
Security in FileVault

Sakthiyuvaraja Sakthivelmurugan

CIS751 Report, Fall 2007

1 Introduction

Apple introduced FileVault into the Macintosh operating systems to provide a extra layer of security
by encrypting the content of users home directory. Only a person with the users password will be
able to decrypt and view the content of the users home directory. This report discuss about the
implementation details and security in FileVault.

2 Overview of FileVault

FileVault employs Advanced Encryption Standards algorithm (AES also known as Rijndael, is a
wildly used block cipher) to encrypt the user data.

When a user selects to secure his/her home directory with FileVault. A Sparse Image is created
and the contents of the user directory is copied into the sparse image. The older contents are securely
deleted so that they cannot be recovered using external software. A sparse image is a disk image
which can be encrypted and occupies only the amount a space the data within takes. When a user
logs in to the system the sparse image will be mounted in his home directory. The contents and
folder structure will be same as it was before, so the user will not see any change in the way his
home directory looks before and after encrypting with FileVault. When the user logs out the sparse
image will be unmounted. Only a user which the password used for encryption could mount the
sparse image.

The sparse image internally has a header and data region. Few fields in the header region is
encrypted and whole of data region is encrypted. The users password is used to decrypt the content
of the header which are encrypted. These encrypted fields have information about decrypting the
data region. The user cans set a Master Password using which the password to a sparse image can
be reset in the event of the user forgetting his password. If the user forgets both the master and
user password the content of the sparse image will be unrecoverable.

3 Sparse Image

3.1 Header Region

The header of the sparse image contains details needed for decrypting the data region. The fields
of the header are:

• Salt for PBKDF2

• Encrypted IV for 3DES-EDE

1

• Encrypted HMAC-SHA1 KEY

• Encrypted AES-KEY

The key used for encrypting the data region is encrypted (Key Wrapping) by again. There are certain
advantages of using this mechanism, namely a stronger and difficult to crack encryption technique
can be used to encrypt the key. One may argue that this stronger encryption technique can be used
for encrypting the data; But it might prove to be detrimental if the time take for encrypting huge
data is high.

The Password Based Key Derivation Function (PBKDF2) is used to create a key passKey from
the user password. The key derivation function takes in three arguments user password user_pass,
salt s and iteration count 1000 in this case.

The key wrapping unwrapping is done using the passKey , initialization vector IV and applying the
3DES-EDE on it which is shown in Table 2.

• wrapped key = 3DES-EDE(passKey, IV, key_to_be_encrypted)

• passKey = PBKDF2(salt,password, iteration)

3.2 Data Region

The data region is encrypted/decrypted using AES-128 block cipher. The IV is output of HMAC-
SHA1 which takes the chunk number and Hmac-sha1 key read from the header and the key is the
128 bit AES Key stored in the header region.The content of the user home directory stored in the
sparse image gets encrypted as 4K byte chunks in AES-128 CBC mode.

• Encrypted Data Chunk = AES-128cbc(K, IV, chunk, ENCRYPT)

• IV = trunc128(HMAC-SHA1(hmac-key || chunkno)

• K - Symmetric Key

• IV - Initialization Vector

• chunk - Data to be encrypted

• HMAC-SHA1 - Hashed Message Authentication Function

• hmac-key - Key used for HMAC-SHA1

• chunkno - Count of the chunk that is to be encrypted/decrypted.

4 Analysis

Most of the time the user password will be a simple dictionary based word which are easy to
remember. Easy to remember password lacks entropy and are prone to brute force attack. Also the
password do not have the sufficient length needed for cryptographic operations. So the password
goes through a process called key strengthening which derives a key out of the password which are
stronger and is difficult to be cracked.

PBKDF2 is a key strengthening function, it applies a pseudo random function, to the input
password or passphrase along with a salt value and repeats the process many times (1000 is a

2

recommended minimum) to produce a derived key. Having a salt added to the password reduces the
ability to use a preset dictionary to attack a password. The iterations increase the work that must
be done on the attacker’s side to build a brute force attack. If the salt is changed, the entire attack
dictionary has to be rebuilt. This overhead makes pre built dictionary attack difficult on FileVault.

The passKey derived out of user password is not actually used for encryption of the sparse
image data. The role of passKey is to wrap another key which is used for encryption of the data.
This method is employed because, when user changes his password the encrypted data has to be
re-encrypted using the new key. Re-encrypting will be an over head especially when the user data is
huge. Now, only the header fields has to be re-encrypted with the new key and has to be replaced
in place of the old header.

The unwrapping of the keys is done using 3DES-EDE. The unwrapped keys include the AES-Key
and HMAC-SHA1-Key. The former is used for the decryption and encryption of the data and the
later is used for the Hashed Message authentication code.

The AES-128 employs CBC cipher block chaining, this mode makes sure that no two identical
plaintext block encrypt to the same cipher text. This is done by XORing the preceding cipher block
with the plaintext.

There are problems with this mode of ciphers. If there is a bit error in the beginning of the block
it gets propagated to the rest of the cipher. Also if nth chunk has to be decrypted or encrypted it is
dependent on n-1th chunks. An alternative approch called the counter mode is applied in FileVault.
Which is a simple variation of cbc. The IV is not calculated from the preceeding cipher instead the
chunk no is used for it. Since, IV should not be known by the attacker, an HMAC is created using
the chunk no which is difficult to reproduce without knowing the HMAC-Key. HMAC are collision
resistant so there will be ε chance that the attacker can find the IV even if the chunk number is
know to the attacker.

We have just seen that no two IV can be identical. Consider d1 and d2 are two data chunks wich
are identical with c1 and c2 as chunk numbers. AES(d1, IV1, AES-Key) 6= AES(d2, IV2, AES-Key).
Where IV1 = Hmac-sha1(key, c1) and IV2 = Hmac-sha1(key, c2). This shows that no two cipher
in the data region will be identical.

4.1 Possible Attacks

Even after using complex techniques to keep the data safe, there are some attacks possible on
FileVault. Watermarking is one of them.

The CBC mode of operation leads to watermarking attacks. Where the attacker will be able to
predict the presence of some information with out knowing the key.

4.2 Known Issues

On power failure and on some rare occasion if the sparse image gets corrupted the user may end up
losing all data of his home directory since sparse image is a single file inside which all the data of
the user home directory is stored.

4.3 Versions

The Sparse Image has two versions: version1 where the header information are at the end of the disk
image and version2 where the header information are stored in beginning of the file. The analysis
was done for version2 which is the current version used in Mac OS X 10.4.

3

5 Conclusion

FileVault can’t possibly be extended with the current design to incorporate a full disk encryption as
many people would want to. But its possible to do; to have a full disk encryption the boot process
has to be modified to understand the decryption technique and more enhancements so that the
encrypted disk image can be mounted from which the OS should start booting. The speed of the
system may go down considerably considering the number of encryption and decryption operation
that has to occur and a single disk image will be a point point of failure for corruption. Recovering
corrupted image will be hurdle that has to be fixed.FileVault can’t possibly be extended with the
current design to incorporate a full disk encryption.

FileVault was meant to encrypt home directories for which it is perfectly designed and have the
security features.

6 Reference

• http://crypto.nsa.org/vilefault/23C3-VileFault.pdf

• http://www.ietf.org/rfc/rfc3826.txt

• http://www.ietf.org/rfc/rfc2898.txt

• New Methods in Hard Disk Encryption, Clemens Fruhwirth

7 Appendix

An overview of the experiments done as a part of the report.

• Apple Open Source Libraries analysis to understand the implementation of FileVault

– libsecurity_filevault-28631

– libsecurity_cdsa_utilities-32432

– libsecurity_apple_csp-32567

• Creation of sparse image using hdiutil. The debug mode of hdiutil gave some internals fo
the sparse image, but not much could be understood as the disk framework is private.

• A code sinippet which simulates the implementation of the header region.

4

