the local model-checking problem by subgoaling.Essentially, one tries to construct a proof tree that witnesses that the given statehas the given property. If no proof tree can be found, this provides a disproof ofthe property for the given state. Since the tableau method intends to inspect onlya small fraction of the state space, it combines well with incremental constructionof the state space, which is a prominent approach for �ghting state explosion.Figure 8 presents typical pro�les of the three approaches along the axes ofbranching- vs. linear-time and global vs. local model-checking. The classi�cation

Model-Checking 15is, of course, to be understood cum grano salis. Applications of the methodsfor other scenarios are also possible but less common. In the remainder of thissection, we describe each of these approaches in more detail.4.3 Semantic ApproachBased on the iterative characterization of �xpoints, the semantics of modal mu-calculus formulae can be e�ectively evaluated on �nite-state Kripke transitionsystems. But in general, this is quite di�cult, due to the potential interferencebetween least and greatest �xpoints. As we see later in this section, the alternatednesting of least and greatest �xpoints forces us to introduce backtracking intothe the �xpoint iteration procedure, which causes an exponential worst-case timecomplexity of iterative model checking for the full mu-calculus. Whether this isa tight bound for the model-checking problem as such is a challenging openproblem.Before we explain the subtleties of alternation, we illustrate iterative modelchecking for hierarchical formulas, which are formulas whose �xpoint subformu-las never contain free variables of the other parity. In this case, the iterationprocess can be organized in a hierarchical fashion, giving a decision procedurewhose worst-case time complexity is proportional to the size of the underlying�nite-state system and the size of the formula:1. Associate all variables belonging to greatest �xpoints to the full set of statesS and all variables belonging to least �xpoints with ;.2. Choose a subformula, � = �X:�0 (or �X:�0), where �0 is �xpoint free, de-termine its semantics, and replace it by an atomic proposition A�, whosevaluation is de�ned by its semantics.3. Repeat the second step until the whole formula is processed.We illustrate this procedure for � def= AFfbg(EFfbg(haitrue) and the followingtransition system T :
ts u v

b b

b

b

aIntuitively � describes the property that from all states reachable via b-transition, an a-transition is �nitely reachable along a path of b-transitions.Intuitively, u and v enjoy this property while s and t do not.Unfolding the CTL-like operators in � using the corresponding �xpoint def-initions, we obtain � = �X : (�Y : haitrue _ hbiY) ^ [b]X :A hierarchical model-checker �rst evaluates (�Y : haitrue _ hbiY), the inner �x-point formula: Letting �Y denote the formula haitrue _ hbiY), we have, for anyenvironment �, MT (�)(�) = �x�F�Y ;� :

16 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enNow, by the Kleene �xpoint theorem this �xpoint formula can be calculatedby iterated application of F�Y ;� to the smallest element in 2S, ;. Here are theresulting approximations:F 0�Y ;�(;) = ;F 1�Y ;�(;) =M(haitrue)(�[Y 7! ;]) [M(hbiY)(�[Y 7! ;])= fug [; = fugF 2�Y ;�(;) = F�Y ;�(fug)=M(haitrue)(�[Y 7! fug]) [M(hbiY)(�[Y 7! fug])= fug [ft; u; vg = ft; u; vgF 3�Y ;�(;) = F�Y ;�(ft; u; vg)=M(haitrue)(�[Y 7! ft; u; vg]) [M(hbiY)(�[Y 7! ft; u; vg])= fug [ft; u; vg = ft; u; vg :Thus, ft; u; vg is the meaning of �X : �X in any environment. Next, the hierar-chical model-checker evaluates the formula �0 def= �X : pY ^ [b]X , where pY is anew atomic proposition that holds true for the states t, u, and v. Again, this isdone by iteration that starts this time with S = fs; t; u; vg, as we are confrontedwith a greatest �xpoint. Let �X denote the formula pY ^ [b]X . The iteration'sresults look as follows:F 0�X ;�(S) = SF 1�X ;�(S) =M(pY)(�[X 7! S]) \M([b]X)(�[X 7! S])= ft; u; vg \ S = ft; u; vgF 2�Y ;�(S) = F�Y ;�(ft; u; vg)=M(pY)(�[X 7! ft; u; vg]) \M([b]X)(�[X 7! ft; u; vg])= ft; u; vg \ fs; u; vg = fu; vgF 3�Y ;�(S) = F�Y ;�(fu; vg)=M(pY)(�[X 7! fu; vg]) \M([b]X)(�[X 7! fu; vg])= ft; u; vg \ fs; u; vg = fu; vg :The model-checking con�rms our expectation that just states u and v haveproperty �.In the above example, the inner �xpoint formula, (�Y : haitrue _ hbiY), doesnot use the variable introduced by the outer �xpoint operator, X . Therefore,its value does not depend on the environment, �. This is always the case forCTL-like formulas and enables the hierarchical approach to work correctly. If,however, the inner �xpoint depends on the variable introduced further outwards,we must|at least in principle|evaluate the inner �xpoint formula again andagain in each iteration of the outer formula. Fortunately, if the �xpoint formulashave the same parity, i.e., they are either both least �xpoint formulas or bothgreatest �xpoint formulas, we can avoid the problem and correctly compute the

Model-Checking 17values of the inner and outer formulas simultaneously, because the value of a�xpoint formula depends monotonically on the value of its free variables and theiterations of both formulas proceed in the same direction.In the case of mutual dependencies between least and greatest �xpoints,however, the iterations proceed in opposite directions, which excludes a simplemonotonic iteration process. Such formulas are called alternating �xpoint formu-las. They require backtracking (or resets) in the iteration process. The followingis a minimal illustrative example.Example 1. Consider the formula def= �Z : �Y : (hbiZ _haiY), which intuitivelyspeci�es that there is a path consisting of a- and b-steps with in�nitely manyb-steps. We would like to check it for the following LTS:
ts

b
aHere are the results of the iterations for the outer �xpoint variable Z withthe nested iterations for Y :Iteration for Z 1 2 3Assumption for Z fs; tg ftg ;Iterations for Y ; ftg ftg ; ; ; ;Thus, we correctly calculate that neither s nor t satis�es .If, however we do not reset the iterations of Y to ; in each iteration of Z butsimply start Y 's iterations with the old approximations, we produce the wrongresult ftg that \stabilizes" itself:Iteration for Z 1 2Assumption for Z fs; tg ftgIterations for Y ; ftg ftg ftg ftgDue to the nested iteration, the complexity of model-checking formulas withalternation is high. A careful implementation of the iterative approach leads toan asymptotic worst-case running time of O((jT j � j�j)ad) [13], where jT j is thenumber of states and transitions in the LTS (or KS or KTS) T and j�j is thesize of the formula (measured, say, by the number of operators). ad refers to thealternation depth of the formula, which essentially is the number of non-trivialalternations between least and greatest �xpoints. (The alternation depth of analternation-free formula is taken to be 1.) While the precise de�nition of alterna-tion depth is not uniform in the literature, all de�nitions share the intuitive ideaand the above stated model-checking complexity. By exploiting monotonicity, abetter time-complexity can be achieved but at the cost of a tremendous storagerequirement [32]. It is a challenging open problem to determine the precise com-plexity of �-calculus model-checking; it might well turn out to be polynomial (itis known to be in the intersection of the classes NP and co-NP)!

18 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enq r true
p ^ rp q ^ r qqp pFig. 9. An automaton corresponding to � = U(U(P;Q); R)Alternation-free formulas can be checked e�ciently in time O((s + t) � j�j).This holds in particular for all CTL-like formulas as they unfold to alternation-free �xpoint formulas.4.4 Automata-Theoretic ApproachFor easy accessibility, we illustrate the automata-theoretic approach for checkingPLTL formulas on maximal �nite paths in Kripke structures: Given a Kripkestructure (S;R; I), a state s in S, and a PLTL formula �, we say that s0 satis�es� if any maximal �nite path � = hs0; s1; : : : ; sni satis�es �.A path � as above can be identi�ed with the �nite word w� = hI(s0); I(s1);: : : ; I(sn)i over the alphabet 2AP. Note that the letters of the alphabet aresubsets of the set of atomic propositions. In a straightforward way, validity ofPLTL formulae can also be de�ned for such words. Now, a PLTL formula, �,induces a language of words over 2AP containing just those words that satisfy �.For any PLTL formula, the resulting language is regular, and there are systematicmethods for constructing a �nite automaton, A�, that accepts just this language.(This automaton can also be used to check satis�ability of �; we merely checkwhether the language accepted by the automaton is non-empty, which amountsto checking whether a �nal state of the automaton is reachable from the initialstate.) In general, the size of A� grows exponentially with the size of � but isoften small in practice.Example 2. Consider the formula � = U(U(P;Q); R). The corresponding au-tomaton A� is shown in Fig. 9. We adopt the convention that an arrow markedwith a lower case letter represents transitions for all sets containing the proposi-tion denoted by the corresponding upper case letter. An arrow marked with p, forexample, represents transitions for the sets fPg; fP;Qg; fP;Rg and, fP;Q;Rg.Similarly a conjunction of lower case letters represents transitions containingboth corresponding upper case propositions. For example, an arrow marked withp ^ q represents transitions marked with fP;Qg and fP;Q;Rg.It is easy to construct from the Kripke structure, K, a �nite automaton, AK ,accepting just the words w� corresponding to the maximal �nite paths starting

Model-Checking 19
ComplementationAutomata construction,

Determinization, and
Minimization

F(P) & G(Q)

{},{P}

3

2

1
{P,Q}

{},{P},{Q},{P,Q}

{},{P}

2

{},{P}{},{P}

1 3
{P,Q}

{},{P},{Q},{P,Q}

{Q},{P,Q}{Q} {Q},{P,Q}{Q}

Fig. 10. A formula and the corresponding automata
1 2 3 4

{Q} {P,Q} {}

{P,Q}

11 2412 33

32

{Q} {P,Q} {}

{P,Q}
{P,Q}

{P,Q}

1 2 3 4
{Q} {P,Q} {Q}

{P,Q}

1 2 3
Q P,Q Q

11 3412 33

32

{Q} {P,Q} {Q}

{P,Q}
{P,Q}

{P,Q}

1 2 3
Q P,Q

Fig. 11. Two Kripke structures, the corresponding automata, and their products withthe formula automaton from Fig. 10. Model-checking succeeds for the left Kripke struc-ture and fails for the right one.in s: It is given by AK = (S [fsfg; 2AP; �; s; fsfg), where sf is a new state and isthe only �nal state in the automaton, and� = f(s; I(s); t) j (s; t) 2 Rg [f(s; I(s); sf) j s is �nal in KgHere, a state s is called �nal in K if it has no successor, i.e., there is no t with(s; t) 2 R.To answer the model-checking question amounts to checking whether L(AK) �L(A�). This is equivalent to L(AK)\L(A�)c = ;. The latter property can e�ec-tively be checked: Finite automata can e�ectively be complemented, the productautomaton of two automata describes the intersection of the languages of the twoautomata, and the resulting automaton can e�ectively be checked for emptiness.Example 3. Let us illustrate this approach for the formula � def= F(P) ^ G(Q)over AP = fP;Qg. Figure 10 shows the automata generated from �. The �rst

20 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enautomaton in the �gure is A�, the automaton that accepts the language over2fP;Qg corresponding to �. Complementation of a �nite automaton is partic-ularly simple if the automaton is deterministic and fully de�ned, because theautomaton has for any state exactly one transition for any input symbol. An au-tomaton can be made deterministic by the well-known power-set construction;full de�nedness can be obtained by adding a (non-�nal) state that \catches"all unde�ned transitions. The automaton A� shown in Fig. 10 has been madedeterministic and is fully de�ned; to keep it small, it has also been minimized.Such transformations preserve the language accepted by the automaton and areadmissible and commonly applied. The second automaton in Fig. 10, to whichwe refer by Ac� in the following, accepts the complement of the language corre-sponding to �. As A� has been made deterministic and is fully de�ned, it caneasily be complemented by exchanging �nal and non-�nal states.In Fig. 11, we show two rooted Kripke structures K, the corresponding Au-tomata AK , and the product automata Ac� �AK .1 In order to allow easy com-parison, the states in Ac� � AK have been named by pairs ij; i indicates thecorresponding state in Ac� and j the corresponding state in AK .It is intuitively clear that the left Kripke structure satis�es �. An automata-theoretic model-checker would analyze whether the language of Ac� � AK isempty. Here, it would check whether a �nal state is reachable from the initialstate. It is easy to see that no �nal state is reachable; this means that K indeedsatis�es �.Now, consider the rooted right Kripke structure in Fig. 11. As its �nal statedoes not satisfy the atomic proposition, Q, the Kripke structure does not satisfy�|a �nal state is reachable from the initial state in the product automaton.A similar approach to model-checking can be used in the more common caseof checking satis�ability of in�nite paths [42]. In this case, automata acceptinglanguages of in�nite words, like B�uchi or Muller automata [41], are used insteadof automata on �nite words. Generation of the automata A� and AK as wellas the automata-theoretic constructions (product construction, non-emptinesscheck) are more involved, but nevertheless, the basic approach remains the same.PLTLmodel-checking is in general PSPACE-complete [17]; the exponential blow-up in the construction of A� is unavoidable.The main applications of the automata-theoretic approach are linear-timelogics as languages consisting of words. The approach can also be applied, how-ever, to branching-time logics by using various forms of tree automata.4.5 Tableau ApproachThe tableau approach addresses the local-model checking problem: For a model,M, and property, �, we wish to learn whether s j=M � holds for just the onestate, s|global information is unneeded. We might attack the problem by a1 Strictly speaking, only that part of the state space is shown that is reachable fromthe initial state, and not the full product automaton.

Model-Checking 21search of the state space accessible from s, driving the search by decomposing�. We write our query as s `� � (taking the M as implicit) and use subgoalingrules, like the following, to generate a proof search, a tableau. For the moment,the rules operate on just the Hennessy-Milner calculus; the subscript, �, will beexplained momentarily:s `� �1 ^ �2s `� �1 s `� �2 s `� �1 _ �2s `� �1 s `� �1 _ �2s `� �2s `� [a]�s1 `� � � � � sn `� � if fs1; : : : ; sng = fs0 j s a! s0g s `� hai�s0 `� � if s a! s0A tableau for a Hennessy-Milner formula must be �nite. We say that the tableausucceeds if all its leaves are successful, that is, they have form (i) s `� true, or(ii) s `� [a]� (which implies there are no a-transitions from s).It is easy to prove that a succesful tableau for s `� � implies s j=M �; con-versely, if there exists no successful tableau, we correctly conclude that s 6 j=M�.(Of course, a proof search that implements and/or subgoaling builds just one\meta-tableau" to decide the query.)When formulas in the modal-mu calculus are analyzed by tableau, there isthe danger of in�nite search. But for �nite-state models, we can limit search dueto the semantics of the �xed-point operators: Say that s `� �X:�X subgoals tos `� X . We conclude that the latter subgoal is unsuccessful, becauses j=M �X:�X i� s j=M _i�0Xi; where X0 = falseXi+1 = �XiThat is, the path in the tableau from s `� �X:�X to s `� X can be unfoldedan arbitrary number of times, generating the Xi formulas, all of which subgoalto X0, which fails.Dually, a path from s `� �X:�X to s `� X succeeds, becauses j=M �X:�X i� s j=M î�0Xi; where X0 = trueXi+1 = �XiAs suggested by Stirling andWalker [37], we analyze the �xed-point operatorswith unfolding rules, and we terminate a search path when the same state, �xed-point formula pair repeat. Of course, we must preserve the scopes of nested�xed points, so each time a �xed-point formula is encountered in the search,we introduce a unique label, U , to denote it. The labels and the formulas theydenote are saved in an environment, �.Here the rules for �; the rules for � work in the same way:s `� �X:�Xs `�0 U where �0 = �+ [U 7! �X:�X] and U is fresh for �s `� Us `� �U where �(U) = �X:�X : Important: See note below.

22 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�enTransition system:
s t

a

b

bLet :� = �X:�0X ^ [b]X�0X = �Y:haitrue _ hbiY�1 = [U1 7! �]�2 = �1 + [U2 7! �0U1]
Tableau for s `; � : s `; �s `�1 U1s `�1 �0U1 ^ [b]U1s `�1 �0U1 s `�1 [b]U1s `�2 U2 s `�1 U1s `�2 haitrue _ hbiU2s `�2 haitruet `�2 trueFig. 12. Transition system and model check by tableauNote: The second rule can be applied only when s `�0 U has not already ap-peared as an ancestor goal. This is how proof search is terminated.A leaf of form, s `� U , is successful i� �(U) = �X:�X . Figure 12 shows asmall transition system and proof by tableau that its state, s, has the property,�X:(�Y:haitrue_hbiY)^ [b]X , that is, an a-transition is always �nitely reachablealong a path of b-transitions. The tableau uses no property of state, t.The tableau technique is pleasant because it is elegant, immune to the trou-bles of alternating �xpoints, and applicable to both branching-time and linear-time logics.5 ConclusionOne of the major problems in the application of model checking techniques topractical veri�cation problems is the so-called state explosion problem: modelstypically grow exponentially in the number of parallel components or data ele-ments of an argument system. This observation has led to a number of techniquesfor tackling this problem [39, 14].Most rigorous are compositional methods [2, 10, 23], which try to avoid thestate explosion problem in a divide an conquer fashion. Partial order methodslimit the size of the models representation by suppressing unnecessary inter-leavings, which typically arise as a result of the serialization during the modelconstruction of concurrent systems [19, 43, 20]. Binary Decision Diagram-basedcodings, todays industrially most successful technique, allow a polynomial sys-tem representation, but may explode in the course of the model checking process[4, 6, 18]. All these techniques have their own very speci�c pro�les . Exploringthese pro�les is one of the current major research topics.All these techniques can be accompanied by abstraction: depending on theparticular property under investigation, systems may be dramatically reducedby suppressing details that are irrelevant for veri�cation, see, e.g., [15, 9, 22, 30].

Model-Checking 23In this article we have focused on �nite model structures, but recent researchshows that e�ective model-checking is possible also for certain classes of �nitelypresented in�nite structures. Work in this direction falls in two categories: First,continuous variables have been added to �nite structures. This work was moti-vated by considerations on veri�ed design of embedded controllers. Timed sys-tems have found much attention (Alur and Dill's work on timed automata [1]is a prominent example) but also more general classes of hybrid systems havebeen considered. A study of this work could start with [38] where besides a gen-eral introduction three implemented systems, HyTech, Kronos, and Uppaal, aredescribed. Second, certain classes of discrete in�nite systems have been studiedthat are generated by various types of grammars in various ways. The interestedreader is pointed to the surveys [8, 7] that also contain numerous references.References1. R. Alur and D. L. Dill, A theory of timed automata. Theoretical Computer Science126 (1994) 183{235.2. H. Andersen, C. Stirling, and G. Winskel, A compositional proof system for themodal mu-calculus. In Proc. 9th LICS. IEEE Computer Society Press, 1994.3. G. Birkho�, Lattice Theory, 3d edition. Amer. Math. Soc., 1967.4. R. Bryant, Graph-based algorithms for boolean function manipulation. IEEETransactions on Computation, 8(35), 1986.5. R. Bull and K. Segerberg, Basic Modal Logic. In Handbook of Philosophical Logic,Vol. 2, D. Gabbay and F. Guenther, eds., Kluwer, Dortdrecht, 1994, pp. 1-88.6. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, Symbolic model checking:1020 states and beyond. In Proc. 5th LICS. IEEE Computer Society Press, 1990.7. O. Burkart, D. Caucal, F. Moller, and B. Ste�en, Veri�cation on in�nite structures.In Handbook of Process algebra, Jan Bergstra, Alban Ponse, and Scott Smolka, eds.,Elsevier, to appear.8. O. Burkart and J. Esparza, More in�nite results. Electronic Notes in TheoreticalComputer Science 6 (1997).URL: http://www.elsevier.nl/locate/entcs/volume6.html.9. K. �Cer�ans, J.C. Godesken, and K.G. Larsen, Timed modal speci�cation { theoryand tools. In Computer Aided Veri�cation (CAV'93), C. Courcoubetis, ed., LectureNotes in Computer Science 697, Springer, 1993, pp. 253{267.10. E. Clarke, D. Long, and K. McMillan, Compositional model checking. In Proc. 4thLICS. IEEE Computer Society Press, 1989.11. E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transactionson Programming Languages and Systems 8 (1996) 244{263.12. E. M. Clarke, O. Grumberg, and D. Long, Veri�cation tools for �nite-state con-current systems. In A Decade of Concurrency: Reections and Perspectives, J.W.de Bakker, W.-P. de Roever, and G. Rozenberg, eds., Lecture Notes in ComputerScience 803, Springer, 1993, pp. 124-175.13. R. Cleaveland, M. Klein, and B. Ste�en, Faster model checking for the modal mu-calculus. In Computer Aided Veri�cation (CAV'92), G. v. Bochmann and D. K.Probst, eds., Lecture Notes in Computer Science 663, 1992, pp. 410{422.14. R. Cleaveland, Pragmatics of Model Checking. Software Tools for TechnologyTransfer 2(3), 1999.

24 Markus M�uller-Olm, David Schmidt, and Bernhard Ste�en15. P. Cousot and R. Cousot, Abstract interpretation: A uni�ed lattice model for staticanalysis of programs by construction or approximation of �xpoints. In Proceedings4th POPL, Los Angeles, California, January 1977.16. D. van Dalen, Logic and Structure, 3d edition. Springer, Berlin, 1994.17. E. A. Emerson, Temporal and modal logic. In Handbook of Theoretical Com-puter Science, Vol B. J. van Leeuwen, ed., Elsevier Science Publishers B.V., 1990,pp. 995{1072.18. R. Enders, T. Filkorn, and D. Taubner, Generating BDDs for symbolic modelchecking in CCS. In Computer Aided Veri�cation (CAV'91), K. G. Larsen andA. Skou, eds., Lecture Notes in Computer Science 575, Springer, pp. 203{213.19. P. Godefroid and P. Wolper, Using partial orders for the e�cient veri�cation ofdeadlock freedom and safety properties. n Computer Aided Veri�cation (CAV'91),K. G. Larsen and A. Skou, eds., Lecture Notes in Computer Science 575, Springer,pp. 332{342.20. P. Godefroid and D. Pirottin, Re�ning dependencies improves partial-order veri�-cation methods. In Computer Aided Veri�cation (CAV'93), C. Courcoubetis, ed.,Lecture Notes in Computer Science 697, Springer pp. 438{449.21. G. Gr�atzer, General Lattice Theory. Birkh�auser Verlag, 1978.22. S. Graf and C. Loiseaux, Program Veri�cation using Compositional Abstraction.In Proceedings FASE/TAPSOFT, 1993.23. S. Graf, B. Ste�en, and G. L�uttgen, Compositional minimization of �nite statesystems using interface speci�cations. Formal Aspects of Computing, 8:607{616,1996.24. M. C. B. Hennessy and R. Milner, Algebraic laws for nondeterminism and concur-rency. Journal of the ACM 32 (1985) 137{161.25. G. Hughes and M. Cresswell. An Introduction to Modal Logic. Methuen, London,1972.26. S. Kleene, Introduction to Metamathematics. D. van Nostrand, Princeton, 1952.27. D. Kozen, Results on the propositional mu-calculus, Theoretical Computer Science,27 (1983) 333{354.28. Kripke, S. A completeness theorem in modal logic. J. Symbolic Logic 24 (1959)1{14.29. Kripke, S. Semantical considerations on modal logic. Acta Philosophica Fennica 16(1953) 83{94.30. K. G. Larsen, B. Ste�en, and C. Weise. A constraint oriented proof methodologybased on modal transition systems. In Tools and Algorithms for the Constructionand Analysis of Systems (TACAS'95), E. Brinksma, W. R. Cleaveland, K. G.Larsen, T. Margaria, and B. Ste�en, eds, Lecture Notes of Computer Science 1019,Springer, pp. 17{40.31. J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg, Fixed point theorems and se-mantics: A folk tale. Information Processing Letters 14 (1982) 112{116.32. D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero, An improvedalgorithm for the evaluation of �xpoint expressions. In Computer Aided Veri�cation(CAV'94), David L. Dill, ed., Lecture Notes in Computer Science 818, Springer pp.338{349.33. Robin Milner, Communication and Concurrency. Prentice Hall, 1989.34. J. P. Queille and J. Sifakis, Speci�cation and veri�cation of concurrent systemsin CESAR. In Proc. 5th Internat. Symp. on Programming, M. Dezani-Ciancagliniand U. Montanari, eds., Lecture Notes in Computer Science 137, Springer, 1982.

Model-Checking 2535. D. Schmidt and B. Ste�en, Program analysis as model checking of abstract in-terpretations. In Static Analysis (SAS'98), Giorgio Levi, ed., Lecture Notes inComputer Science 1503, Springer, 1998, 351{380.36. C. Stirling, Modal and temporal logics. In Handbook of Logic in Computer ScienceS. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, eds., Clarendon Press, 1992,pp 477{563.37. C. Stirling and D. Walker, Local model checking in the modal mu-calculus, Proc.TAPSOFT '89, J. Diaz and F. Orejas, eds., Lecture Notes in Computer Science351, Springer, 1989, pp. 369{383.38. Special section on timed and hybrid systems, Software Tools for Technology Trans-fer 1 (1997) 64{153.39. Special section on model checking, Software Tools for Technology Transfer 2/3(1999).40. A. Tarski, A lattice-theoretical �xpoint theorem and its application. Paci�c Journalof Mathematics 5 (1955) 285{309.41. W. Thomas, Automata on in�nite objects. In Handbook of Theoretical ComputerScience, Vol B. J. van Leeuwen, ed., Elsevier Science Publishers B.V., 1990,pp. 133{191.42. M. Y. Vardi and P. Wolper, Reasoning about in�nite computations. Informationand Computation 115 (1994) 1{37.43. A. Valmari, On-the-y veri�cation with stubborn sets. In Computer Aided Veri-�cation (CAV'93), C. Courcoubetis, ed., Lecture Notes in Computer Science 697,Springer, pp. 397{408.

