
Practical IDS alert correlation in the face of dynamic threats

Sathya Chandran Sundaramurthy, Loai Zomlot, Xinming Ou
Kansas State University, Manhattan, Kansas, USA

{sathya, lzomlot, xou}@ksu.edu

Abstract

A significant challenge in applying IDS alert correlation in
today’s dynamic threat environment is the labor and expertise
needed in constructing the correlation model, or the knowledge
base, for the correlation process. New IDS signatures capturing
emerging threats are generated on a daily basis, and the attack
scenarios each captured activity may be involved in are also
multitude. Thus it becomes hard to build and maintain IDS alert
correlation models based on a set of known scenarios. Learning
IDS correlation models face the same challenge caused by thedy-
namism of cyber threats, compounded by the inherent difficulty
in applying learning algorithms in an adversarial environment.
We propose a new method for conducting alert correlation based
on a simple and direct semantic model for IDS alerts. The
correlation model is separate from the semantic model and can
be constructed on various granularities. The semantic model only
maps an alert to its potential meanings, without any reference to
what types of attack scenarios the activity may be involved in. We
show that such a correlation model can effectively capture attack
scenarios from data sets that are not used at all in the model
construction process, illustrating the power of such correlation
methods in detecting novel, new attack scenarios. We rigorously
evaluate our prototype on a number of publicly available data sets
and a production system, and the result shows that our correlation
engine can correctly capture almost all the attack scenarios in the
data sets.

I. I NTRODUCTION

IDS alert correlation has been studied for more than a decade
and a number of correlation methodologies have been proposed.
Although research has made significant progress in creating
various correlation models, what one finds in practical use still
remains rudimentary. Our conversation with system adminis-
trators and security analysts indicate that there is a significant
gap between the desired capability of IDS alert/event correlation
technologies and what the current commercial tools can provide.
The question naturally arises that why more than ten years’
research into IDS alert correlation has not found wide-spread
use in practice.

Several attempts in applying IDS alert correlation have suf-
fered from many of the following limitations. Most of the
approaches are based on constructing a knowledge base of known
attack scenarios and thus lack the ability to detect emerging
and new ones. Another problem is the difficulty in updating the
knowledge base. If there is a same attack with slight modification
in the sequence of events, the knowledge base may not be able
to detect it. A more important concern with past works on alert
correlation is the lack of rigorous evaluation on a number of
data sets. For an IDS to be a practical tool it has to perform
consistently over a variety of data sets.

In this paper we propose a simple and practical approach to
IDS alert correlation that addresses the above challenges.Our
contributions are:

• Our approach isgeneric in that it is not customized to
detect pre-modeled scenarios but has the ability to detect
previously unseen attack scenarios. It is alsoflexible in the
sense that it can handle data from a variety of sensors like
NIDS, HIDS and other relevant information for intrusion
analysis. Adding a new sensor is easily done by adding
a new semantic mapping for the information the sensor
reports. The correlation graphs can be generated with any
desired level of granularity, depending on how detailed the
system administrator wants to know about specific attack
scenarios.

• The correlation tool we develop can report attacks, if any,
in real time. Our correlation tool handles network traffic
continuously, generating attack graphs in.svg file format
deployed as a web page on a web-server. The correlation
is staged in two phases wherein we do the time-consuming
activities like alert grouping and summarization in the first
phase and the reasoning engine that takes those processed
alerts, generating attack scenarios constitues the second
phase.

• We have done rigorous evaluation of the efficiency of our
tool on a number of data sets that range over a wide period
of time. We call it rigorous because we used the same
semantic model consistently over all the data sets and the
result shows that the same model works perfectly on all of
them.

• The attack scenarios produced from our correlation tool can
be used as input for various prioritization methods.

II. RELATED WORK

Alert correlation in intrusion detection systems has been a
topic researched for almost ten years [1, 3, 5, 6, 8, 13]. Ning,
et al. [7] proposed an approach using pre and post-conditions.
The concept of hyper-alerts are introduced, which consistsof
the attack activity, the pre and post-conditions corresponding to
that attack. The mappings of raw alerts to one of these hyper-
alerts are pre-generated and stored in a knowledge base. Two
hyper-alerts are correlated if the post-condition of one hyper-
alert contributes to the pre-condition of another one. Cuppens, et
al. [3] propose a correlation model called CRIM which provides
clustering, merging and correlating of alerts from multiple IDSes.
The alerts are clustered based on their similarity and merged,
where each group of merged alerts represents a single attack.
The correlation module takes these merged alerts and constructs
a number of possible attack scenarios. CRIM specifies a number
of attack modules using the LAMBDA language where each
module has a pre-condition that must be true for the attack
to take place, the post-condition that may result if the attack

succeeds, the attack activity itself, and other information. To
correlate the modules and construct the attack scenarios the
authors propose two methods, direct and indirect correlation. In
the explicit correlation method two modules are correlatedif
successful execution of one module contributes to the initiation of
another. In the indirect correlation approach ontologicalrules are
used to correlate modules that aren’t directly related but through
a series of events, with one module being the initial event and
the other the last event. Cheung, et al. [2] proposed a model
called Correlated Attack Modeling Language (CAML) that aims
at developing attack patterns. The main idea is to constructa
set of modules that describe specific attacks with pre-conditions
to be satisfied for the attack to occur, the attack activity itself
and the post-condition that may result if the attack succeeds. The
post condition of one attack module may satisfy the precondition
of some other attack modules in which case both these attack
modules will be linked.

Most of the above previous works adopt a pre- and post-
condition correlation module. A potential drawback of ascribing
a pre- and postcondition to an IDS alert is that the model itself
may already have assumed some specific attack patterns. The
attack modules knowledge base must be frequently updated to
include newer attack patterns, which has become impractical in
today’s rapidly changing threat environment.

Ren, et al. [11] propose the design of an online correlation
system for real-time intrusion analysis. There are two compo-
nents: an off-line Bayesian-based knowledge base construction
tool and an online correlation and attack graph constructor. The
offline component maintains tables that specify the frequency of
occurrence of possible hyper-alert types and also the correlation
between different hyper-alert pairs. This correlation is dynam-
ically updated depending upon the network traffic observed
over a past time window. The online component, on receiving
alerts and grouping them into different hyper-alerts, usesthe
knowledge base from the offline component to construct the
attack graph. This approach is practical since it moves to offline
the work that involves maximum processing, and it is dynamic,
ie., able to adjust the causality between hyper-alerts depending
on the network traffic. However, the automatic knowledge base
construction can only learn and detect the type of attacks that
have occurred in the past and on the network where it is trained.
We propose a different approach where a generic knowledge
base captures an attacker’s intentions and constraints, instead of
specifics of attacks.

III. C ORRELATION MODEL

The biggest problem with IDS is the large volume of false
alarms. IDS alert correlation can potentially help in finding attack
traces in all these alerts. Our correlation model is built within
the context of the SnIPS tool suite [4]. A key feature of SnIPS
is using qualitative uncertainty tags and aproof strengthening
techniques to handle the uncertainty challenge in intrusion anal-
ysis [9]. The new correlation model described in this paper would
allow for more sophisticated mathematical theories to be applied
to handle uncertainty, as compared to the empirically developed
proof strengthening approach.

Figure 1 shows the overall architecture of the SnIPS system.
Our correlation model is based on a direct semantic model for

Figure 1. SnIPS System

IDS alerts, which maps an alert to its potential meanings. The
semantic pre-processing layer applies this semantic modelto
translate raw alerts into high-level “summarized alerts” which
are grouping of alerts with similar properties (source/destination
address and alert type). The correlation engine then applies a
two-stage process to build up an alert correlation graph. The
correlation system is capable of handling dynamic knowledge
base such as black-listed IP addresses which change frequently.
It provides online real-time response, running continuously on
streams of input events.

A. Semantic pre-processing

The pre-processing step is performed to translate and reduce
the amount of information entering the reasoning engine. This
process consists of the following parts.

1) Translation: SnIPS takes Snort alerts and other relevant
events as input. Then it maps the observations (events) to their
semantics. This process uses a set of mapping rules called
obsMap.

Definition 1. Observations
mode
−−−→ Internal Conditions

Definition 1 shows the formal mapping rule between obser-
vations (e.g. alerts) and internal conditions (semantics). The
modeis used as a tag indicating the strength of the belief (e.g.
unlikely,possible, likely, or certain). The assignment of the mode
is done by interpreting the natural language description ofthe
snort rule (IDS signature).

Example 1. Observation mapping:
obs(portScan(H1,H2))

p
−→ int(probeOtherMachine(H1,H2))

Example1 shows an obsMap rule that maps aportscanalert
to probing activity with thep (possible) mode.

2) Summarization:The summarization step is performed to
reduce the amount of information entering the reasoning engine.
We apply a data abstraction technique by grouping a set of
similar “internal conditions” into a single “summarized” internal

int(probe(ext1, H), c, T1)
int(probe(ext2, H), c, T2)

...

int(probe(extn, H), c, Tn)











int(probe(external, H), c, range(T1, Tn))

Figure 2. Summarization

condition. The summarization is done on both the time stamps
and IP addresses. For timestamps, if a set of internal conditions
differ only by timestamp we merge them into a single summa-
rized internal condition with a time range between the earliest
and latest timestamp in the set. We also abstract over external IP
address. We begin by selecting a set of internal conditions that
differ only in the external source or destination IP addresses,
and give a special variable, “external” as an abstraction ofthe
external IP addresses. We do not summarize on internal IP
addresses as this knowledge may be useful in the reasoning
process. We maintain the mapping between the summarized
internal condition and the raw internal conditions/observations
in the SnIPS database, which helps us identify the low-level
facts belonging to the summarized predicates. The summarized
tuples are then given to the reasoning engine. The output of this
module will be stored in the SnIPS database. Figure2 illustrates
the summarization process.

3) Black List IP Processor:SnIPS can digest any emerging
information about the threat landscape and use them in the
reasoning process. All that is needed is to provide an obsMaprule
for the information. One example of such dynamic information
is black listed IPs. A machine can be put into a blacklist if ithas
been found to be involved in malicious activities (bot activities,
ssh brute-force log in attempts, etc.). Such a list can be used
in two ways. The first method is to map a blacklisted IP to the
predicatecompromised, with the mode assigned by the IP’s age in
the list. That is, the IP address will be mapped to a higher mode
if it is more recently added to the list. Over time the confidence
will decrease, due to the fact that the machine could have been
cleaned up. The second method is to create a snort rule that
will be triggered whenever there is a communication between
any local host and the black-listed IP. This alert will be mapped
using obsMap rules stored at the SnIPS dynamic knowledge base
(Figure1).

Example 2. H2 is a black-listed IP:
obs(anyCommunication(H1,H2))

c
−→ int(compromised(H1))

The advantage of the second method is that it can capture all
communication with a black-listed IP even if it would not trigger
an alert otherwise.

B. Correlation Engine

The goal of this step is to build the scenario picture of attacks
and consists of two stages: theReasonerand theCorrelator.

1) Reasoner:The goal of this reasoning process is to find all
the possible semantic links among the summarized facts. It uses
an Internal Model(see Figure1). Definition 2 gives the formal
format for reasoning rules in the internal model (calledinternal
rules thereafter). The rule derives one internal condition from
another, with two qualifiers:direction of inference, and mode.
The direction tag has two values eitherbackwardor forward.
The mode tag has been discussed before.

Definition 2. Condition 1−→ Condition 2

intRule#1, forward

probeOtherMachine(ip1, ip2, startT ime, endT ime)

compromised(ip1, startT ime, endT ime)

Figure 3. A proofStep example

8: probeOtherMachine(ip2, ip4)7: probeOtherMachine(ip2, ip3)

9: compromised(ip2)

2: alert21: alert1 4: alert43: alert3

6: sendExploit(ip1, ip2)

5: alert5

Figure 4. Correlation graph example

Example 3 illustrates one internal rule. If we know that
machineH1 is compromised, then it may perform malicious
probing to another machineH2. Conversely, if we know that
a machineH1 is performing malicious probing against another
machine, we can also know that machineH1 is compromised.
So each internal rule can be used either in the forward direction,
or the backward direction, in the reasoning process.

Example 3. Internal rule:

int(compromised(H1))
f
−→ int(probeOtherMachine(H1,H2))

The output of this stage is a collection of individual “proof
steps” (proofStep). Figure 3 gives an example of aproofStep.
Each node is associated with a fact likecompromised(H1),
and a time range(startTime,endTime), indicating when the fact
becomes true. The direction of inference (forward or backward)
is also indicated in the proof step. The time range of the
conclusion can be calculated based on the time range of the
antecedent and the direction of the inference. All the proofSteps
will be stored in the SnIPS database.

2) Correlator: The correlator module collects all the small
pieces of evidence in the form of proofSteps into a possible
scenario. The input of this engine is a list ofproofStepsfrom
the reasoner, and the output is a set of correlation graphs. Each
graph is an illustration of attack scenarios gathered from all the
pieces of evidence.

Figure4 is an example correlation graph, which can be viewed
from top to down. “compromised”, “ probeOtherMachine”, and
“sendExploit” are predicates used to describe various attack
hypotheses.alert1 is mapped to the fact that hostip1 sent an
exploit to ip2; both alert2 and alert3 are mapped to the fact
that ip2 did malicious probing toip3, and so on. The rationale
behind this correlation graph is that afterip1 sent an exploit
to ip2, ip2 may be compromised (node 9). Once the attacker
has compromisedip2, he can send malicious probing to any
other machine. Thus these alerts are all potentially correlated
in the same underlying attack sequence. SectionIV explains the
algorithm that computes these correlation graphs.

C. Prioritizer

The prioritizer can further refine the result of correlationby
assigning each node in the correlation graph a belief value

Figure 5. Correlation of different time ranged overlappingfacts objects

based on an extended version ofDempster-Shaferevidential
reasoning theory [12]. The belief values can be used to rank
the correlation graph segments by the belief values of the nodes
within the segments, the higher the belief value, the more likely
the correlation represents a true attack. This will help thesystem
admin to spot the most important correlation scenario. The
calculation uses the mode values assigned to the observations and
translates them into numeric basic probability assignmenton the
interpretations of the observations. Then an extended Dempster
Belief Combination method is applied to calculate the belief
value of each node in the graph. Detailed explanation of this
module falls beyond the scope of this paper.

D. Visualizer

The final step is to introduce the output to the system admin
in an easy to understand and manipulate manner. We use the
GraphViztool to display the correlation graphs in the.svgformat,
so that the user can use an interactive web interface to further
analyze portions of a correlation graph. For example, the user
can examine the raw alerts behind a summarized alert, the IDS
signatures that trigger them, the payload, and other relevant
information.

E. Dynamic Knowledge Base

The dynamic knowledge base is used in a number of steps
described above. It includes both the obsMap relations usedin
the semantic pre-processing stage and the internal model used in
the logical reasoning phase. The dynamism of this model comes
from the fact that it can be automatically or manually updated
based on the emerging threats. For example, the black-listed
IP addresses change every hour. The simple obsMap relations
allow for quick update of the obsMap relations for this pieceof
information.

F. Implementation

We use the Prolog system XSB [10] to perform the semantic
mapping and logical reasoning of the input alerts. The Correlator
and the Prioritizer are implemented in Java. The Visualizeris
implemented using a collection of web programming languages
such as PHP.

IV. CORRELATION ALGORITHM

The correlation algorithm takes the collection of proofSteps
output from theReasonerand builds a set of correlation scenarios
in the form of graph segments. The Correlator follows the
following steps:

• Step 1: Translate the input proofSteps into a form that
can be handled by the engine. We will call this translated
objectOi (Figure5). An object contains a number of fields,
including the fact associated with it, the start time, and the
end time.

• Step 2: All translated objectsOi will be classified based
on the facts associated with them. For example, all objects
with the factcompromised(h) will be in one group and so
on. Figure5 gives an example of one group. We can assume
that each fact in the figure has the formcompromised(h).
Each group of objects will be sorted ascendingly by the end
time (eti), and then by the start time (stj).

• Step 3: Each group will then be correlated using time
overlapping between objects. Figure5 illustrates the cor-
relation process. There are two sliding pointers to track
the correlation process. The first pointerp1 will start at
the first objectO1. The second pointerp2 will move to
the second object. If the time range ofO2 overlaps with
O1 then the intersection of the two time ranges will be
taken and stored in a variableintT imeRange. Pointerp2
then moves toO3 and takes its time range to intersect with
intT imeRange. The process stops whenintT imeRange

becomes empty, meaning we can no longer correlate the
facts represented by the objects. A new graph node will be
created for all the objects that have a non-empty time-range
intersection, which will havefact, intTimeRangeas its fields.
Thenp1 will move forward until the time-range intersection
for objects betweenp1 andp2 becomes non-empty.

Figure1 and2 show the pseudo code for this algorithm. Line9
in Algorithm 2 includes constructing the edges of the graph,
which utilizes the “other info” field in each object to connect
the merged nodes with one another. Details of this part of the
algorithm is omitted due to space limitation.

Algorithm 1 Correlation engine
1: function CORR(ProofStepsSet)
2: ObjectsSet ← Translate all proofSteps in

ProofStepsSet

3: for eachObject(O) in ObjectSet do
4: ObjectsGroupList ← group by fact of ObjectO.
5: end for
6: for eachObjectGroupList do
7: sort ascendingly by the endT ime of the

T imeRange.
8: Graph← CREATEGRAPH(ObjectGroupList)
9: end for

10: return Graph

11: end function

V. EXPERIMENTATION

We have tested our correlation model on a number of publicly
available datasets and on our departmental network as well.For
the datasets the tcpdump of the network traffic is obtained and the
correlation is done offline.The construction of the reasoning
model is done completely separately from the evaluation and
without any knowledge about the specifics of the data sets.
This testing is to ensure that our correlation model works fine
and is able to identify different types of attacks. The evaluation
on the departmental network analyzes data from various sources
like Snort IDS, black-list logs from computer clusters, andso
on, and produces real-time attack scenario graphs in Scalable

Algorithm 2 Create graph
1: function CREATEGRAPH(ObjectGroupList)
2: for eachObject(Oi) in ObjectGroupList do
3: intT imeRange ← find the intersection of

timeRange with the nextOi

4: if intT imeRange is Empty then
5: NodesHash ← create new node with

intT imeRange and Oi’s fact and useOi as the key
for the hash table.

6: end if
7: end for
8: for eachNode in NodeHash do
9: Graph ← build the edges from the relatedOi

10: end for
11: return Graph

12: end function

Vector Graphics (svg) format which can be viewed on a web-
browser. The generated svg file is hosted on a web-server so that
the System Administrator can view the current security state of
the system as the tool updates the file.

The Snort alert collection and correlation were carried out
on a Ubuntu server running a Linux kernel version 2.6.32 with
16GB of RAM on an eight-core Intel Xeon processor of CPU
speed 3.16GHz. So far we have not encountered any performance
bottleneck in our algorithm.

We have tested our correlation system on the following data
sets

• Lincoln Lab DARPA intrusion detection evaluation data set
• Honeynet Project
• Treasure Hunt

A. Lincoln Lab DARPA intrusion detection evaluation data set

1) Lincoln Lab Scenario (DDOS) 2.0.2 Data Set:In this
attack scenario, the goal of the attacker was to break into a
network on the internet through a remote buffer-overflow exploit,
install software required to launch DDOS attack on the hosts
inside the internal network. The attacker first breaks into the
DNS server for the internal network through the remote sadmind
buffer-overflow exploit and installs themstreamDDOS master
software. He then uses the HINFO records in the captured
machine to probe for machines within the internal network. Once
he found the vulnerable hosts, he broke into them and installed
the server software one of them. The vulnerability exploited is
the well knownsadmindvulnerability in the Solaris system. The
attacker then telnets to the remotely compromised machine,starts
the DDOS master and launches attack against other systems on
the internal network.

We collected the tcpdump data from the Lincoln Lab website
and ran Snort on it. The alerts from Snort were logged into a
MySQL database. The correlation engine read the alerts fromthe
database, did clustering and merging of the alerts, constructed
an attack scenario based on the knowledge base and generated
an svg file hosted on a web-server. The graph we obtained is
shown in Figure6. In this graph and the subsequent graphs the
nodes ofboxshape represent Snort alerts andoval shaped nodes
represent hypotheses. The first graph in the figure shows the

sadmind_ping(External, IP1)

probeOtherMachine
(External, IP1)

sendExploit(External, IP1)

sadmind_buffer-
overflow_exploit
(External, IP1)

compromised(IP1)

probeOtherMachine
(IP1, IP2)

probeOtherMachine
(IP1, IP3)

sadmind_ping(IP1, IP1)

sendExploit(IP1, IP2)

sadmind_ping(IP1, IP3)

sendExploit(IP1, IP3)

compromised(IP2)

sadmind_buffer-
overflow_exploit

(IP1, IP2)

compromised(IP3)

sadmind_buffer-
overflow_exploit

(IP1, IP3)

Figure 6. Lincoln Lab Scenarion (DDOS) 2.0.2 Result

graph corresponding to the probing of the attacker for services
that have the sadmind vulnerability. The alerts pertainingto this
activity are grouped as a single group of snort alerts and are
correlated to an abstract event that saysan internal machine, in
this case the DNS resolver, is getting probed by some external
IP. The System Administrator can click the snort alerts block to
see the alerts, their payload and a detailed description that says
how this particular type of attack can occur. All these features are
implemented as hyper-links in svg. The second graph segment
shows how the DNS resolver of IP address IP1 is compromised
along with the Snort alerts that support this hypothesis. There
are also probes emanating from this compromised machine to
internal machines of IP addresses IP2 and IP3. This captured
the scenario described in the truth file that after capturingthe
DNS resolver the attacker started probing for other machines
inside the internal network for more machines that run services
with sadmind vulnerability. All the Snort alerts that supported the
probe are grouped as an abstract predicateprobeOtherMachine.
The third and fourth segments capture the fact that the internal
hosts are compromised through sadmind buffer-overflow exploit.
This abstract representation depicts the scenario very clearly so
that it is easy to interpret there are malicious activities going on.
Further investigation for the specifics of the activity can be done
by clicking the alerts.

2) Lincoln Lab 1998 Intrusion Detection Data Set :The
1998 intrusion detection data set from Lincoln Lab has both test
and training data. Only the training data’s truth file was publicly
available. So we used the training data, which was seven weeks
long in evaluating the performance of our correlation engine. In
the first week’s data there was a lot of background traffic and
it was meant to test whether the IDS was working fine. It just
had two attacks per day. Attacks were added gradually from the
second week onwards. The traffic from second to the seventh
week had 100 instances of 25 attack types.

We compared our results with the truth file published on
the website (http://www.ll.mit.edu/mission/communications/ist/
corpora/ideval/docs/attacks.html). Each day had specific types of
attacks targetted at specific machines. The attack types included
teardrop, land attack, ipsweeping, portsweeping etc., to name
a few. Our correlation engine was able to correctly identify
the machines that were under attack along with their attack
type for each day of the data. The best part about this is that,
we were able to idenitfy the different types of attacks even
without encoding the specific attack patterns. Our knowledge

http://www.ll.mit.edu/mission/ communications/ ist/ corpora/ ideval/docs/attacks.html
http://www.ll.mit.edu/mission/ communications/ ist/ corpora/ ideval/docs/attacks.html

base, which is an abstract model, successfully captured allthe
specific attack types and visualiazing them as a svg file makes
decision making an easy process for the user. Figure7 shows
the graph for the machine under land attack, captured by our
correlation engine. Seeing this graph one can easily conclude
that the machine is under land attack where one sends a packet
to a machine with the same IP address and port number that
causes the machine to lock itself. There are two sets of snort
alerts, each identifying two different types of attacks. One group
identified packets with the same source and destination IPs being
sent and another group identifies smurf attack. The correlation
engine identified these groups of alerts to be part of the same
attack (the tcpdump has background traffic too) and built the
scenario graph. There are two arrows pointing towards the node
labelled “compromised(IP1)”. One of them is because we havea
sendExploit, for which an internal model rule says there canbe a
possible compromise. Applying the internal rule in the backward
direction we can say that if we have a compromised host then
there might have been an exploit sent to it.

This graph is just one instance of the attack type captured
by our correlation model. We captured 90 of the 100 attack
instances. The false negative is due to the fact that we used
the latest Snort signatures that do not contain attack rulesto
capture attacks that were prevelant in 1998. Neverthless, we tried
to obtain the older Snort rules but we couldn’t obtain signatures
old enough to capture those remianing 10 attacks.

B. Data Set from the Honeynet Project

This data set is from a forensics challenge organized by The
Honeynet Project, an international non-profit research organiza-
tion in security. The data set we obtained is from the event Scan
34 (http://old.honeynet.org/scans/scan34/). The challenge was to
analyze the various log files posted on the website and to figure
out what exactly happened in the honeynet. The honeynet had 3
systems namedbridge, bastionandcombo. Thebridge machine
performed routing and filtering,bastion was the IDS running
Snort andcombo was the victim machine that was assigned
11.11.79.67 as its IP address with many other virtual IP addresses
in the vicinity of its physical address. We obtained the Snort log
file and converted it into an observation file readable by our
correlation engine.

We were able to confirm that the honeynet was compro-
mised which conforms to the ground truth published in the
website (http://old.honeynet.org/scans/scan34/sols/sotm34-anton.
html). Some of the noise correlations include MySQL worm
attack against the bridge which was not part of the honeypot.This
was due to the fact that the Snort IDS was not configured to be
context aware and so it generated alerts for packets that were
indeed malicious but weren’t targetted towards the honeypot.
Figure8 is a correlation graph for one of the attacked machines.
First we have exploits being sent from an external machine to
a machine inside the honeypot and the internal machine gets
compromised. There are Snort alerts to support the fact that
the machine is compromised. The internal machine then starts
probing for vulnerable services on other machines, which isa
typical attacker action. All the individual attack steps are indeed
supported by some Snort alerts but they form an attack scenario

Shell code found

sendExploit
(External, IP1)

Anomalous network traff ic

Probing web-server

probeOtherMachine
(IP1, External)

compromised(IP1)

At tempt against
known Windows vulnerabi l i ty

Figure 8. Honeynet Result

only when they are correlated and that’s what exactly SnIPS
does.

C. Date Set from the Treasure Hunt event - UCSB

Treasure Hunt [14] is an event organized as part of the
graduate-level security course at the University of California at
Santa Barbara. The class was divided into two teams: Alpha
and Omega and the goal was to compete against each other
in breaking into a payroll system and performing a money
transaction. To avoid interference with each other there were two
identical subnets provided separeately for both the teams.Each
team has to perform a multi-stage attack and they had a number
of tasks to do, each within a time period of 30 minutes. The first
team to finish the task gets the higher points. The following is
a general description of the two identical subnets. There was a
webserver in a DMZ zone accessible directly outside the Local
Area Network. There was a file server, a MySQL server and
a transaction server. One must first compromise the web server
in order to access the other servers. The task is to compromise
the web server and then change the entries in a specific table
in the MySQL database and then exploit the transaction service
vulnerability and schedule a paycheck transfer.

We obtained the tcpdump data from the Treasure Hunt web site
and ran Snort on it. Next we ran SnIPS on the alerts generated
by Snort. The SnIPS system generated correlation graphs. We
were not able to find the truth file for this activity but we can
certainly say that every packet was an attack packet as there
was no legitimte background traffic. We were able to identify
the multi-stage attack in the packet capture of both Alpha and
Omega teams. Figure9 shows the correlation graph generated
for the Alpha team by SnIPS. The correlation graph corresponds
to the attack activities during the entire event. Figure9(a)shows
how the web server got compromised and started probing for file
server, MySQL server and the transaction server. These probes
are malicious and are meant for finding out vulnerable services
and exploiting them. Figure9(b)is a correlation graph for the
event that the file server got compromised and Figure9(c) for
MYSQl server probing for the file server. Within Figure9(c) we
can see that the web server gets compromised and then probes
for the other servers which is exactly the requirement of that
assignment.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a technology to correlate intrusion
detection alerts. The strength of this technology comes from is
flexibility to handle the dynamism of the emerging new threats.

http://old.honeynet.org/scans/scan34/
http://old.honeynet.org/scans/scan34/sols/sotm34-anton.html
http://old.honeynet.org/scans/scan34/sols/sotm34-anton.html

Anomalous Network Traffic
(External, IP1)

sendExploit(External, IP1)

Anomalous Network Traffic
(External, IP1)

Anomalous Network Traffic
(External, IP1)

compromised(IP1)

Packet with same src and dst IP
(External, IP1)

sendExploit(IP1, IP1)

Figure 7. Lincoln Lab 1998 Result

Probe for rpc
process ’nfsd’

probeOtherMachine
(External , web-server)

Probe for rpc
process ’rquotad’

Probe for rpc
process ’lockd’

At tempt to dump
por tmapper ent r ies

Probe for rpc
process ’statd’

Probe for rpc
process ’selection_svc’

Probe for rpc
process ’rusers’

Probe for vulnerable
process ’bootparam’

sendExploit
(External , web-server)

Attack on IIS

compromised(web-server)

Request for ’passwd’file

probeOtherMachine
(web-server, f i le-server)

probeOtherMachine
(web-server, MYSQL server)

probeOtherMachine
(web-server, t ransact ion-server)

Exploit for known
vulnerabil ity

Malicious network traffic

Probe for SNMP daemon TCP portscan
Attempt to dump

’portmapper’ entries
Probe for SNMP daemon TCP portscan SNMP trap connect ion made attempt to at tackdevice using SNMP v1

(a) Part I

compromised(fi le-server)

’rexex’ daemon
explo i t a t tempt

remote explo i t a t tempt
on Pragma Systems

 TelnetServer

(b) Part II

compromised(MYSQL server)

probeOtherMachine
(MYSQL server, file-server)

GETPORT request
for ’nfsd’

a t tempt to dump ent r ies
from portmapper

attempt to mount speci f ic
f i le system exported

through NFS

(c) Part III

Figure 9. Treasure Hunt Result

This tool is a real-time engine to help the system administrator
to spot attack scenarios on the fly. We have performed rigorous
evaluation of the correlation model, and the results indicate that
such a correlation model can effectively capture a variety of
attack scenarios from a number of data sets.

The correlation technology forms a solid base to build other
analysis theories, making the output more precise and useful. For
example the prioritizing engine currently uses and extended ver-
sion of Dempster-Shafer theory. Incorporating more information
sources into the system can also make the attack scenarios more
accurate, and the correlation model allows for easy extension due
to its straightforward semantics. We already have the ability to
handle a dynamic black-list IP addresses. Our plan is to widen
the window of our system by getting information from multiple
sources. This can be done by adding system and server logs,
and IDS systems other than Snort could all provide valuable
intrusion information. Once such information can be consumed
by an inference system and a more accurate correlation graph
will be produced.

VII. A CKNOWLEDGMENT

This material is based upon work supported by U.S. National
Science Foundation under grant no. 1038366 and 1018703,
AFOSR under Award No. FA9550-09-1-0138, and HP Labs
Innovation Research Program. Any opinions, findings and con-
clusions or recommendations expressed in this material arethose
of the authors and do not necessarily reflect the views of
the National Science Foundation, AFOSR, or Hewlett-Packard
Development Company, L.P.

REFERENCES
[1] Steven Cheung, Ulf Lindqvist, and Martin W Fong. Modeling multistep cyber

attacks for scenario recognition. InDARPA Information Survivability Conference and
Exposition (DISCEX III), pages 284–292, Washington, D.C., 2003.

[2] Steven Cheung, Ulf Lindqvist, and Martin W Fongx. An online adaptive approach
to alert correlationx. InDARPA Information Survivability Conference and Exposition
(DISCEX III), 2003.

[3] Frédéric Cuppens and Alexandre Miège. Alert correlation in a cooperative intrusion
detection framework. InIEEE Symposium on Security and Privacy, 2002.

[4] Argus Lab. Snort intrusion analysis using proof strengthening (SnIPS).http://people.
cis.ksu.edu/∼xou/argus/software/snips/.

[5] Benjamin Morin, Hervé, and Mireille Ducassé. M2D2: A formal data model for IDS
alert correlation. In5th International Symposium on Recent Advances in Intrusion
Detection (RAID 2002), pages 115–137, 2002.

[6] Peng Ning, Yun Cui, Douglas Reeves, and Dingbang Xu. Tools and techniques for
analyzing intrusion alerts.ACM Transactions on Information and System Security,
7(2):273–318, May 2004.

[7] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. InProceedings of the 9th ACM Conference on Computer
& Communications Security (CCS 2002), pages 245–254, 2002.

[8] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating Intrusion Events and
Building Attack Scenarios Through Attack Graph Distances.In 20th Annual Computer
Security Applications Conference (ACSAC 2004), pages 350– 359, 2004.

[9] Xinming Ou, S. Raj Rajagopalan, and Sakthiyuvaraja Sakthivelmurugan. An empirical
approach to modeling uncertainty in intrusion analysis. InAnnual Computer Security
Applications Conference (ACSAC), Dec 2009.

[10] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S. Warren, and Juliana
Freire. XSB: A system for efficiently computing well-founded semantics. In
Proceedings of the 4th International Conference on Logic Programming and Non-
Monotonic Reasoning (LPNMR’97), pages 2–17, Dagstuhl, Germany, July 1997.
Springer Verlag.

[11] H. Ren, N. Stakhanova, and A. Ghorbani. An online adaptive approach to alert
correlationx. In The Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2010.

[12] G. Shafer.A Mathematical Theory of Evidence. Princeton University Press, 1976.
[13] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel,and Richard A. Kemmerer. A

Comprehensive Approach to Intrusion Detection Alert Correlation. IEEE Transactions
on Dependable and Secure Computing, 1(3):146–169, 2004.

[14] G. Vigna. Teaching Network Security Through Live Exercises. In C. Irvine
and H. Armstrong, editors,Proceedings of the Third Annual World Conference on
Information Security Education (WISE 3), pages 3–18, Monterey, CA, June 2003.
Kluwer Academic Publishers.

http://people.cis.ksu.edu/~xou/argus/software/snips/
http://people.cis.ksu.edu/~xou/argus/software/snips/

