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Abstract In this paper we propose a simple and practical approach to
IDS alert correlation that addresses the above challer@es.

A significant challenge in applying IDS alert correlation in o
9 9 pplyINg contributions are:

today’s dynamic threat environment is the labor and experti ) o o .
needed in constructing the correlation model, or the kndgge ~ * Our approach isgenericin that it is not customized to
base, for the correlation process. New IDS signatures dagtu detect pre-modeled scenarios but has the ability to detect
emerging threats are generated on a daily basis, and thek atta previously unseen attack scenarios. It is _eﬂembleln the _
scenarios each captured activity may be involved in are also  S€nse that it can handle data from a variety of sensors like

multitude. Thus it becomes hard to build and maintain ID$tale NIDS, HIDS and other relevant information for intrusion

correlation models based on a set of known scenarios. Lrearni analysis. Adding a new sensor is easily done by adding
IDS correlation models face the same challenge caused laythe a new semantic mapping for the information the sensor
namism of cyber threats, compounded by the inherent difficul reports. The correlation graphs can be generated with any
in applying learning algorithms in an adversarial envir@mmn desired level of granularity, depending on how detailed the
We propose a new method for conducting alert correlatioedas system administrator wants to know about specific attack

on a simple and direct semantic model for IDS alerts. The  Scenarios. .
correlation model is separate from the semantic model and ca ¢ The correlation tool we develop can report attacks, if any,

be constructed on various granularities. The semantic huod in real time Our correlation tool handles network traffic
maps an alert to its potential meanings, without any refezda continuously generating attack graphs isvg file format
what types of attack scenarios the activity may be involvethie deployed as a web page on a web-server. The correlation
show that such a correlation model can effectively capttieei is staged in two phases wherein we do the time-consuming
scenarios from data sets that are not used at all in the model activities like alert grouping and summarization in thetfirs
construction process, illustrating the power of such datien phase and the reasoning engine that takes those processed
methods in detecting novel, new attack scenarios. We riggyo alerts, generating attack scenarios constitues the second
evaluate our prototype on a number of publicly availabladats phase. _ . "
and a production system, and the result shows that our atioel « We have done rigorous evaluation of the efficiency of our
engine can correctly capture almost all the attack scesithe tool on a number of data sets that range over a wide period
data sets. of time. We call it rigorous because we used the same
semantic model consistently over all the data sets and the
|. INTRODUCTION result shows that the same model works perfectly on all of
them.

IDS alert correlation has been studied for more than a decade, The attack scenarios produced from our correlation tool can
and a number of correlation methodologies have been prdpose e ysed as input for various prioritization methods.
Although research has made significant progress in creating
various correlation models, what one finds in practical uie s Il. RELATED WORK
remains rudimentary. Our conversation with system adminis Alert correlation in intrusion detection systems has been a
trators and security analysts indicate that there is a fitgnit  topic researched for almost ten yeats 3, 5, 6, 8, 13]. Ning,
gap between the desired capability of IDS alert/event taticemn et al. [7] proposed an approach using pre and post-conditions.
technologies and what the current commercial tools canigeov The concept of hyper-alerts are introduced, which consits
The question naturally arises that why more than ten yearghe attack activity, the pre and post-conditions corredpunto
research into IDS alert correlation has not found wideagre that attack. The mappings of raw alerts to one of these hyper-
use in practice. alerts are pre-generated and stored in a knowledge base. Two

Several attempts in applying IDS alert correlation have sufhyper-alerts are correlated if the post-condition of ongdry
fered from many of the following limitations. Most of the alert contributes to the pre-condition of another one. @mgpet
approaches are based on constructing a knowledge basewfiknoal. [3] propose a correlation model called CRIM which provides
attack scenarios and thus lack the ability to detect emegrginclustering, merging and correlating of alerts from mutifiDSes.
and new ones. Another problem is the difficulty in updating th The alerts are clustered based on their similarity and naggrge
knowledge base. If there is a same attack with slight modifina where each group of merged alerts represents a single attack
in the sequence of events, the knowledge base may not be alliée correlation module takes these merged alerts and cetsstr
to detect it. A more important concern with past works ontalera number of possible attack scenarios. CRIM specifies a numbe
correlation is the lack of rigorous evaluation on a number ofof attack modules using the LAMBDA language where each
data sets. For an IDS to be a practical tool it has to perforrmodule has a pre-condition that must be true for the attack
consistently over a variety of data sets. to take place, the post-condition that may result if thecitta



succeeds, the attack activity itself, and other infornratido Visualizer
correlate the modules and construct the attack scenar®s th T
authors propose two methods, direct and indirect cormalatn
the explicit correlation method two modules are correlafed
successful execution of one module contributes to theatioth of / T
another. In the indirect correlation approach ontologio#éds are
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used to correlate modules that aren’t directly related kwdugh ———
a series of events, with one module being the initial evewt an ﬁ i
the other the last event. Cheung, et &] proposed a model

called Correlated Attack Modeling Language (CAML) that aim
at developing attack patterns. The main idea is to consauct

set of modules that describe specific attacks with pre-dimmdi
to be satisfied for the attack to occur, the attack activigelft
and the post-condition that may result if the attack sucee€de

post condition of one attack module may satisfy the predmdi : : : :
. . Semantic Semantic Semantic Semantic
of some other attack modules in which case both these attack Pre-processing | | Pre-processing | | Pre-processing | | Pre-processing

modules will be linked. / \ / \ / \ / \

Most of the above previous works adopt a pre- and posty. .o <
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condition correlation module. A potential drawback of #@siag LI LT:T L0 S E 't' 'l_ """""""" Ly
a pre- and postcondition to an IDS alert is that the modelfitse ESEELE
may already have assumed some specific attack patterns. The Figure 1. SnIPS System

attack modules knowledge base must be frequently updated to
include newer attack patterns, which has become impradgtica DS alerts, which maps an alert to its potential meaninge Th
today’s rapidly changing threat environment. semantic pre-processing layer applies this semantic mtmdel
Ren, et al. 11] propose the design of an online correlation translate raw alerts into high-level “summarized alertdiick
system for real-time intrusion analysis. There are two comp are grouping of alerts with similar properties (sourcetidesion
nents: an off-line Bayesian-based knowledge base cotisinuc address and alert type). The correlation engine then applie
tool and an online correlation and attack graph construdioe ~ two-stage process to build up an alert correlation grapre Th
offline component maintains tables that specify the frequeri ~ correlation system is capable of handling dynamic knowdedg
occurrence of possib|e hyper-a|ert types and also the latioe base such as black-listed IP addresses which change frtdgquen
between different hyper-alert pairs. This correlation ymam- It provides online real-time response, running continlpos
ically updated depending upon the network traffic observe@treams of input events.
over a past time window. The online component, on receivin
alerts and grouping them into different hyper-alerts, utes , s
knowledge base from the offine component to construct the 1h€ Pre-processing step is performed to translate and eeduc
attack graph. This approach is practical since it movesflmef the amount of information entering the reasoning enginas Th

the work that involves maximum processing, and it is dynamicProcess consists of the following parts.
ie., able to adjust the causality between hyper-alerts ritipg 1) Translation: SnIPS takes Snort alerts and other relevant

on the network traffic. However, the automatic knowledgesbas €VeNts as input. Then it maps the observations (eventsjeto th
construction can only learn and detect the type of attacks th Semantics. This process uses a set of mapping rules called
have occurred in the past and on the network where it is waine °PSMap

We propose a different approach where a generic knowledggefinition 1. Observations™% Internal Conditions

base captures an attacker’s intentions and constraisteaid of
specifics of attacks. Definition 1 shows the formal mapping rule between obser-

vations (e.g. alerts) and internal conditions (semanti@$)e
I1l. CORRELATION MODEL modeis used as a tag indicating the strength of the belief (e.g.
The biggest problem with IDS is the large volume of falseunlikely,possible, likely, or certa)nThe assignment of the mode
alarms. IDS alert correlation can potentially help in firglattack  is done by interpreting the natural language descriptiohef
traces in all these alerts. Our correlation model is builthimi  snort rule (IDS signature).
the context of the SnIPS tool suitd]] A key feature of SnIPS . .
is using qualitative uncertainty tags andpeoof strengthening Example 1. Observatmn. mapping- .
techniques to handle the uncertainty challenge in intrusioal- obs(portScan(H1,H2)}- int(probeOtherMaching1,H2))
ysis [9]. The new correlation model described in this paper would Examplel shows an obsMap rule that mapgartscanalert
allow for more sophisticated mathematical theories to hgiegp  to probing activity with thep (possible) mode.
to handle uncertainty, as compared to the empirically dped 2) Summarization:The summarization step is performed to
proof strengthening approach. reduce the amount of information entering the reasoningneng
Figure 1 shows the overall architecture of the SnIPS systemWe apply a data abstraction technique by grouping a set of
Our correlation model is based on a direct semantic model fosimilar “internal conditions” into a single “summarizediternal

%. Semantic pre-processing



int(probe(exty, H), c,T1)
int(probe(exts, H), c,T2)

Compromised(ipy, startTime, endTime

} int(probe(external, H), c,range(T1,Ty))
int(probe(ext,, H),c,Ty)

intRule#1, forward

Figure 2. Summarization

robeOther Machine(ip, ips, startTime, endT'ime

condition. The summarization is done on both the time stamps
and IP addresses. For timestamps, if a set of internal dondit
differ only by timestamp we merge them into a single summa- Figure 3. A proofStep example
rized internal condition with a time range between the eastl
and latest timestamp in the set. We also abstract over extétn @
address. We begin by selecting a set of internal conditibat t

differ only in the external source or destination IP add®8ss 7 . sexioinn. iy
and give a special variable, “external” as an abstractiothef
external IP addresses. We do not summarize on internal IP

addresses as this knowledge may be useful in the reasoning

process. We maintain the mapping between the summarized

internal condition and the raw internal conditions/obaéibpns Figure 4. Correlation graph example

in the SnIPS database, which helps us identify the low-level

facts belonging to the summarized predicates. The sumethriz Example 3 illustrates one internal rule. If we know that

tuples are then given to the reasoning engine. The outphti®f t machine H; is compromised, then it may perform malicious

module will be stored in the SnIPS database. Fidliltustrates  probing to another machinél;. Conversely, if we know that

the summarization process. a machineH; is performing malicious probing against another
3) Black List IP Processor:SnIPS can digest any emerging machine, we can also know that machifle is compromised.

information about the threat landscape and use them in th®o each internal rule can be used either in the forward dlnect

reasoning process. All that is needed is to provide an obsiap or the backward direction, in the reasoning process.

for the information. One example of such dynamic informatio

is black listed IPs. A machine can be put into a blacklist Hass Example s I_nternal rl}lef )
been found to be involved in malicious activities (bot aites, ~ Nt(compromise(H1)) = int(probeOtherMachine(H1,H2))

ssh brute-force log in attempts, etc.). Such a list can bel use The output of this stage is a collection of individual “proof
in two ways. The first method is to map a blacklisted IP to thesteps” proofStep_ Figure3 gives an examp|e of @roofStep
predicatecompromisegwith the mode assigned by the IP's age in Each node is associated with a fact lilkempromisetH),
the list. That is, the IP address will be mapped to a higherenodand a time rangéstartTime,endTime)indicating when the fact
if it is more recently added to the list. Over time the conficen pecomes true. The direction of inference (forward or backiva
will decrease, due to the fact that the machine could hava beqs also indicated in the proof step_ The time range of the
cleaned up. The second method is to create a snort rule thagnclusion can be calculated based on the time range of the
will be triggered whenever there is a communication betweerntecedent and the direction of the inference. All the Boes
any local host and the black-listed IP. This alert will be pag  will be stored in the SnIPS database.
using obsMap rules stored at the SnIPS dynamic knowledge bas 2) Correlator: The correlator module collects all the small
(Figure 1). pieces of evidence in the form of proofSteps into a possible
Example 2. H2 is a black-listed IP: scenario. The input of this gngine is a list pﬁqofStepsfrom

the reasoner and the output is a set of correlation graphs. Each
graph is an illustration of attack scenarios gathered frtirtha
The advantage of the second method is that it can capture glieces of evidence.

8: probeOtherMachingg,, ip,)

obs(anyCommunication(H1,H2¥} int(compromise(H1))

communication with a black-listed IP even if it would nogger Figure4 is an example correlation graph, which can be viewed
an alert otherwise. from top to down. tompromiset “probeOtherMaching and
“sendExploit are predicates used to describe various attack
B. Correlation Engine hypothesesalert; is mapped to the fact that hogt; sent an
The goal of this step is to build the scenario picture of &ac €XPIoit to ip2; both alert; and alert; are mapped to the fact
and consists of two stages: tReasonemnd theCorrelator. thatip, did malicious probing taps, and so on. The rationale

1) Reasoner:The goal of this reasoning process is to find all P€hind this correlation graph is that aftgr, sent an exploit
the possible semantic links among the summarized factset u [0 2, %2 may be compromised (node 9). Once the attacker
an Internal Model(see Figurel). Definition 2 gives the formal has compromisedp,, he can send malicious probing to any
format for reasoning rules in the internal model (calieternal ~ Othér machine. Thus these alerts are all potentially cateell
rules thereafter). The rule derives one internal condition fromin the same underlying attack sequence. SedNoexplains the
another, with two qualifiersdirection of inferenceand mode algorithm that computes these correlation graphs.

The direction tag has two values eithieackward or forward. C. Prioritizer

The mode tag has been discussed before. The prioritizer can further refine the result of correlation

Definition 2. Condition 1— Condition 2 assigning each node in the correlation graph a belief value



‘3* 8 * « Step 2: All translated objects); will be classified based
factstoet | (factstiet: | [ factstet | [ factstet on the facts associate_d with them. For example, all objects
with the factcompromiseth) will be in one group and so
R R R R on. Figure5 gives an example of one group. We can assume
o 02 0s O+ that each fact in the figure has the fomompromiseh).
Each group of objects will be sorted ascendingly by the end
time (et;), and then by the start time(;).

Figure 5. Correlation of different time ranged overlappfagts objects

based on an extended version Dempster-Shafeevidential « Step 3: Each group will then be correlated using time
reasoning theory1[?]. The belief values can be used to rank overlapping between objects. Figuseillustrates the cor-
the correlation graph segments by the belief values of tliesi0 relation process. There are two sliding pointers to track
within the segments, the higher the belief value, the mdeiyli the correlation process. The first pointer will start at
the correlation represents a true attack. This will helpsystem the first objectO,. The second pointep, will move to
admin to spot the most important correlation scenario. The the second object. If the time range O% overlaps with
calculation uses the mode values assigned to the obseryaiiml O then the intersection of the two time ranges will be
translates them into numeric basic probability assignroarthe taken and stored in a variabletTimeRange. Pointerp;
interpretations of the observations. Then an extended B&mp then moves ta); and takes its time range to intersect with
Belief Combination method is applied to calculate the Ilelie intTimeRange. The process stops whentT'imeRange
value of each node in the graph. Detailed explanation of this ~becomes empty, meaning we can no longer correlate the
module falls beyond the scope of this paper. facts represented by the objects. A new graph node will be
_ ) created for all the objects that have a non-empty time-range
D. Visualizer intersection, which will havéact, intTimeRangas its fields.

The final step is to introduce the output to the system admin  Thenp; will move forward until the time-range intersection
in an easy to understand and manipulate manner. We use the for objects betweemp; andp, becomes non-empty.

GraphViztool to display the correlation graphs in trevgformat, Figurel and2 show the pseudo code for this algorithm. Le
so that the user can use an interactive web interface toeurthin Algorithm 2 includes constructing the edges of the graph,
analyze portions of a correlation graph. For example, the us hich utilizes the “other info” field in each object to conmhec

can examine the raw alerts behind a summarized alert, the IDe merged nodes with one another. Details of this part of the
signatures that trigger them, the payload, and other retevazgorithm is omitted due to space limitation.

information.

E. Dynamic Knowledge Base Algorithm 1 Correlation engine

The dynamic knowledge base is used in a number of stepsl' functlon CORR(Proof StepsSet) .
. . . . 2: ObjectsSet «+ Translate all proofSteps Iin
described above. It includes both the obsMap relations irsed
. . . . ProofStepsSet
the semantic pre-processing stage and the internal modelios , . .
. ) . ; 3: for eachObject(O) in ObjectSet do
the logical reasoning phase. The dynamism of this model some , ) .
) . 4: ObjectsGroupList < group by fact of ObjecO.
from the fact that it can be automatically or manually update
: N end for
based on the emerging threats. For example, the blacktliste _ _
. .6 for eachObjectGroupList do
IP addresses change every hour. The simple obsMap relations’ sort ascendinaly by the endTi of the
allow for quick update of the obsMap relations for this piete gy by enatume

information TimeRange.
' 8: Graph< CREATEGRAPH(ObjectGroupList)
F. Implementation 9 end for

10: return Graph

We use the Prolog system XSR(] to perform the semantic _
11: end function

mapping and logical reasoning of the input alerts. The Catwe
and the Prioritizer are implemented in Java. The Visualiger

implemented using a collection of web programming langsage
such as PHP. V. EXPERIMENTATION

We have tested our correlation model on a number of publicly
IV. CORRELATION ALGORITHM .
available datasets and on our departmental network as Faell.
The correlation algorithm takes the collection of proofte the datasets the tcpdump of the network traffic is obtaineldtiae
output from theReasoneand builds a set of correlation scenarios correlation is done offlineThe construction of the reasoning
in the form of graph segments. The Correlator follows themodel is done completely separately from the evaluation and
following steps: without any knowledge about the specifics of the data sets
« Step 1: Translate the input proofSteps into a form that This testing is to ensure that our correlation model worke fin
can be handled by the engine. We will call this translatedand is able to identify different types of attacks. The eatiin
objectO; (Figure5). An object contains a number of fields, on the departmental network analyzes data from variouscesur
including the fact associated with it, the start time, anal th like Snort IDS, black-list logs from computer clusters, aswl
end time. on, and produces real-time attack scenario graphs in Sealab



sadmind_ping(External, IP1)

probeOtherMachine
(External, IP1)
sendExploit(External, IP1)
sadmind_ping(IP1, IP1! compromised(IP1) sadmind_ping(IP1, IP3

probeOtherMachine probeOtherMachine
(IP1, IP2) (IP1, IP3)

Algorithm 2 Create graph

1: function CREATEGRAPH(ObjectGroupList)

2: for eachObject(0;) in ObjectGroupList do

3 intTimeRange < find the intersection of
timeRange with the nextO;

if intTimeRange is Emptythen
NodesHash + create new node with

intTimeRange and O;'s fact and useO; as the key
for the hash table.

sadmind_buffer-
overflow_exploit
(External, IP1)

»

a

sadmind_buffer-
overflow_exploit
(IP1,1P2)

sadmind_buffer-
overflow_exploit
(IP1,1P3)

o endif

7 end for

8. for eachNode in NodeHash do

9: Graph <+ build the edges from the related;

10: end for Figure 6. Lincoln Lab Scenarion (DDOS) 2.0.2 Result

11: return Graph graph corresponding to the probing of the attacker for sesvi
12: end function that have the sadmind vulnerability. The alerts pertainmthis

activity are grouped as a single group of snort alerts and are
correlated to an abstract event that sagsinternal machine, in
Vector Graphics (svg) format which can be viewed on a webthis case the DNS resolver, is getting probed by some externa
browser. The generated svg file is hosted on a web-serveaso thP. The System Administrator can click the snort alerts black t
the System Administrator can view the current securityestdt ~ see the alerts, their payload and a detailed descriptidnsties
the system as the tool updates the file. how this particular type of attack can occur. All these feadiare

The Snort alert collection and correlation were carried ouimplemented as hyper-links in svg. The second graph segment
on a Ubuntu server running a Linux kernel version 2.6.32 withshows how the DNS resolver of IP address IP1 is compromised
16GB of RAM on an eight-core Intel Xeon processor of CPUalong with the Snort alerts that support this hypothesieréh
speed 3.16GHz. So far we have not encountered any perfoemangre also probes emanating from this compromised machine to

bottleneck in our algorithm. internal machines of IP addresses IP2 and IP3. This captured
We have tested our correlation system on the following datdhe scenario described in the truth file that after captutirey
sets DNS resolver the attacker started probing for other machine
« Lincoln Lab DARPA intrusion detection evaluation data setinside the internal network for more machines that run ses/i
« Honeynet Project with sadmind vulnerability. All the Snort alerts that supieal the
« Treasure Hunt probe are grouped as an abstract predipadbeOtherMachine

The third and fourth segments capture the fact that theriater

A. Lincoln Lab DARPA intrusion detection evaluation data se pgsts are compromised through sadmind buffer-overflowceixpl

1) Lincoln Lab Scenario (DDOS) 2.0.2 Data Sdn this  This abstract representation depicts the scenario veaylgleo
attack scenario, the goal of the attacker was to break into that it is easy to interpret there are malicious activitiesg on.
network on the internet through a remote buffer-overflowlexp  Further investigation for the specifics of the activity candone
install software required to launch DDOS attack on the hostby clicking the alerts.
inside the internal network. The attacker first breaks ifte t  2) Lincoln Lab 1998 Intrusion Detection Data SetThe
DNS server for the internal network through the remote sadmi 1998 intrusion detection data set from Lincoln Lab has beth t
buffer-overflow exploit and installs thenstreamDDOS master and training data. Only the training data’s truth file was Il
software. He then uses the HINFO records in the capturedvailable. So we used the training data, which was sevenseek
machine to probe for machines within the internal netwonkc® long in evaluating the performance of our correlation eagin
he found the vulnerable hosts, he broke into them and iestall the first week’s data there was a lot of background traffic and
the server software one of them. The vulnerability exptbie it was meant to test whether the IDS was working fine. It just
the well knownsadmindvulnerability in the Solaris system. The had two attacks per day. Attacks were added gradually fram th
attacker then telnets to the remotely compromised mackiags second week onwards. The traffic from second to the seventh
the DDOS master and launches attack against other systems week had 100 instances of 25 attack types.
the internal network. We compared our results with the truth file published on

We collected the tcpdump data from the Lincoln Lab websitethe website [fttp://www.Il.mit.edu/mission/communications/ist/
and ran Snort on it. The alerts from Snort were logged into aorporal/ideval/docs/attacks.himEach day had specific types of
MySQL database. The correlation engine read the alertsfinem attacks targetted at specific machines. The attack typasdied
database, did clustering and merging of the alerts, coetstlu teardrop, land attack, ipsweeping, portsweeping etc., amen
an attack scenario based on the knowledge base and generatedew. Our correlation engine was able to correctly identify
an svg file hosted on a web-server. The graph we obtained the machines that were under attack along with their attack
shown in Figureb. In this graph and the subsequent graphs thaype for each day of the data. The best part about this is that,
nodes ofbox shape represent Snort alerts anvél shaped nodes we were able to idenitfy the different types of attacks even
represent hypotheses. The first graph in the figure shows theithout encoding the specific attack patterns. Our knowdedg
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’ Shell code foun%

Anomalous network traffi%

base, which is an abstract model, successfully capturethall
specific attack types and visualiazing them as a svg file makes
decision making an easy process for the user. Figushows

the graph for the machine under land attack, captured by our
correlation engine. Seeing this graph one can easily cdeclu
that the machine is under land attack where one sends a packet
to a machine with the same IP address and port number that
causes the machine to lock itself. There are two sets of snort
alerts, each identifying two different types of attacks.e@moup
identified packets with the same source and destinationdPgb
sent and another group identifies smurf attack. The cormelat
engine identified these groups of alerts to be part of the same
attack (the tcpdump has background traffic t00) and built thgynly when they are correlated and that's what exactly SniPS
scenario graph. There are two arrows pointing towards tli no yges.

labelled “compromised(IP1)”. One of them is because we lave

sendExploit, for which an internal model rule says therelaa C. Date Set from the Treasure Hunt event - UCSB

sendExploit Attempt against

(External, IP1) known Windows vulnerability|

compromised(IP1) Probing web-serve

probeOtherMachine
(IP1, External)

Figure 8. Honeynet Result

possible compromise. Applying the internal rule in the beaid Treasure Hunt 14] is an event organized as part of the
direction we can say that if we have a compromised host thegraduate-level security course at the University of Catifa at
there might have been an exploit sent to it. Santa Barbara. The class was divided into two teams: Alpha

This graph is just one instance of the attack type capturednd Omega and the goal was to compete against each other
by our correlation model. We captured 90 of the 100 attackn breaking into a payroll system and performing a money
instances. The false negative is due to the fact that we usddansaction. To avoid interference with each other thenewgo
the latest Snort signatures that do not contain attack rides identical subnets provided separeately for both the te&ash
capture attacks that were prevelantin 1998. Neverthlesdried  team has to perform a multi-stage attack and they had a number
to obtain the older Snort rules but we couldn’t obtain signes  of tasks to do, each within a time period of 30 minutes. The firs

old enough to capture those remianing 10 attacks. team to finish the task gets the higher points. The followmsg i
a general description of the two identical subnets. Thers ava
B. Data Set from the Honeynet Project webserver in a DMZ zone accessible directly outside the Loca

) ) ) ) Area Network. There was a file server, a MySQL server and
This data set is from a forensics challenge organized by Thg {ransaction server. One must first compromise the web rserve

Honeynet Project, an international non-profit researclRiiz®- iy order to access the other servers. The task is to compeomis
tion in security. The data set we obtained is from the eveBhSC e web server and then change the entries in a specific table

34 (http://old.honeynet.org/scans/scar)34he challenge was 0 i the MySQL database and then exploit the transaction cervi
analyze the various log files posted on the website and tOdigurvuInerability and schedule a paycheck transfer.

out what exactly happened in the honeynet. The honeynet had 3\ ohtained the tcpdump data from the Treasure Hunt web site
systems namefridge, bastionandcombo The bridge machine  ang ran Snort on it. Next we ran SnIPS on the alerts generated

performed routing and filteringbastionwas the IDS running  py snort. The SnIPS system generated correlation graphs. We
Snort andcombowas the victim machine that was assignedyere not able to find the truth file for this activity but we can

11.11.79.67 as its IP address with many other virtual IP@&kES  cortainly say that every packet was an attack packet as there
in the vicinity of its physical address. We obtained the $f@@ 45 no legitimte background traffic. We were able to identify
file and_ conver_ted it into an observation file readable by ougne multi-stage attack in the packet capture of both Alphe an
correlation engine. Omega teams. Figur@ shows the correlation graph generated
We were able to confirm that the honeynet was comprofor the Alpha team by SnIPS. The correlation graph corredpon
mised which conforms to the ground truth published in thetg the attack activities during the entire event. Figdi¢a) shows
website {ittp://old.honeynet.org/scans/scan34/sols/sotm3dran  how the web server got compromised and started probing éor fil
html). Some of the noise correlations include MySQL worm server, MySQL server and the transaction server. Theseeprob
attack against the bridge which was not part of the honeyigos.  are malicious and are meant for finding out vulnerable sesvic
was due to the fact that the Snort IDS was not configured to bgpqg exploiting them. Figur@(b)is a correlation graph for the
context aware and so it generated alerts for packets tha wegyent that the file server got compromised and Fig(e for
indeed malicious but weren't targetted towards the honeypopysqQl server probing for the file server. Within Figudéc) we
Figure8is a correlation graph for one of the attacked machinesean see that the web server gets compromised and then probes

First we have exploits being sent from an external machine t@or the other servers which is exactly the requirement of tha
a machine inside the honeypot and the internal machine gegsignment.

compromised. There are Snort alerts to support the fact that

the machine is compromised. The internal machine thensstart VI. CONCLUSION AND FUTURE WORK

probing for vulnerable services on other machines, which is  In this paper we presented a technology to correlate irtrusi
typical attacker action. All the individual attack steps amdeed detection alerts. The strength of this technology comes fi®
supported by some Snort alerts but they form an attack sicenarflexibility to handle the dynamism of the emerging new thseat
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Figure 9. Treasure Hunt Result

This tool is a real-time engine to help the system admirtstra
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