
Alert Flooding Attack on Snort and Its Mitigation

Introduction

Network Intrusion Systems employ a

number of sensors for efficient reporting

of attacks on the hosts in a network. But a

serious problem with these sensors is that

the information they produce is in a low

level format and the system administrator

gains no useful information from the

report. In this report I am going to discuss

about the usage of a method to correlate

the alerts produced, the attack graph

method. The subject matter of this report

though will be about the discussion of a

type of attack on NIDS called 'alert

flooding'. The first effect of this attack is

the loss of service. The sensors do not do

the intended job. The second effect is that

we get lot of unintended alerts which make

alert correlation impossible or at least

makes correlation meaningless. The report

will walk through the basics of NIDS, the

operation of Snort, establishing alert

flooding attack and solution to mitigate it

using two concepts called Token Bucket

Filter and Queue Graph.

How attacks are launched on

NIDS

An NIDS is usually a software deployed

on host in a network. An NIDS like Snort

can be configured to monitor the network

in a promiscuous mode such that it can

examine those packets that are not

intended to it. The NIDS detects

malicious packets of data through

signature based methods where possible

attack packet contents are stored and if a

match is found an alert is raised. The

second method is the anomaly based one

where legitimate traffic patterns are stored

and any deviation is raised as an alert. In

either of the cases there exists a

communication channel between the NIDS

host and the host of the system

administrator. If this link is flooded with

data the administrator will not receive the

alerts in time and during which the

attacker can send a malicious packet

unnoticed by the system administrator.

There are many methods to flood this

channel but this report concentrates on one

particular method of doing, using 'alert

flooding'.

Core of the solution

There will be alerts generated by the IDS

sensors. Alert correlation is done to match

the alerts to exploits on the attack graph.

Now the potential for attack exists when

the attacker floods with fake attack packets

which will make us construct an attack

graph that gives false alerts and at the

same time forces us to mix the critical

alerts. So the solution analyzed in the

report uses two components. The token

bucket algorithm and the attack graph.

The token bucket algorithm acts as the

input for the attack graph. By using the

attack graph we can eliminate alerts that

are not useful in determining the attack

scenarios. Using the token bucket we are

able to defend against the alert flooding

since it filters out such alerts through a

mechanism described in forth comings

pages. This implies that we will not miss

upon crucial alerts due to alert flooding.

Basic operation of Snort

Snort works by comparing the incoming

packets with the stored signatures. The

signatures depict known attack patterns

and are stored in a database. The contents

of the packets on the network are scanned

and compared with the stored signatures.

If a match is found an alert is raised.

Sample signature is shown below.

alert udp $EXTERNAL_NET any

->

$HOME_NET 31337

(msg:"BACKDOOR

BackOrifice access";

content: "|ce63 d1d2 16e7

13cf39a5 a586|";)

This signature is used to detect the

'BackOrifice' program generated traffic.

The msg field is the message to be

displayed and the content part of the

signature is the data to be matched in the

incoming packet. The protocol is UDP

and can be generated by any host on the

Internet and directed towards any node in

the HOME_NET to port 31337.

What is Alert Flooding?

Alert flooding attack can be done by

crafting a packet which matches any of the

signatures and send large numbers of them

towards the network. These packets may

actually do no harm and are simply used to

keep the IDS busy spending time logging

spurious alerts. For example, using the

sample signature shown in the previous

paragraph, all the attacker needs to do is

to craft a UDP packet whose content

matches the signature given and direct it

towards any host in HOME_NET to port

31337. It is important know the effects of

this attack to appreciate its effectiveness.

1) The alert database becomes full

and further alerts are not recorded.

This may lead to missing true

critical alerts.

2) The sensor reaches its threshold

level and so its throughput is

decreased. In the worst case sensor

ceases to function and this leads to

the total failure of the IDS.

3) The worst consequence is that the

System Administrator is presented

now with mixture of true and false

alerts and so he cannot reason out

clearly as to what could have

caused the attack.

How easy is alert flooding

nowadays?

There are tools available that automate

alert flooding. Some of the popular tools

are Stick and Snot. These tools use the

freely available snort database. This

database contains the signatures to of the

most common attacks and are used by

snort in all the networks wherever it's

deployed. Using the signatures the tools

craft the packets and flood them towards

the network where snort will be operating.

There is also a severe vulnerability in the

alerting procedure of snort. Researchers

have recently found out that snort is

flushing the buffer unnecessarily at two

places which leads to unwanted system

calls. This leads to poor performance in

logging the alert. This flaw adds to the

woes of alert flooding leading to quick

drop of efficiency of snort.

Some of the methods to prevent

alert flooding

There were attempts made by the

developers of the snort themselves to

address this alert flooding problem. The

solution was to keep track of the states of

all the TCP connections. As we know TCP

has states and it's possible to track the state

of any TCP connection. They redesigned

Snort such that it doesn't accept packets

from any connection that isn't properly

established through the famous three way

handshake. Now the attacker cannot send

the packets as just 'single' packet but has to

transmit three more packets in prior before

sending his attack packet to. The primary

requirement for establishing a handshake

with a host is that they must already be

communicating. This improvement is

based on the report by Ptacek and

Newsham.

They discuss this solution in detail and

also enumerate the disadvantages in doing

so. There is a very trivial disadvantage in

this method. According to the design the

IDS will record only those connections for

which it has observed the 3-way

handshake. This may lead to the IDS

missing any TCP connection that had been

established before the IDS started. Due to

this loophole the attacker can evade

detection without a 3WH.

We define TCP Control Block as the set of

data that the IDS needs to maintain to keep

track of all the active TCP connections. A

TCB is created by the IDS for every new

connection and deleted once the

connection terminates. There are four

important parameters to keep track of

called source IP, source port, destination

IP and destination port for every active

TCP connection and termed as 'connection

parameters'. For the IDS to reconstruct

the information flowing through the TCP

stream it should be able to figure out what

sequence numbers are being used. The

process of determining them is called

'synchronization' and when the IDS is

confused about this process it's said to be

'desynchronized'.

By design, Snort uses the 3WH to

determine the initial sequence numbers of

the TCP connection. This is a blunder

given the fact that it is possible for the

attacker to produce a fake handshake. The

attacker will be using the connection

parameters which will be of some other

connection will not be detected as the

same parameters are being assigned to the

attacker initiated connection. This effect is

called 'desynchronization'. This entire

concept of keeping track of TCP states is

implemented by Snort designers as

'stream4'. But the cited disadvantages

render stream4 useless for preventing alert

flooding.

Another advantage for the attackers is that

there are some exploits that can exist

without any state information. The

signatures for those exploits obviously do

not care about the state of the connection.

The attacker then uses those signatures to

generate packets and flood them towards

the IDS. To worsen the fact there are also

some exploits that are stateless for which

the stream4 software will be of no use.

Token Bucket Algorithm

Token bucket has been a popular algorithm

in the area of Networking used in reduce

the flooding of packets caused by the

source, by the destination and provide the

required Quality of Service. We will now

see how QOS can be deployed with Snort

thereby mitigating alert flooding. There

are two important parameters that token

bucket employs. Bucket size and token

rate.

As we can see the tokens are generated at a

constant rate 'token rate’ and are stored in

the bucket. If the bucket becomes full the

extra tokens are just discarded. Each

arriving packet needs a token to pass

through the filter. Packets that cannot

obtain a valid token will be discarded.

This condition is termed as 'over limit'. If

the token rate is greater than the alert rate

it is termed as credit and can be used by

alerts when the rate exceeds the normal

rate, but for only for a temporary period.

Use of attack graphs in alert

correlation

As I have been working in the Argus group

research I am able to comprehend the

difficulty in analyzing the low level result

set produced by Snort. It is extremely

difficult for anyone other than an expert

Network Administrator to figure out what

exactly caused the attack. There will be

sequence of events that would have lead to

the current compromised state of a host

system. It is difficult to deduce that

sequence by merely looking at the Snort

produced result set which is raw.

Through the Argus research work I am

also able to appreciate the usefulness of

attack graphs in finding out that sequence

of events. Let me just present a simple use

of attack graph for a small event.

Correlation algorithms using attack graphs

utilize the strategic relationship that exists

between the alerts. To establish this

relationship we need to map the alerts to

vertices in the attack graph.

An attack graph gives knowledge about

the vulnerabilities in the given network

along with the information of how they are

related. There are two types of vertices in

an attack graph, exploits and security

conditions. Exploits are vulnerabilities in

the host systems. Security conditions

denote the network status required or

implied by the exploits. An edge from a

security condition to an exploit says that

the exploit cannot be executed unless the

security condition is satisfied and an edge

from exploit to security condition implies

that execution of exploit will satisfy the

security condition.

Referring to the sample attack graph ovals

refer to the security conditions and the

rectangles refer to the exploits. The graph

says that the attacker can execute buffer

overflow exploit only when the following

two conditions are satisfied. The attacker

should have access to the host and the

vulnerable program must exist on the host.

This is a simple attack graph giving us an

obvious result but for a large enterprise

network attack graphs provide some

interesting attack patterns which are

impossible to be detected just using the

Snort alerts.

Correlation Methods

There are numerous correlation methods

that are employed to match the alerts with

the exploits in an attack graph. The first

method is the vulnerability centric

approach. This approach matches the

event type attribute of alerts with the vul

field of the exploits to find a matching

exploit. This method can eliminate

unwanted alerts like launching Windows-

specific alerts on Unix machines. There is

also a potential flaw. This method can

miss those alerts that do not match any

vulnerability but may prepare for other

attacks, like ICMP PING that doesn't

match any vulnerability will be probing for

future attack.

There are other correlation methods that

depend upon temporal characteristics of

packets like order of arrivals and

timestamps. This method may not be

highly reliable as there are concerns

regarding network delays as data may be

collected from sensors located at different

locations.

There is another approach called nested

loop approach. The objective of this

approach is to correlate alerts by searching

exhaustively all the received alerts and

finding out the alerts that prepare for a

new alert. This may lead to high memory

usage as there may be huge number of

alerts to compare. An optimized approach

uses a modified approach where we use a

window approach where only those alerts

that are nearer to the new alert are

processed. This leads to a severe trade off

between complete correlation and

performance. Though it ensures good

performance over the exhaustive approach

chances are that we may miss crucial alerts

outside the window. An attacker who

knows that window technique is used can

send his sequence of malicious packets

delaying them such that they fall outside

the window of their neighboring alerts.

Queue Graphs

There is a new data structure called queue

graph proposed by researchers that

eliminates the drawbacks in the nested

loop approach. The important observation

made here is that the correlation between

alerts need not be explicit.

The figure above shows alerts as they are

received in the increasing time frame from

left to write. Assume ai, aj and ak match

the same exploit A on the attack graph and

ah matches another exploit B but if A

prepares B then ak and ah are implicitly

correlated. There is also another implicit

relation that since aj occurs before ak and

ak occurs before ah A prepares for B aj

must also occur before ah. This leads us to

a new observation that a new alert needs to

be correlated only with the latest alert in

the past matching the same exploit. So we

keep the correlation with other matching

alerts than the recent one implicit. In this

way the correlation algorithm needs to

search backward to find the first matching

alert unlike the nested loop approach.

Correlation using Queue Graphs

A Queue Graph is a in-memory data

structure. It is designed as follows. Each

exploit is denoted as a queue of length one.

Each security condition is denoted as a

variable.

The figure above shows the realization of

queue graphs. The first is the picture of an

attack graph. We need to construct a

queue graph for this attack graph for in-

memory correlation. For each exploit ei in

the graph we need to do a BFS of the

attack graph for each exploit. The third

picture shows the BFS for exploit e1. For

each edge connecting an exploit and a

security condition we add a edge

connecting corresponding queue and the

variable. Here we connect to v2 using Q2

as either of them, Q2 or Q3 can be used to

reach v2. Pictures 3 and 4 show the BFS

done on Q2 and Q3.

Each incoming alert is matched with the

exploit in the attack graph and placed in

the corresponding queue. Since the queue

is of length one, the queued alert is

dequeued when a new alert matching the

same exploit arrives. We need to correlate

the alerts to derive attack patterns and for

this purpose we use another data structure

called result graph.

The procedure to record the alerts received

and establish the correlation is as follows.

First, for each new vertex received it is

added as a vertex in the result graph.

Next, a new alert matching the same alert

will dequeue the old one matching the

same exploit in the queue graph. An edge

is added between these alerts to establish

the temporal relationship between them.

The new alert will have been enqueued in

our queue graph. Once this is done we can

just follow the pointers and search the

queue graph. If an edge from a queue

leads to another non-empty queue through

a variable we record the relationship

between in the result graph to aid in

correlation.

Let me explain the correlation using queue

graphs for the figure. Let ah match alert

e1 and ai, aj and ak match e2. Their

temporal order is shown in the figure.

Alert ai is the first to arrive and it's placed

in the queue Q2. After that aj arrives and

forces Q2 to dequeue and adds itself to Q2.

Now we need to update our result graph to

record the temporal relationship between

these two alerts. We do this by adding an

edge between ai and aj. This also records

the fact that ai and aj match the same

exploit e2. Then ak arrives, dequeues aj.

We record this fact as usual in the result

graph. Finally ah arrives matching the

exploit e1 which results in it being

enqueued in Q1. Then we do a BFS

search in the queue graph to establish the

correlation.

 As we can easily see a search from Q1

upwards leads us to non-empty queue Q2

thereby establishing the explicit

correlation between ah and ak. This is

exactly we wanted, establish correlation

only between only one alert among a large

number of alerts matching a single exploit.

The queue graph approach is definitely an

improvement over the nested loop

approach which is vulnerable as it has the

window concept where the correlated

alerts may fall outside window evading

correlation. But in queue graph once an

alert matching an exploit is detected and

queued, it can be dequeued only when an

alert matching the same exploit arrives. In

other words, after an alert, if the attacker

tries to inject unrelated alerts to avoid

correlation the queued alerts are not going

to get removed which eases our correlation

process.

Reducing data to aid in efficient

correlation

This part of the report will discuss about

using the throttling algorithm in

combination with correlation. One of the

researchers sees this problem of alert

flooding from the point of view of the IDS

operator who is a human being. This

makes sense as the administrator is the one

who has to make decisions in real time if

any attacks are being launched. If alert

flooding is done on the IDS obviously he

will be presented with numerous alerts and

will not be able to produce a valid attack

trace.

The researchers propose two methods to

solve this problem. One is to increase the

resources at disposal and another is to

decrease the amount of resources required.

Increasing the resources means increasing

the throughput of sensors used which will

enable it to produce alerts constantly even

if the packets are flooded at it. The

obvious problem with this approach is that

though we are able to scale the hardware

to handle burst of data the human

operator's abilities are limited. He still

cannot make clear decisions out of these

burst of data.

The second approach, of course the most

promising one is to reduce the requirement

of resources. This is done by using the

token bucket filter algorithm which

maintains the rate of incoming data. If the

incoming rate increases the rate

established by TBF (Token Bucket Filter)

the packets are discarded. This suggests

that when packets are flooded the TBF will

gracefully discard those packets. But there

is a potential problem with this approach

that the algorithm runs the risk of dropping

packets which are actually sent to attack

the machines.

The solution proposed by the researchers

uses the TBF along with the correlation

algorithm in order to ensure that critical

alerts are not missed. The exact approach

is to add the TBF to each queue in the in

the queue graph data structure we

described. By this way flood of alerts

matching an exploit will be discarded.

There is an optimized method to inform

the user about dropped alerts. The

researchers use the Run Length Encoding

Scheme (RLE). RLE is used to represent

data that occur in large repetitions. The

method RLE uses is, it writes the string

followed by how many times the string has

occurred. For example if ‘‘cat’’ occurs

1000 times then RLE represents it as cat

1000.

We can employ this technique into the

queue graph data structure to inform the

user about the excessive alerts that are

dropped. Just add a counter to the queues

in the graph and increment the counter

every time an alert matching the same

exploit occurs increment the queue

counter. When the token bucket has

enough credit so that we can dequeue, we

remove the alert and its counter and make

a log in our result graph data structure

described earlier which is a permanent

storage. An improvement is made to avoid

discarding crucial alerts by applying TBF

at the signature level. By doing this we

are able to log even those alerts that do not

correspond to any exploit in our attack

graph. Fixing the parameters for the TBF

depends upon the implementation

environment but this task is trivial. For

those alerts that do not match the exploit

fixing TBF values may be quite

challenging if not impossible.

Concluding Notes

Having realized the need for efficient

correlation through the research

discussions at Argus meet I did this study

of popular methods existing till now to do

efficient correlation of alerts in real time.

Using queue graphs with TBF appears to

me as a novel and a powerful solution to

thwart such flooding attacks. The

challenges in implementing this method

lies in configuring TBF parameters and

efficiently dealing with alerts that do not

match with exploits in attack graph. But

researchers point out that this can be done

by the administrator after considerable

experience.

References

[1] Wang et al, ''Using attack graphs for

correlating, hypothesizing and predicting

intrusion alerts''. Science Direct, 2006.

[2] Gianni Tedesco and Uwe AIckelin,

''Data Reduction in Intrusion Alert

Correlation''.

The University of Nottingham.

[3] Thomas H. Ptacek, Timothy N.

Newsham ''Insertion, Evasion, and Denial

of Service: Eluding Network Intrusion

Detection''. Secure Networks, Inc, 1998.

[4] Snort IDS,
 http://www.snort.org/

