CERIAS Tech Report 2006-20
AN EMPIRICAL STUDY OF AUTOMATIC EVENT RECONSTRUCTION SYSTEMS
by Sundararaman Jeyaraman, Mike Atallah
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

An empirical study of Automatic Event Reconstruction Systems

Sundararaman Jeyaraman, Mike Atallah
jsr,mja@cs.purdue.edu

Abstract

Reconstructing the sequence of computer events that led to a particular event is an essential part of
the digital investigation process. The ability to quantify the accuracy of automatic event reconstruction
systems is an essential step in standardizing the digital investigation process thereby making it resilient
to tactics such as the Trojan Horse defense. In this paper, we present findings from an empirical study to
measure and compare the accuracy and effectiveness of a suite of such event reconstruction techniques.
We quantify (as applicable) the rates of false positives, false negatives, and scalability both in terms of
computational burden and memory-usage. Some of our findings are quite surprising in the sense of not
matching a priori expectations, and whereas other findings qualitatively match the a priori expectations
they were never before quantitatively put to the test to determine the boundaries of their applicability.
For example, our results show that automatic event reconstruction systems proposed in literature have
very high false-positive rates (up to %).

1 Introduction

After every security incident, the universally asked questions are “what happened, and how did it happen?”.
Consider, by way of example, the following security incidents:

1. The security policy of an organization is violated by one or more unknown insiders (e.g., mis-using the
system to send spam, send confidential material to outsiders, etc);

2. a digital crime is committed (e.g., storing illegal material on the system, or using the system to launch
cyber-attacks on other systems);

3. a hacker breaks into a host inside the internal network of an organization and installs back-doors and
other malware.

In all of the above cases, the ability to identify and reconstruct the sequence of events that led to each
incident is critical to the success of effective response and recovery measures: In the first kind of incident, the
system administrators of the organization need to determine the identity of the insiders and the underlying
causes for the violation. It might even be the case that the insiders had no malicious intentions, but that the
original policy had been set “too tight”. For the second kind of incident, the digital investigators and the
prosecution need to reliably attribute the digital crime to a particular suspect. In the third kind of incident,
the administrators need to identify the attack vector of the hacker (how did the break-in occur?), to secure
their systems against any future attacks that use similar techniques.

Collectively, the process of identifying the underlying conditions and reconstructing the sequence of events
that led to a security incident, is referred to as event reconstruction [1, 2]. Typically, event reconstruction
involves forensic investigators manually sifting through evidence and proposing various hypotheses about the
possible sequences of events that could have led to the security incident. The degree of difficulty and the
accuracy of the results of the reconstruction process differ from case to case. For instance, for the second
kind of incident, investigators are often hindered by the lack of sufficient evidence to reliably reconstruct the
event sequence. Most often the image of the hard disk is the only evidence available to the investigators. In

the presence of such limited information, event reconstruction often becomes a tedious and highly inaccurate
effort [3].

However, the reconstruction process in cases of incidents typified by examples one and three (commonly
referred to as operational forensic analysis or intrusion analysis [3] as opposed to prosecutorial forensic
analysis in the case of example two) can often leverage the presence of additional evidence in the form of
audit logs. In the past few years, many researchers have developed automated reconstruction systems that
rely on a-priori audit logging to help the reconstruction effort. Examples include BackTracker [3], Forensix
[6], Improved BackTracker [5] and the Process-Labels scheme proposed in [7]. The key idea is that, with
more information logged about the events during the normal operation of a system, reconstruction becomes
easier and can be automated 1.

Despite the growing body of literature regarding such automated reconstruction systems, there is hardly
any work that quantifies their effectiveness. A rigorous study that quantifies their effectiveness is essential
for the following reasons:

e The importance of reliability and accuracy metrics for forensic analysis techniques has been well doc-
umented [8].

— All too often, individuals who are indicted for digital crime successfully exploit the lack of such
metrics by using tactics such as the Trojan horse defense [9]. A forensic expert providing testimony
in a court of law could buttress his/her conclusions by citing studies that evaluate the effectiveness
of the reconstruction system.

— Event reconstruction systems often provide multiple hypotheses regarding the events that could
have led to a security incident. If false-positive rates are available, they can be used as priors
for calculating the likelihood of each hypothesis, allowing investigators to order or prioritize the
different hypotheses.

e System administrators and forensic investigators need guidance as to which reconstruction system to
deploy for their particular framework and circumstances (as we shall see, reconstruction systems that
are suitable for certain situations mis-behave in others). A study that sheds light on the relative
advantages and disadvantages of these systems will be useful in such investigations.

e Researchers can use such a study as a guide towards identifying the challenges that need to be tackled
in order to build better reconstruction systems.

In this paper, we present an experimental study that evaluates the effectiveness of existing automated
event reconstruction systems. Our contributions are the following:

e We develop a systematic approach for evaluating the effectiveness of the reconstruction techniques

— We propose using the ability of reconstruction systems to infer causal relationships between system
events as an indicator of their overall effectiveness. Identification of causal relationships between
objects and events that occurred in a host and between the events themselves, is a critical step
in every reconstruction effort [1, 2]. The higher the accuracy in identifying causal relationships,
the more precise the resulting reconstruction.

— Furthermore, we argue that the effectiveness of the event reconstruction systems we evaluate in our
study is predicated on their ability to infer causal relationships enabled by program dependences
[10]. Consequently, we propose using dynamic slicing [11] as a metric to benchmark the accuracy
with which different systems identify causal relationships enabled by program dependences.

— We develop a suite of real world applications and testcases for benchmarking the ability of recon-
struction systems to identify causal relationships. The suite allows us to identify the source of
inaccuracy and performance overhead of reconstruction techniques.

1Storing those logs in a tamper-resistant manner is a problem that lies in the critical path of the success of these systems.
Cryptographic solutions [23] and Virtual Machine Introspection [24] are among the proposed approaches to make audit logs
tamper resistant.

e Using our approach, we provide experimental data quantifying the effectiveness of the reconstruction
systems and the overhead (time, space, memory) of each technique. Some of our results are enlightening
and surprising. For example,

— The rate of false-positives is very high for all the techniques that we evaluate, sometimes as high
as %. The legal ramifications of this result are substantial and it highlights the urgent need for
more accurate event reconstruction systems.

— The huge space and time overhead of dynamic slicing has been well documented [11, 12]. Our
initial impression was that dynamic slicing was useful only for serving as a benchmark against
which other techniques can be measured. However, we found out that our implementation of
dynamic slicing runs with relatively moderate cost for I/O intensive applications which typically
execute less number of instructions when compared to CPU intensive applications. Given the
fact that many applications that might be involved in a security incident (HTTP, FTP, mail, file
servers etc.,) are I/O intensive, the ability to use dynamic slicing to accurately identify causal
relationships will be a great aid in forensic investigations.

e We discuss the experimental data and shed light on the conditions that lead to the inaccuracies and
the overhead of the event reconstruction systems we evaluate.

— For forensic practitioners and system administrators, this could be a valuable guide in choos-
ing the appropriate reconstruction technique to deploy. For example, we found that the static
slicing technique used by Improved BackTracker does not work well in applications that exhibit
“recursive” and “iterative” work-flow characteristics (more on this in Section 6).

— For academic and industrial researchers, this will aid in the development of more effective event
reconstruction systems.

The rest of the paper is organised as follows. In Section 2, we provide a brief explanation of the background
concepts needed in the rest of the paper. In Section 3 we survey the existing automatic event reconstruction
systems. We explain our evaluation strategy in Section 4 and provide the results from our experiments in
Section 5. We then briefly analyse the results in Section 6. Finally, we discuss future work in Section ?7
and conclude in Section 7.

2 Background

In this section, we discuss the background concepts that are necessary for the discussion of the main results of
this paper. Purely for expository purposes, we restrict the discussion to computer systems that run Unix-like
operating systems. This is not a fundamental limitation as the concepts and approaches described should
be applicable to other systems with only minor modifications.

System Events For the purpose of this paper, we consider an event to be an action that is performed by
a process on behalf of a user. We define events at the granularity of system calls since most of the
“interesting” actions (both from the point of view of an investigator and the perpetrator) that happen
in a host consist of system calls. Henceforth, the terms computer event, event and system call are used
interchangeably.

Event Causality Causality is commonly expressed using the following counter-factual query: would E
(effect) have occurred if it were not for C' (cause)? Intuitively, causality tries to capture the influence a
cause has over an effect. In other words, how much dependent is E on C. An example counter-factual
query using events: Would the root kit be still installed (effect), if it were not for the email received by
the email-server(cause)? 2

2The installation of the root kit can be expressed as a series of system calls that copy the necessary files. Similarly, the
reception of the email can be captured by a system call that received the corresponding network packets.

Event Reconstruction A security incident happens as a result of a chain of events (or multiple chains
of events if there are multiple causes for the incident). An event chain is an ordered sequence of
events < eg, e1,...,e > where event e; is the cause of event e; 11 (in other words e;11 is dependent on
e;). The process of identifying the chain(s) of events that result in a security incident is called event
reconstruction [1, 2] (henceforth referred to as simply reconstruction).

Program Slicing Intuitively, a program slice [10, 11] of any statement S in a program is the set of other
program statements that influence the execution of S and the values used in S. The process of building
a program slice is referred to as program slicing or just slicing.

Static Slicing Computing the program slice of a program statement in a static fashion is referred to as
static slicing. Static slicing computes the parts of the program that could influence the given statement,
over all possible execution paths of the program.

Dynamic Slicing On the other hand, Dynamic slicing computes a program slice for a particular execution
of the program. Dynamic slicing, by definition, tracks program dependences in the most accurate
fashion. However, the accuracy comes at a huge cost of space, memory and time [11, 12].

3 Event Reconstruction Systems

There are many tools that can be used by forensic investigators and system administrators for event recon-
struction purposes. In this section, we provide an overview of the available tools.

3.1 Tools using ex post evidence

Often, the only source of evidence available to an investigator is the hard disk image of a host. In addition,
logs of network traffic might be available occasionally. Tools such as TCT [21], SleuthKit [22], Guidance
Softwares Encase, Access Data’s Forensic toolkit, ASR Data’s SMART, Internal Revenue Services’ ILook
and Zeitline [15] help the investigators in collecting and analyzing the evidence from hard disk images. Tools
such as Ethreal can interpret the network traffic at the application level. Since these tools are dependent on
evidence available ex post facto, they are severely limited in their ability to reconstruct events and reason
about what happened ex ante facto.

3.2 Ex ante logging

Unlike certain types of digital crimes, where the investigation is constrained by the absence of ex ante logging,
there are scenarios where it is possible for the investigators to log events in a host prior to the occurrence
of a security incident. For example, system administrators of organizations can install host-based logging
mechanisms in the hosts under their supervision. If a security violation occurs in any of the hosts, then the
corresponding logs can be utilized for analyzing the violation. Intrusion analysis tools such as BackTracker
and Forensix use this approach of combining pre-facto logging with post-facto intrusion analysis for event
reconstruction.

BackTracker BackTracker [3] is an automatic event reconstruction tool that identifies chains of events
that could have influenced a security incident. At run-time, BackTracker records system events that
induce dependence relationships between operating system objects. A dependency relationship induced
by an event consists of a source object (the cause), the sink object (the effect) and the time interval
during which the event took place [4]. Once a security incident is detected, BackTracker constructs a
dependency relationship graph using the dependency relationships inferred from the recorded events.
The nodes of the graphs are operating system objects such as files, processes and file-names. The
edges represent dependency relationships between the objects. Given a set of objects that are involved
in a security incident (detection points), BackTracker reconstructs the event chains by traversing the
dependency graph backwards from the detection points using the dependency edges.

Evaluated BackTracker, Forensix, Process Labels, Improved BackTracker (program slicing)
Not Evaluated | Improved BackTracker (file offsets), Memory Mapped Files

Table 1: Event reconstruction systems considered in this study

Forensix Forensix [6] is a forensics and intrusion analysis tool similar to BackTracker. It uses the SNARE
framework [16] (an event logging mechanism) for recording the events that happen in a system. System
events are observed at the granularity of OS system calls. Auxiliary information such as the param-
eters and return values of the system calls are also recorded. The dependency relationships captured
during the analysis phase are similar to those captured by BackTracker. Unlike BackTracker, Forensix
facilitates reconstruction by providing a database query language (SQL) interface to the recorded logs
i.e., event reconstruction can be performed in an iterative fashion using a series of SQL queries.

Process-Labels Though not originally intended for event reconstruction purposes, the Process-Labels
scheme proposed by Buchholz et al. [7] possesses the same capabilities as BackTracker. Buchholz et al.
propose a model of pervasive binding of processes labels to track the impact of principals in a system.
A principal is defined as an active agent that performs actions in a system and interacts with other
principals. Principals create, access and modify other principals and objects in the system. Every
principal is associated with a unique label and labels are propagated from a cause to its effect. Using
their model, causal relationships can be identified by tracking labels.

Improved BackTracker Sitaraman et al. [5] propose the following improvements to Backtracker:

Offset Intervals BackTracker (and Forensix), treats files as atomic objects — If a process modifies a
file, it influences all future reads of the file regardless of which portion of a file is modified. This
might lead to false-dependences. To overcome this, Improved-BackTracker recodes the arguments
of the read, write system calls. The arguments help in observing the files at a finer granularity
by providing the “offsets” at which each read and write system call operates.

Program slicing Another major source of spurious (i.e., false) dependences in BackTracker (and
Forensix) is the treatment of processes as Black boxes [4, 5]. Similar to files, processes are consid-
ered atomic (Black boxes) by BackTracker. To overcome this limitation, Improved-BackTracker
uses program slicing techniques to track the program dependences.

Tracking memory mapped files Another source of false-dependences in BackTracker is its simplistic
treatment of memory mapped files. Sarmoria et al. [4] propose a runtime kernel memory management
monitor to observe the reads and writes to memory mapped files, facilitating finer-grained observation.

Table 3.2 lists the tools considered in this paper among those described in this section.

4 Evaluation Strategy

In this section, we explain our approach for measuring the effectiveness of event reconstruction systems.

4.1 Metrics for Event Reconstruction

The first challenge in measuring the effectiveness of reconstruction techniques is to decide upon a set of
metrics. The key idea is that the effectiveness of the reconstruction process is directly dependent on the
accuracy with which causal relationships between events are inferred. The Higher the accuracy of causality
inference, the more effective the resulting reconstruction effort. We propose to use the rate of false-positives
and false-negatives as a metric to measure the accuracy of causality inference. False-positives arise when
two events e; and e; are implicated in a causal relationship when there is actually no such relationship. If

a reconstruction system has a high rate of false-positives, the forensic investigator has to waste time inves-
tigating and eliminating the spurious hypotheses. In the worst case, the existence of spurious hyphotheses
could be leveraged by defense attorneys as part of a Trojan Horse Defense. Similarly, false-negatives arise
when the reconstruction process misses causal relationships between events. False-negatives result in the
investigators completely missing some (or all) of the actual causes of the security incident. Hence, we use
the rate of false-positives and the rate of false-negatives to evaluate the effectiveness of the reconstruction
systems under consideration.

4.2 Measurement Methodology

The next challenge in evaluating the effectiveness of event reconstruction systems is to develop a suite of
benchmarks to measure the metrics defined in section 4.1. Initially, we considered using a suite of “scenarios”
— a collection of security incidents along with corresponding audit logs, disk and memory images. The
reconstruction systems would then be used to reconstruct event chains for each scenario and the resulting
false-positives and false-negatives could be measured. In fact, previous work on the systems described in
section 3 adopted a combination of qualitative reasoning and scenarios to evaluate their systems. However,
we quickly concluded that it is non-trivial (and very expensive) to develop a comprehensive benchmark suite
of scenarios, that is not inherently biased or inaccurate.

Our conclusion is primarily based on the experience of researchers developing benchmark suites for Intru-
sion Detection Systems. Despite many attempts, there is still no consensus on the best way to benchmark
IDS systems [17]. Event reconstruction systems are similar to IDSes in the sense that they are both complex
and their effectiveness is predominantly dependent on the operating environment.

Fortunately, the following observation allows us to develop a benchmark suite for reconstruction systems
that is less biased and is more scientific than a suite of scenarios.

Observation 1. The accuracy of the automatic event reconstruction systems under consideration is predi-
cated entirely on their ability to infer causal relationships enabled through program dependences.

Causal relationships between events are enabled by causal mechanisms [18]. For example, consider a user
Alice deleting a file foo. In this case, the executable code that was invoked as part of the system call unlink
is the mechanism that enables alice to delete foo. Broadly, causal mechanisms are of the following two types:

The Operating System Causal relationships between system events could be enabled through various
subsystems of the operating system e.g., the file system, the Inter-Process Communication (IPC)
system. Consider the example in Figure 1, where process-1 and process-2 execute a sequence of system
calls in the specified order. The write system call of process-2 is a cause of the read system call of
process-1, because the result of the read system call is dependent on the write system call. In other
words, the data that is “used” by read is dependent on the data “produced” by write. This causal
relationship is enabled by the file system component of the OS. Similarly, other subsystems such as
the process subsystem and the IPC subsystem also enable causal relationships between events [3].

Process —1: fd = open(foo, OWRONLY);
Process —1: write(fd, ‘‘hello’’, 5);
Process —1: close (fd);

Process —2: fd = open(foo, ORDONLY);
Process —2: read (fd, buffer, 4);

Figure 1: OS relationship example

Program Dependences Causal relationship between two events could be enabled by the address space
of a process if both events are executed by the same process. For example, in the piece of code listed
in Figure 2, the causal relationship between the read and the write is enabled by a chain of program
dependences between the two events. The write event uses a value (dest) produced by the strncpy

library call (data dependence). The call to strncpy is dependent on the truth value of the if condition
(control dependence). The truth value of the if condition is in turn dependent on the read event. We
refer to such causal relationships are Program Dependence enabled (or simply PD) relationships.

fd_.r = open(foo, ORDONLY);
fd_w = open(bar, OWRONLY);
read (fd_r , buffer, 10);

if(buffer[0] = 0)
strncpy (dest , buffer, 10);
write (fd-w, dest, 5);

Figure 2: Program Dependences example

Because the semantics of system calls are well defined (the effect of each system call on system objects is
well understood), all reconstruction systems under consideration are able to make precise deductions about
OS-enabled relationships. As a result, there is no difference in their ability to infer OS-enabled relationships.

On the other hand, the reconstruction systems vary in their ability to infer PD relationships. For example,
BackTracker, Forensix and the Process-labels scheme treat the processes as blackboxes. On the other hand,
Improved-BackTracker and Memory-Mapped Files both have the ability to observe the process address space
at a finer granularity [4]. Intuitively, this ability should make them more accurate than those systems that
treat processes as mere blackboxes.

Hence to make an assessment of the effectiveness of reconstruction systems, it is sufficient to measure the
effectiveness of the techniques employed the systems for inferring PD relationships:

BackTracker BackTracker, Forensix and Process-Labels treat PD relationships similarly. They simply
consider processes as blackboxes. Their detection policy is simple: Any input event is a cause for
future output events. Henceforth, we refer to this technique as simply the BackTracker technique.

Static Slicing An improvement employed by Improved-BackTracker. The inference policy can be summa-
rized thus: An event C is a cause of another event F if, the program statement S¢ corresponding to
C belongs to the backward static slice of the program statement Sg.

Dynamic Slicing Another improvement employed by Improved-BackTracker. This is the dynamic variant
of static slicing. An event C'is considered a cause of another event F if, the instruction I corresponding
to C' belongs to the backward dynamic slice of the instruction Ig.

Dynamic Slicing, by definition, is the most accurate technique for detecting PD relationships. Hence,
we use it as a baseline for measuring the effectiveness of the other techniques. False-positives arise when a
particular technique infers a PD relationship between two events, but dynamic slicing does not. Similarly,
false-negatives arise when a particular technique fails to infer a PD relationship that is inferred by dynamic
slicing.

5 Experimental Evaluation

5.1 The benchmarks

Our benchmark suite consists of a collection of open source applications and a suite of testcases for each
application. The table 5.1 provides a short description of each of the applications in our test suite. The
application that is smallest in terms of lines of code (LOC) is 1s with 2939 LOC. GnuPG is the largest
application with 68081 LOC. We have taken care to include both CPU-intensive applications (e.g., gzip)
that do not frequently execute system calls, and system call intensive applications such as wget. For each
application in our suite, we develop a set of testcases (test suite), designed to maximise the coverage of the
functionality of the respective application. Some of the applications, have publicly available regression test

Name Description Lines of Code (LOC)
gnuPG 1.4.2 GNUs replacement for PGP 68081
gnu wget 1.10 Program for retrieving files through HTTP(S), FTP | 22268
find (findutils 4.2.25) Search for files in a directory hierarchy 19217
locate (findutils 4.2.25) | List files in a database that matches pattern 11864
ls (coreutils 4.5.3) List directory contents 2939
cp (coreutils 4.5.3) Copy files 3321
wc (coreutils(4.5.3) Print the number of bytes, words and lines in a file | 3226
tar 1.15.1 Archiving software 8425
gzip 1.3.3 A popular data compression program 4296
grep 2.5.1 Search files for a given input pattern 7485
Table 2: Table listing the applications in the benchmark suite

File I/O open, open64, opendir, read, write, seek, chdir, getdents, access, close

Network I/O | socket, connect, select, send, recv, recvirom

Table 3: Table listing the system calls considered in this study

suites, e.g., GnuPG. In such cases, we borrow those test suites. If no such suite is publicly available for an
application (e.g., gzip, wget), we develop our own testsuite. In this study, we consider causal relationships
between the system calls listed in table table 5.1. All the tests were run on a 2.8 Ghz Pentium 4 Linux
workstation with 512 MB RAM and 1 GB swap space. The number of system calls that were executed by
each application, along with the number of instructions executed are presented as part of Table 5.3.

5.2 Implementation

Identifying causal relationships using Backtracker technique is straight forward. We implement this function-
ality as a simple table lookup. For Dynamic Slicing, we implemented a customised variation that suites our
purposes using PIN [19]. PIN is a binary instrumentation tool developed by Intel. We use CodeSurfer [20] a
program analysis for implementing the static slicing technique. Every system call executed by an application
has a corresponding callsite in its source code. The callsite could be either a direct invocation of the system
call, or it could be an indirect invocation through a library call. We use CodeSurfer to obtain static pro-
gram slices of all such callsites in the source code of an application. Owing to space restrictions, additional
details of the dynamic slicing implementation using PIN and details regarding our usage of CodeSurfer can
be obtained from [?].

5.3 Results

For each application in the benchmark suite, we ran the testcases in the application’s test suite. Each
testcase produces a trace of system calls. For every pair of system calls (S,, Sy) present in a trace, we used
BackTracker, static slicing and dynamic slicing to determine if S, is a cause of S, as explained in sections 4.2
and 5.2. We calculate the rate of false-positives and false-negatives as explained in Section 4.1. A total of
110882 system calls and 11,328,876,826 (approx. 11 Billion) instructions are executed as part of the testcases.
We report the rate of false-positives and false-negatives for BackTracker and Static Slicing in table 5.3. The
false-positive and the false-negative rate for the dynamic slicing technique is 0 by definition. Static slicing
technique has a 0 false-negative rate (by definition).

The time and memory overhead associated with dynamic slicing is reported in 5. Both Static Slicing and
BackTracker had negligible dynamic runtime overhead (O(1) table lookups). Static Slicing incurred a one-
time cost for computing the static backward slices of the callsites, which was well within previously reported
results [13]. Owing to space restrictions we provide the actual data regarding the overhead of BackTracker

and static slicing in [?]
We note some significant results :

1. The rate of false-positive is extremely high for both techniques. For BackTracker, it varies from % in
the case of locate to % in the case of tar. For Static Slicing, it varies from a low of % in the case of
cp to a high of % in the case of tar.

2. Contrary to previously published expectations [5], in most applications (except cp and 1s, Static
Analysis does not provide a significantly better performance than BackTracker.

3. Dynamic slicing has a lower overhead for I/O intensive applications such as wget (4933x) when com-
pared to CPU intensive applications such as gzip (32894x). The overhead in table 5 was calculated
by adding the results from the user and sys components of the unix time command. However, the
user and sys components measure the CPU usage of a process and do not take into account the time
waiting for completion of I/O. If we account for the time taken for I/O completion (provided by the
real component of time), the overhead drops to 4.74x.

Though the absolute overhead of dynamic slicing is large (53x - 43298x), it scales very well with an
increase of system calls. For example, applications such as wget, have a relatively lower overhead
(4933x) especially when amortized over a large number of system calls. The reason is that, wget is an
I/0O intensive application, and hence executes less number of instructions (the cost of dynamic slicing
is dominated by the number of instructions executed). This result is significant given the fact that
many applications involved in security incidents are likely to be I/O intensive (web servers, file servers
etc.,). Investigators can directly use dynamic slicing instead of resorting to less accurate alternatives.

BackTracker Static Slicing

False-positives | False-negatives | False-positives
Application | System Calls | Instructions | Avg | Std Avg | Std Avg | Std
epg 45762 9735745189 | 95.60 | 12.88 | 1.88 | 9.28
wget 49239 168432151 31.78 | 28.99 | 3.55 | 3.00 64.94 | 12.44
find 2602 11640606 59.34 | 27.27 8.96 | 8.90 52.99 | 25.13
locate 78 15674625 81.44 | 33.40 | O 0 0 0
tar 7659 109540215 93.01 | 20.16 0.20 | 2.02 92.59 | 22.92
gzip 1775 824574115 35.32 | 3043 | O 0 30.21 | 38.41
wCe 266 441862104 36.61 | 43.35 0 0 36.75 | 43.51
Is 2936 17563651 85.01 | 20.79 | O 0 83.23 | 25.92
cp 464 3511599 67.44 | 31.21 0.04 | 0.72 54.74 | 41.08
grep 101 332571 48.30 | 41.58 0 0 14.13 | 28.76

Table 4: The rate of false-positives and false-negatives for BackTracker and Static Slicing. We were unable
to obtain the results for gpg in the case of static slicing owing to limitations of codesurfer

6 Discussion and Future Work

e It is important to analyse the root causes of the inaccuracy of both BackTracker and Static Slicing
so that better event reconstruction techniques can be developed. A complete analysis is out of the
scope of this work. However, we did some preliminary analysis on Static Slicing. We found that, the
main reasons for the ineffectiveness of static slicing are “iterative” and “recursive” program structures.
To illustrate the case of the “iterative” program structure, consider the application ’ls’. A high-level
over-view of ’ls’ looks like this:

Time Memory (MB)
Application | Avg std Min | Max Overhead | Avg Std Min Max
gpg 787.489 | 585.39 | 49.96 | 4953.9 | 8458 450.25 | 78.34 | 275.23 | 788.87
wget 162.808 | 65.55 | 31.32 | 427.72 | 4933 431.56 | 84.73 | 274.50 | 638.01
find 49.97 5.82 40.45 | 74.26 648.96 313.99 | 22.78 | 275.03 | 378.9
locate 43.29 .26 42.67 | 43.72 43298 104.58 | 142.35 | 4.11 339.94
tar 38.40 30.95 | 15.06 | 263.1 12802 308.95 | 27.86 | 276.29 | 385.97
gzip 180.91 | 478.55 | 28.02 | 2530.32 | 32894 431.98 | 96.91 | 3.61 502.62
we 178.06 | 303.92 | 36.68 | 1132.69 | 28719 345.46 | 21.86 | 274.21 | 357.22
Is 38.32 18.73 | 17.47 | 78.60 22153 310.56 | 47.57 | 3.71 393.20
cp 15.54 4.32 10.44 | 32.35 10502 23.62 .87 22.36 25.29
grep 28.15 9.85 16.26 | 53.76 53.31 159.30 | 156.10 | 4.14 384.85

Table 5: Time (in seconds) and Memory (in MB) overhead associated with Dynamic Slicing. Time overhead
is a ratio of the dynamic slicing time to the normal application execution time.

7

while (pending_dirs)

{
extract_files_from_dir(pending_dirs);
print_files();

When the ’ls’ command is executed, it iterates over a list of directories. For each directory, it extracts
the files residing in the directory and prints the files. The extracting a single file involves a readdir
system call and printing information about a file involves a write call. Now, consider the ’ls’ command
being invoked with arguments: ’ls dirl dir2’ (assume ’dirl’ and ’dir2’ each have only one file). In this
case, Static Analysis declares the readdir call associated with ’dirl’ to be a cause of the both the
write call associated with 'dirl’ and the one associated with 'dir2’.

The suite of applications in our benchmark might not be a good representative of applications that
are frequently encountered during security incidents. For example, our benchmark does not contain
any multi-threaded server applications. We were severely constrained by the fact that our applications
should be compatible to both PIN and Codesurfer. We found that Codesurfer was the bottleneck due
to its limitations on handling applications of large size (> 100K LOC). In future work, we would like
to work on expanding the benchmark to a more comprehensive one.

Program Dependences are not the only means through with causal relationships can be enabled between
events that occur in the same process. Research in information-flow has proven that causality can be
enabled through implicit dependences which are not captured using program dependences alone [14].
Exploring the impact of implicit dependences and the relation between information-flow and causal
relationship is another promising area that we would like to work on.

Conclusion

In this study we measured the effectiveness of a suite of event reconstruction systems. We found that
reconstruction systems that treat processes as blackboxes (BackTracker, Forensix, Process-Lables) and
systems that use Static Slicing, have a very high rate of false-positives. We also found that contrary to
previously published work, Static Slicing does not provide a significantly better alternative to BackTracker.
Additionally, we also document the time and memory overhead of dynamic slicing. We found that dynamic
slicing could be a practical alternative while investigating I/O intensive applications.

10

References

[1]

2]

[15]

[16]

[17]

[18]

B. D. Carrier and E. H. Spafford. “Defining Event Reconstruction of a Digital Crime Scene.” Journal
of Forensic Sciences, 49(6), 2004.

B. D. Carrier and E. H. Spafford. “An Event-based Digital Forensic Investigation framework.” In Pro-
ceedings of the 2004 Digital Forensic Research Workshop, 2004.

S. T. King and P. M. Chen. “Backtracking Intrusions.” In Proceedings of the 2003 Symposium on
Operating Systems (SOSP), Oct. 2003.

Christian G. Sarmoria, Steve J. Chapin. “Monitoring Access to Shared Memory-Mapped Files” DFRWS
2005.

S. Sitaraman and S. Venkatesan. “Forensic Analysis of File System Intrusions Using Improved Back-
tracking.” In Third IEEE International Workshop on Information Assurance (IWIA05), College Park,
Maryland, USA, 2005. IEEE Association.

A. Goel, M. Shea, S. Ahuja, W.-C. Feng, W.-C. Feng, D. Maier, and J. Walpole. “Forensix: A Robust,
High- Performance Reconstruction System.” Distributed Computing Systems Workshops, , 2005.

F. Buchholz and C. Shields. “Providing Process Origin Information to Aid in Computer Forensic Inves-
tigations.” Technical Report, CERIAS TR 2004-48, 2004.

Gary. Palmer, “A Road Map for Digital Forensic Research.”, DFRWS 2001.

Brenner, Susan, Brian Carrier, and Jef Henninger. “The Trojan Defense in Cybercrime Cases,” Santa
Clara Computer and High Technology Law Journal, 21(1), (2004).

M. Weiser, Program slices: formal, psychological, and practical investigations of an automatic program
abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

X. Zhang, R. Gupta and Y. Zhang. “Precise dynamic slicing algorithms.” In Proceedings of the 25th
International Conference on Software Engineering, 2003.

X. Zhang and R. Gupta. “Cost Effective Dynamic Program Slicing,” ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 94-106, Washington D.C.; June 2004.

David Binkley and Mark Harman. “A Large-Scale Empirical Study of Forward and Backward Static
Slice Size and Context Sensitivity ” 19th IEEE International Conference on Software Maintenance
(ICSM’03), p. 44, 2003.

N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vach-
harajani, and D. I. August. “RIFLE: An Architectural Framework for User-Centric Information-Flow
Security.” In Proceedings of the 37th International Symposium on Microarchitecture (MICRO) Decem-
ber, 2004.

Florian Buchholz and Courtney Falk, “Design and Implementation of Zeitline: a Forensic Timeline
Editor”, DFRWS, 2005.

L. Purdie and G. Cora. SNARE - System iNtrusion Analysis & Reporting Environment.
http://www.intersectalliance.com/projects/Snare/. Viewed in Jan 2003.

”

Marcus. J. Ranum, “Coverage in Intrusion Detection Systems ,
http://www.snort.org/docs/Benchmarking-IDS-NFR.pdf

Judea Pearl, “Reasoning with Cause and Effect,” in Proceedings of the International Joint Conference
on Artificial Intelligence, San Francisco, Morgan Kaufman, pp. 1437 - 1449. 1999.

11

[19] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. “Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation.” In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2005.

[20] CodeSurfer. Available at www.grammatech.com/products/codesurfer /index.html
[21] The Coroners toolkit. Available at: http://www.porcupine.org/forensics/tct.html
[22] The Sleuth Kit. Available at: http://www.sleuthkit.org/

[23] B Schneier, J Kelsey. ¢ Cryptographic Support for Secure Logs on Untrusted Machines.” In Proceedings
of the Tth USENIX Security Symposium, 1998.

[24] T Garfinkel, M Rosenblum. “A Virtual Machine Introspection Based Architecture for Intrusion Detec-
tion.” In Proceedings of the 2003 Network and Distributed System Security Symposium.

12

