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Introduction 
 

Network Intrusion Systems employ a 

number of sensors for efficient reporting 

of attacks on the hosts in a network.  But a 

serious problem with these sensors is that 

the information they produce is in a low 

level format and the system administrator 

gains no useful information from the 

report.  In this report I am going to discuss 

about the usage of a method to correlate 

the alerts produced, the attack graph 

method.  The subject matter of this report 

though will be about the discussion of a 

type of attack on NIDS called 'alert 

flooding'.  The first effect of this attack is 

the loss of service.  The sensors do not do 

the intended job.  The second effect is that 

we get lot of unintended alerts which make 

alert correlation impossible or at least 

makes correlation meaningless.  The report 

will walk through the basics of NIDS, the 

operation of Snort, establishing alert 

flooding attack and solution to mitigate it 

using two concepts called Token Bucket 

Filter and Queue Graph. 

 

How attacks are launched on 

NIDS 
 

An NIDS is usually a software deployed 

on host in a network.  An NIDS like Snort 

can be configured to monitor the network 

in a promiscuous mode such that it can 

examine those packets that are not 

intended to it.  The NIDS detects 

malicious packets of data through 

signature based methods where possible 

attack packet contents are stored and if a 

match is found an alert is raised.  The 

second method is the anomaly based one 

where legitimate traffic patterns are stored 

and any deviation is raised as an alert.  In 

either of the cases there exists a 

communication channel between the NIDS  

 

host and the host of the system 

administrator.  If this link is flooded with 

data the administrator will not receive the 

alerts in time and during which the 

attacker can send a malicious packet 

unnoticed by the system administrator.  

There are many methods to flood this 

channel but this report concentrates on one 

particular method of doing, using 'alert 

flooding'. 

 

Core of the solution 
 

There will be alerts generated by the IDS 

sensors.  Alert correlation is done to match 

the alerts to exploits on the attack graph.  

Now the potential for attack exists when 

the attacker floods with fake attack packets 

which will make us construct an attack 

graph that gives false alerts and at the 

same time forces us to mix the critical 

alerts.  So the solution analyzed in the 

report uses two components.  The token 

bucket algorithm and the attack graph.  

The token bucket algorithm acts as the 

input for the attack graph.  By using the 

attack graph we can eliminate alerts that 

are not useful in determining the attack 

scenarios.  Using the token bucket we are 

able to defend against the alert flooding 

since it filters out such alerts through a 

mechanism described in forth comings 

pages.  This implies that we will not miss 

upon crucial alerts due to alert flooding. 

 

Basic operation of Snort 
 

Snort works by comparing the incoming 

packets with the stored signatures.  The 

signatures depict known attack patterns 

and are stored in a database.  The contents 

of the packets on the network are scanned 

and compared with the stored signatures.  

If a match is found an alert is raised.  

Sample signature is shown below. 

 



alert udp $EXTERNAL_NET any 

-> 

$HOME_NET 31337 

(msg:"BACKDOOR 

BackOrifice access"; 

content: "|ce63 d1d2 16e7 

13cf39a5 a586|";) 

 

This signature is used to detect the 

'BackOrifice' program generated traffic.  

The msg field is the message to be 

displayed and the content part of the 

signature is the data to be matched in the 

incoming packet.  The protocol is UDP 

and can be generated by any host on the 

Internet and directed towards any node in 

the HOME_NET to port 31337. 

 

What is Alert Flooding? 
 

Alert flooding attack can be done by 

crafting a packet which matches any of the 

signatures and send large numbers of them 

towards the network.  These packets may 

actually do no harm and are simply used to 

keep the IDS busy spending time logging 

spurious alerts.  For example, using the 

sample signature shown in the previous 

paragraph,    all the attacker needs to do is 

to craft a UDP packet whose content 

matches the signature given and direct it 

towards any host in HOME_NET to port 

31337.  It is important know the effects of 

this attack to appreciate its effectiveness. 

 

1) The alert database becomes full 

and further alerts are not recorded.  

This may lead to missing true 

critical alerts. 

2) The sensor reaches its threshold 

level and so its throughput is 

decreased.  In the worst case sensor 

ceases to function and this leads to 

the total failure of the IDS. 

3) The worst consequence is that the 

System Administrator is presented 

now with mixture of true and false 

alerts and so he cannot reason out 

clearly as to what could have 

caused the attack. 

How easy is alert flooding 

nowadays? 
 

There are tools available that automate 

alert flooding.  Some of the popular tools 

are Stick and Snot.  These tools use the 

freely available snort database.  This 

database contains the signatures to of the 

most common attacks and are used by 

snort in all the networks wherever it's 

deployed.  Using the signatures the tools 

craft the packets and flood them towards 

the network where snort will be operating. 

 

There is also a severe vulnerability in the 

alerting procedure of snort.  Researchers 

have recently found out that snort is 

flushing the buffer unnecessarily at two 

places which leads to unwanted system 

calls.  This leads to poor performance in 

logging the alert.  This flaw adds to the 

woes of alert flooding leading to quick 

drop of efficiency of snort. 

 

Some of the methods to prevent 

alert flooding 

 
There were attempts made by the 

developers of the snort themselves to 

address this alert flooding problem.  The 

solution was to keep track of the states of 

all the TCP connections.  As we know TCP 

has states and it's possible to track the state 

of any TCP connection.  They redesigned 

Snort such that it doesn't accept packets 

from any connection that isn't properly 

established through the famous three way 

handshake.  Now the attacker cannot send 

the packets as just 'single' packet but has to 

transmit three more packets in prior before 

sending his attack packet to.  The primary 

requirement for establishing a handshake 

with a host is that they must already be 

communicating.  This improvement is 

based on the report by Ptacek and 

Newsham.   

 

 

 



They discuss this solution in detail and 

also enumerate the disadvantages in doing 

so.  There is a very trivial disadvantage in 

this method.  According to the design the 

IDS will record only those connections for 

which it has observed the 3-way 

handshake.  This may lead to the IDS 

missing any TCP connection that had been 

established before the IDS started.  Due to 

this loophole the attacker can evade 

detection without a 3WH. 

 

We define TCP Control Block as the set of 

data that the IDS needs to maintain to keep 

track of all the active TCP connections.  A 

TCB is created by the IDS for every new 

connection and deleted once the 

connection terminates.  There are four 

important parameters to keep track of 

called source IP, source port, destination 

IP and destination port for every active 

TCP connection and termed as 'connection 

parameters'.  For the IDS to reconstruct 

the information flowing through the TCP 

stream it should be able to figure out what 

sequence numbers are being used.  The 

process of determining them is called 

'synchronization' and when the IDS is 

confused about this process it's said to be 

'desynchronized'.   

 

By design, Snort uses the 3WH to 

determine the initial sequence numbers of 

the TCP connection.  This is a blunder 

given the fact that it is possible for the 

attacker to produce a fake handshake.  The 

attacker will be using the connection 

parameters which will be of some other 

connection will not be detected as the 

same parameters are being assigned to the 

attacker initiated connection.  This effect is  

called 'desynchronization'.  This entire 

concept of keeping track of TCP states is 

implemented by Snort designers as 

'stream4'.   But the cited disadvantages 

render stream4 useless for preventing alert 

flooding. 

 

 

 

Another advantage for the attackers is that 

there are some exploits that can exist 

without any state information.  The 

signatures for those exploits obviously do 

not care about the state of the connection.  

The attacker then uses those signatures to 

generate packets and flood them towards 

the IDS.  To worsen the fact there are also 

some exploits that are stateless for which 

the stream4 software will be of no use. 

 

Token Bucket Algorithm 
 

Token bucket has been a popular algorithm 

in the area of Networking used in reduce 

the flooding of packets caused by the 

source, by the destination and provide the 

required Quality of Service.  We will now 

see how QOS can be deployed with Snort 

thereby mitigating alert flooding.  There 

are two important parameters that token 

bucket employs. Bucket size and token 

rate. 

 

 

 

 

As we can see the tokens are generated at a 

constant rate 'token rate’ and are stored in 

the bucket.  If the bucket becomes full the 

extra tokens are just discarded.  Each 

arriving packet needs a token to pass 

through the filter.  Packets that cannot 

obtain a valid token will be discarded.  

This condition is termed as 'over limit'.  If 

the token rate is greater than the alert rate 

it is termed as credit and can be used by 

alerts when the rate exceeds the normal 

rate, but for only for a temporary period.  



Use of attack graphs in alert 

correlation 

 

As I have been working in the Argus group 

research I am able to comprehend the 

difficulty in analyzing the low level result 

set produced by Snort.  It is extremely 

difficult for anyone other than an expert 

Network Administrator to figure out what 

exactly caused the attack.  There will be 

sequence of events that would have lead to 

the current compromised state of a host 

system.  It is difficult to deduce that 

sequence by merely looking at the Snort 

produced result set which is raw.   

 

Through the Argus research work I am 

also able to appreciate the usefulness of 

attack graphs in finding out that sequence 

of events.  Let me just present a simple use 

of attack graph for a small event. 

 

Correlation algorithms using attack graphs 

utilize the strategic relationship that exists 

between the alerts.  To establish this 

relationship we need to map the alerts to 

vertices in the attack graph.  

 

An attack graph gives knowledge about 

the vulnerabilities in the given network 

along with the information of how they are 

related.  There are two types of vertices in 

an attack graph, exploits and security 

conditions.  Exploits are vulnerabilities in 

the host systems.   Security conditions 

denote the network status required or 

implied by the exploits.  An edge from a 

security condition to an exploit says that 

the exploit cannot be executed unless the 

security condition is satisfied and an edge 

from exploit to security condition implies 

that execution of exploit will satisfy the 

security condition.   

 

Referring to the sample attack graph ovals 

refer to the security conditions and the 

rectangles refer to the exploits.  The graph 

says that the attacker can execute buffer 

overflow exploit only when the following 

two conditions are satisfied.  The attacker 

should have access to the host and the 

vulnerable program must exist on the host.  

This is a simple attack graph giving us an 

obvious result but for a large enterprise 

network attack graphs provide some 

interesting attack patterns which are 

impossible to be detected just using the 

Snort alerts.   

 

Correlation Methods 
 

There are numerous correlation methods 

that are employed to match the alerts with 

the exploits in an attack graph.  The first 

method is the vulnerability centric 

approach.  This approach matches the 

event type attribute of alerts with the vul 

field of the exploits to find a matching 

exploit.  This method can eliminate 

unwanted alerts like launching Windows-

specific alerts on Unix machines.  There is 

also a potential flaw.  This method can 

miss those alerts that do not match any 

vulnerability but may prepare for other 

attacks, like ICMP PING that doesn't 

match any vulnerability will be probing for 

future attack. 

 

There are other correlation methods that 

depend upon temporal characteristics of 

packets like order of arrivals and 

timestamps.  This method may not be 

highly reliable as there are concerns 

regarding network delays as data may be 

collected from sensors located at different 

locations. 

 

 



There is another approach called nested 

loop approach.  The objective of this 

approach is to correlate alerts by searching 

exhaustively all the received alerts and 

finding out the alerts that prepare for a 

new alert.  This may lead to high memory 

usage as there may be huge number of 

alerts to compare.  An optimized approach 

uses a modified approach where we use a 

window approach where only those alerts 

that are nearer to the new alert are 

processed.  This leads to a severe trade off 

between complete correlation and 

performance.  Though it ensures good 

performance over the exhaustive approach 

chances are that we may miss crucial alerts 

outside the window.  An attacker who 

knows that window technique is used can 

send his sequence of malicious packets 

delaying them such that they fall outside 

the window of their neighboring alerts. 

 

Queue Graphs 
 

There is a new data structure called queue 

graph proposed by researchers that 

eliminates the drawbacks in the nested 

loop approach.  The important observation 

made here is that the correlation between 

alerts need not be explicit.   

 

 
 

The figure above shows alerts as they are 

received in the increasing time frame from 

left to write.  Assume ai, aj and ak match 

the same exploit A on the attack graph and 

ah matches another exploit B but if A 

prepares B then ak and ah are implicitly 

correlated.  There is also another implicit 

relation that since aj occurs before ak and 

ak occurs before ah A prepares for B aj 

must also occur before ah.  This leads us to 

a new observation that a new alert needs to 

be correlated only with the latest alert in 

the past matching the same exploit.  So we 

keep the correlation with other matching 

alerts than the recent one implicit.  In this 

way the correlation algorithm needs to 

search backward to find the first matching 

alert unlike the nested loop approach.   

 

Correlation using Queue Graphs 
 

A Queue Graph is a in-memory data 

structure.  It is designed as follows.  Each 

exploit is denoted as a queue of length one.  

Each security condition is denoted as a 

variable.   

 

 

 

The figure above shows the realization of 

queue graphs.  The first is the picture of an 

attack graph.  We need to construct a 

queue graph for this attack graph for in-

memory correlation.  For each exploit ei in 

the graph we need to do a BFS of the 

attack graph for each exploit.  The third 

picture shows the BFS for exploit e1.  For 

each edge connecting an exploit and a 

security condition we add a edge 

connecting corresponding queue and the 

variable.  Here we connect to v2 using Q2 

as either of them, Q2 or Q3 can be used to 

reach v2.  Pictures 3 and 4 show the BFS 

done on Q2 and Q3. 

 

Each incoming alert is matched with the 

exploit in the attack graph and placed in 

the corresponding queue.  Since the queue 

is of length one, the queued alert is 

dequeued when a new alert matching the 

same exploit arrives.  We need to correlate 

the alerts to derive attack patterns and for 

this purpose we use another data structure 

called result graph.   

 



The procedure to record the alerts received 

and establish the correlation is as follows.  

First, for each new vertex received it is 

added as a vertex in the result graph.  

Next, a new alert matching the same alert 

will dequeue the old one matching the 

same exploit in the queue graph.  An edge 

is added between these alerts to establish 

the temporal relationship between them.  

The new alert will have been enqueued in 

our queue graph.  Once this is done we can 

just follow the pointers and search the 

queue graph.  If an edge from a queue 

leads to another non-empty queue through 

a variable we record the relationship 

between in the result graph to aid in 

correlation. 

 

Let me explain the correlation using queue 

graphs for the figure.  Let ah match alert 

e1 and ai, aj and ak match e2.  Their 

temporal order is shown in the figure.  

Alert ai is the first to arrive and it's placed 

in the queue Q2.  After that aj arrives and 

forces Q2 to dequeue and adds itself to Q2.  

Now we need to update our result graph to 

record the temporal relationship between 

these two alerts.  We do this by adding an 

edge between ai and aj.  This also records 

the fact that ai and aj match the same 

exploit e2.  Then ak arrives, dequeues aj.  

We record this fact as usual in the result 

graph.  Finally ah arrives matching the 

exploit e1 which results in it being 

enqueued in Q1.  Then we do a BFS 

search in the queue graph to establish the 

correlation. 

 

 As we can easily see a search from Q1 

upwards leads us to non-empty queue Q2 

thereby establishing the explicit 

correlation between ah and ak.  This is 

exactly we wanted, establish correlation 

only between only one alert among a large 

number of alerts matching a single exploit.  

The queue graph approach is definitely an 

improvement over the nested loop 

approach which is vulnerable as it has the 

window concept where the correlated 

alerts may fall outside window evading 

correlation.  But in queue graph once an 

alert matching an exploit is detected and 

queued, it can be dequeued only when an 

alert matching the same exploit arrives.  In 

other words, after an alert, if the attacker 

tries to inject unrelated alerts to avoid 

correlation the queued alerts are not going 

to get removed which eases our correlation 

process. 

 

Reducing data to aid in efficient 

correlation 
 

This part of the report will discuss about 

using the throttling algorithm in 

combination with correlation.  One of the 

researchers sees this problem of alert 

flooding from the point of view of the IDS 

operator who is a human being.  This 

makes sense as the administrator is the one 

who has to make decisions in real time if 

any attacks are being launched.  If alert 

flooding is done on the IDS obviously he 

will be presented with numerous alerts and 

will not be able to produce a valid attack 

trace. 

 

The researchers propose two methods to 

solve this problem.  One is to increase the 

resources at disposal and another is to 

decrease the amount of resources required.  

Increasing the resources means increasing 

the throughput of sensors used which will 

enable it to produce alerts constantly even 

if the packets are flooded at it.  The 

obvious problem with this approach is that 

though we are able to scale the hardware 

to handle burst of data the human 

operator's abilities are limited.  He still 

cannot make clear decisions out of these 

burst of data. 

 

The second approach, of course the most 

promising one is to reduce the requirement 

of resources.  This is done by using the 

token bucket filter algorithm which 

maintains the rate of incoming data.  If the 

incoming rate increases the rate 

established by TBF (Token Bucket Filter) 

the packets are discarded.  This suggests 



that when packets are flooded the TBF will 

gracefully discard those packets.  But there 

is a potential problem with this approach 

that the algorithm runs the risk of dropping 

packets which are actually sent to attack 

the machines. 

 

The solution proposed by the researchers 

uses the TBF along with the correlation 

algorithm in order to ensure that critical 

alerts are not missed.  The exact approach 

is to add the TBF to each queue in the in 

the queue graph data structure we 

described.    By this way flood of alerts 

matching an exploit will be discarded.  

There is an optimized method to inform 

the user about dropped alerts.  The 

researchers use the Run Length Encoding 

Scheme (RLE).  RLE is used to represent 

data that occur in large repetitions.  The 

method RLE uses is, it writes the string 

followed by how many times the string has 

occurred.  For example if ‘‘cat’’ occurs 

1000 times then RLE represents it as cat 

1000. 

 

We can employ this technique into the 

queue graph data structure to inform the 

user about the excessive alerts that are 

dropped.  Just add a counter to the queues 

in the graph and increment the counter 

every time an alert matching the same 

exploit occurs increment the queue 

counter.  When the token bucket has 

enough credit so that we can dequeue, we 

remove the alert and its counter and make 

a log in our result graph data structure 

described earlier which is a permanent 

storage.  An improvement is made to avoid 

discarding crucial alerts by applying TBF 

at the signature level.  By doing this we 

are able to log even those alerts that do not 

correspond to any exploit in our attack 

graph.  Fixing the parameters for the TBF 

depends upon the implementation 

environment but this task is trivial.  For 

those alerts that do not match the exploit 

fixing TBF values may be quite 

challenging if not impossible. 

 

Concluding Notes 
 

Having realized the need for efficient 

correlation through the research 

discussions at Argus meet I did this study 

of popular methods existing till now to do 

efficient correlation of alerts in real time.  

Using queue graphs with TBF appears to 

me as a novel and a powerful solution to 

thwart such flooding attacks.  The 

challenges in implementing this method 

lies in configuring TBF parameters and 

efficiently dealing with alerts that do not 

match with exploits in attack graph.  But 

researchers point out that this can be done 

by the administrator after considerable 

experience. 
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