CIS505/705 Exercise Sample solution

Here is the list-induction rule:

\[\text{fun } f \text{ nil } = b \]
\[\text{fun } f \text{ (x::xs) } = e(f(x)) \]

\[\text{SUM}(ms, n) = (i) \text{ ms } = [\text{n0, n1, \ldots, nk}] \]
\[\quad \text{and} \]
\[\quad (ii) \text{ n } = 0 + n_0 + n_1 + \ldots + nk \]

Finish the proof that function sumit has the SUM correctness property:

1. \text{0 : SUM([], 0)}
 because (i) [] has no ints in it,
 (ii) 0 is the sum of zero ints.
 So, property SUM([], 0) holds true.
 So, 0 has "data type" SUM([], 0)

2. \text{(x::xs) : int list}
 assumption --- say the list is nonempty

3. \text{(sumit xs) : SUM(xs, sumit xs)}
 assumption --- say the recursive call,
 (sumit xs), returns
 the correct answer for arg xs

4. \text{x + (sumit xs) : SUM(x::xs, x+(sumit xs))}
 because, Line 3 says:
 (i) \text{xs } = [\text{n0, n1, \ldots, nk}],
 (ii) \text{(sumit xs) } = 0 + n_0 + n_1 + \ldots + nk
 So, we have that
 (i) \text{x::xs } = [\text{x, n0, n1, \ldots, nk}]
 (ii) \text{x + (sumit xs) } = x + 0 + n_0 + n_1 + \ldots + nk
 \text{SUM(x::xs, x+(sumit xs)) } = 0 + x + n_0 + n_1 + \ldots + nk
 So, \text{SUM(x::xs, x+(sumit xs)) holds true.}
 So, \text{x + (sumit xs) has "data type" SUM(x::xs, x+(sumit xs))}

5. \text{fun sumit nil } = 0
 \text{sumit (x::xs) } = x + (sumit xs)
 : Forall arg Exists ans : SUM(arg, ans)
 by list ind 1, 2-4