
A SET-BASED APPROACH TO PACKET

CLASSIFICATION

Venkatesh Prasad Ranganath, Daniel Andresen
Department of Computing and Information Sciences

Kansas State University
{rvprasad, dan}@cis.ksu.edu

ABSTRACT
Firewalls, and packet classification in general, are be-
coming more and more significant as data rates soar
and hackers become increasingly sophisticated - and
more forceful. In this paper, we present a new packet-
classification approach that uses set theory to classify
packets. This approach has significant theoretical ad-
vantages over current approaches. We demonstrate its
practicality by implementing a firewall subsystem in
Linux which approaches the performance of today’s
naive packet-filtering implementations.

KEY WORDS
TCP/IP, firewalls, Linux, iptables, packet filtering

1 Introduction

As the use of Internet becomes ubiquitous in day-
to-day life, the protection of information and avail-
ability of services via the Internet assumes utmost
importance. The protection of information on the
wire and the control of access to it is addressed by
various authentication mechanisms and secure proto-
cols such as SSH and HTTPS. However, these pro-
tocols/mechanisms cannot alone protect the informa-
tion. It is still possible for a malicious user to flush
a service with spurious requests to create a “denial of
service.” Although the benefit of such an act is un-
known, it is harmful to the business entity providing
the service, as it causes inconvenience to the real users
of the service.
The above issue results from the lack of access control
to the service. The firewall is a concept that addresses
this issue by controlling the connections to the host
by which services can be accessed. In a simple sce-
nario, one can configure the firewall to deny access to
a particular service when the access is initiated from
a particular network domain. To deny such access,
messages arriving at the host need to be classified as
arriving from the given domain. Such classification of
messages has been a longterm research interest of the
network community under the name of “packet classi-
fication” and has uses beyond firewalls.

Due to the increase in internal and external security
threats, as well as the exponentially-increasing data
rates, both the number of classification rules in fire-
walls and the demand for better performance are likely
to grow rapidly. In this paper, we present a new
packet-classification approach that uses set theory to
classify packets. We will demonstrate its application
in implementing a firewall subsystem in Linux.
Detailed information about packet classification and
how it is used to realize a firewall is presented in Sec-
tion 2. We also present the packet classification as im-
plemented in some of the prevalent firewall subsystems
in Linux. In Section 3, we present the set-based packet
classification in theory and implementation. This is
followed by the results of the experiments we con-
ducted to compare performance of Iptables1, a com-
mon firewall subsystem for Linux, to the firewall sub-
system implemented using the proposed packet classifi-
cation algorithm [1, 4]. We will present our conclusions
and future work to extend/improve this algorithm in
Section 5.

2 Background

As introduced in the previous section, packet classifi-
cation is a general concept of classifying a packet ar-
riving at a network node based on certain prespecified
criteria. The criteria depend on the purpose for which
the packet is being classified. In the case of packet
classification at routers, the criteria would classify a
packet to channel it to the interface through which it
can reach its destination. The criteria can be further
refined to improve reliability, improve performance,
decrease number of hops, etc. A naive but impor-
tant application would also be to collect accounting
information that can be used to restructure the net-
work or dynamically configure the network to improve
throughput.
The main concerns in packet classification are time
taken to classify, cost of classification (CPU cycles),
storage space required by the criteria, and scalability
of the classification algorithm. Other minor concerns

1Iptables is available at http://www.netfilter.org.

are ease of specification of the criteria and the cost to
modify the set of criteria. The priority of the concerns
mentioned above is determined by the actual applica-
tion of packet classification. Hence, the packet classi-
fication algorithm that addresses the most important
concern best should be chosen to ensure better perfor-
mance. Please refer to [3] for a description of various
types of packet-classification algorithms and the situ-
ation in which they are most applicable.
In firewalls, packet classification occurs based on a set
of rules satisfied by a packet. A rule in a firewall
describes a set of attributes of a packet. These at-
tributes may be the originating IP address, the source
port, the protocol, etc. A packet satisfies, triggers,
or matches a rule when it possesses attributes as de-
scribed by the rule. On such an occasion, the fire-
wall subsystem executes the action or target associated
with the rule. This action or target can determine if
the packet should be let through the firewall, dropped,
transformed, logged, etc. In short, the action/target
determines the fate of the packet. All of the concerns
mentioned above for packet classification are to be ad-
dressed in the same order when classifying packets in
a firewall [2, 4].
There are many commercial as well as free implemen-
tations of firewall subsystems for various operating sys-
tems. For the purpose of presenting our ideas, we will
use Iptables, a free implementation on Linux, as the
reference implementation in our paper.
Iptables is built on netfilter framework available
in Linux [6, 5, 7]. This framework divides the possible
network paths inside a node into five segments. It then
provides hooks to attach external functions at any of
these segments. When a packet arrives at a segment,
the hook functions are executed in the order they were
registered. Each hook function is required to provide
a “verdict” from a set of verdicts predefined in this
framework. Only if the verdict of the current hook
function is to let the packet continue its journey will
the next hook function be executed and likewise the
next segment be traversed.
Each rule in Iptables is comprised of a set of matches
and a target, which is executed if all the matches are
matched. While matching a rule, the matches are
traversed in the specified order. Each set of rules is
grouped into a chain that corresponds to a segment
mentioned above. The rules in a chain are executed
in the order they were added to the chain. If a packet
satisfies a rule and the verdict of the rule is one of the
“netfilter” verdicts (as specified by netfilter) then
the traversal of rules is stopped and the verdict is re-
turned. If not, the following rules in the chain are tra-
versed till such a verdict is encountered. If no matched
rule provides a “netfilter” verdict, then the default ver-
dict (policy) associated with the chain is returned. It is
possible for a matched rule to produce a non-netfilter

verdict that is local to Iptables. In such cases, the
traversal of the rules continues with the following rule
or the specified rule.
A set of chains is grouped as a table. Each table repre-
sents a particular application of packet classification.
filter table represents the application of packet clas-
sification for the purpose of packet filtering. This re-
alizes the main purpose of a firewall: to control the
connections to the node. Other tables such as nat and
mangle realize network address translation and spe-
cialized packet alterations, respectively.
In terms of filtering algorithm, Iptables uses a “first-
match” policy during packet filtering. On the other
hand, Packet Filter(PF)2, which is the firewall sub-
system in the OpenBSD OS, uses “last-match” as the
default policy for packet filtering. However, the same
set of rules can be ordered suitably to achieve the
same effect in both systems. The worst-case execu-
tion complexity of both subsystems is in the order
of O(n), where n is the number of executed matches.
nf-hipac3, a recent firewall implementation in Linux,
uses B-trees to store the rules as opposed to linear lists
of rules in Iptables and PF. Hence, it provides bet-
ter performance in terms of throughput. As very little
documentation about the implementation is available,
based on the data structure used to store the rules, we
speculate that the worst-case performance will be in
the order of O(logm n), where n is the largest number
of matches in a rule in the given rule set and m is the
arity of the B-tree.
It is interesting that none of these systems allow dis-
junctive matches of rule, i.e. all of the rules that the
packet matches. The only issue in such matching is
that the rules matched may have a contradicting ver-
dict. However, this issue can be addressed by imposing
a total ordering on the possible verdicts.

3 Algorithm

In this section we shall present the motivation for a
new approach to packet classification, followed by the
theoretical and implementation detail of the approach.
To make the presentation concrete and simple, we will
present the packet-classification approach as applica-
ble to firewalls based on IP protocol.

3.1 Motivation

Most of the prevalent firewall subsystems traverse the
rule sets in a linear fashion, i.e. each match (sub-
criteria) is matched in the specified order as each rule
(criteria) is traversed in the order it was added to the
firewall. However, this is not the best approach, as

2PF is available at http://www.benzedrine.org.
3nf-hipac is available at http://www.hipac.org.

there may be more than one rule, say a and b, in the
rule set with an identical match (sub-criteria) and al-
though the packet failed to match the rule a due to
this match, the packet will still be matched via rule b.
A concrete example would be the rule sets given below.
The first rule says “accept any TCP packet originat-
ing from 192.168.1.1.” Likewise, the second rule says,
“drop any TCP packet originating from 129.130.1.1.”

-p tcp -s 192.168.1.1 -j ACCEPT

-p tcp -s 129.130.1.1 -j DROP

Both the rules will be matched to classify a UDP
packet, even though upon matching the first rule it
can be decided that any following rules in which TCP
is specified as the protocol should not be considered
for classifying the current packet. This happens be-
cause the relationship between the given rules based
on the relation between the constituent matches is not
captured and utilized during packet classification.

3.2 Theory

The above situation can be remedied by identifying
properties of various match sorts in the system and
establishing relationships between them based on their
properties. These relationships can then be used to
separate the rules based on their constituent matches
and their mutual relationship.
To be more precise, for each match sort, Mi, a set
of properties, {Pi1, Pi2, . . . Pin}, and a set of relations,
{Rij : Pij×Pij → V }, that relate values in the domain
of property Pij can be defined. V is a set of possible set
theoretical relations such as mutually exclusive, proper
subset, etc. Given this information, it is possible to
arrive at the set theoretical relation between various
matches, hence, at a set theoretical relation between
the rules of a rule set.
At this point, an interesting question would be that
whether it is always possible to relate two rules via
these relations. The answer would be no if there is
no ordering between the properties. However, in the
presence of such ordering with suitable characteristics,
it should be possible to always relate 2 rules via these
relations. We will not address these issues any further
in this paper.
A concrete example would be in IP packet filtering.
IP can be considered as a match sort. Given that,
transport layer protocols layered on top of IP can be
considered as a property of IP match sort. In an im-
plementation, the domain of this property can be re-
stricted to {TCP, UDP, ICMP}. These protocols in-
volve ports and some protocol-level information which
can be considered for packet classification purposes.
Hence, TCP, UDP, and ICMP can be considered as
match sorts with suitable properties. According to

TCP

ICMP

UDP

IP

SRC IP

Figure 1. Venn diagram illustrating the match sorts
and the set theoretical relation between them.

TCP/IP standards, it is known that a packet can-
not belong to more than one transport-layer proto-
col. Given this information, it is trivial to conclude
that the match sorts TCP, UDP, and ICMP are mu-
tually exclusive. In terms of set theoretic relations,
TCP ∩ UDP = ∅. This information can be cast as a
membership test during packet classification to decide
if the match (and hence the containing rule) needs to
be considered to classify the packet. If a packet fails to
pass the membership test in one rule, it will do so in
all the rules with a match from the same match sort.
Hence, all such rules need not be considered to classify
the packet.
In terms of complexity, if the rules against which the
packet needs to be matched are picked based on the
properties of the match sorts, then it would reduce
the total number of rules considered to classify the
packet. Also, the time taken to arrive at the rule set
to be considered for classification bears direct impact
on the classification time. It is possible to structure
the match sorts in hierarchies, hence rendering it to be
represented as a tree. Such representation will have a
time complexity of the order of O(log n), where n is
the height of the hierarchy, to arrive at the rule set to
be considered for classification.

3.3 Implementation

We have implemented a firewall subsystem for Linux
called ipt-ksu based on the proposed approach for
packet classification. In our implementation, we main-
tain a list of chains that contain a list of rules in the
specified order. Each chain also maintains a list of
match sort. Each match sort in this list maintains a
list of references to the rules in its parent chain. A
reference exists if the target rule contains an instance
of the parent match sort.
When the rules are added to the chain, we check if

there is a rule which subsumes the given rule. This is
done in order to prune unnecessary rules. After the
rule has been added to the firewall, we reorganize the
match sort list in the affected chain. During reorgani-
zation, we associate a value, “elimination factor,” with
each match sort in the list of match sorts. This nor-
malized positive integer indicates the number of rules
that will be eliminated for the purpose of classification
in case the corresponding match in a rule referred by
the considered match sort is satisfied. For example,
an elimination factor of two indicates that at least two
rules will be eliminated in case a match occurs.

rule list

......

match sorts

rules

match sort

ru
le

 r
ef

er
en

ce
s

chain

Figure 2. Data structures in our implementation of
the firewall subsystem on Linux.

When a packet arrives for classification, each match
sort in the chain is traversed in the decreasing order
of the elimination factor associated with the match
sort. If the packet fails the membership test of the
match sort, all the rules referred to in the match sort
are marked as eliminated for packet classification. If
not, the packet is matched against the corresponding
match in each of the referred rules. If it does not
match, then the rule is marked as eliminated. After
all the match sorts have been traversed, the targets
of all rules left unmarked are executed. It is possible
to have unmarked rules with contradicting targets. In
such cases, as mentioned previously, a total ordering
on the results of targets can determine the result of
packet classification.
The asymptotic complexity of our implementation will
be linear in the number of rules. Unlike iptables, the
order of the rules does not alter its performance, but
the composition of the rules (in terms of the matches)
impacts its performance.

4 Experimental results

Our experimental setup was comprised of the fire-
wall subsystem built into Linux 2.4.21, running on a
2.5GHz Pentium 4 with 472MB of RAM and a 10Mbps
ethernet card. The firewall was set up to filter incom-
ing packets with varying size of rule sets (200, 1000,
and 2500 rules) using both our implementation of fire-
wall (ipt-ksu) and iptables v1.2.6. The rule sets
were structured in two flavors. The first flavor called
“harsh” rule set, would force iptables to traverse all
the rules in the rule set by having the most general
rules at end of the rule set. The second flavor, called
“kind” rule set, would have the most general rules
at the beginning of the rule set, thereby forcing the
matches to happen early in case of iptables.
The tests were instrumented by using netperf
v2.2p14. The Netperf client was run on the system
running the firewall with varying packet sizes (128,
512, and 1518 bytes). The Netperf client was in-
structed to contact the local netperf server as well as
the remote Netperf server in various runs. A compar-
ison of the results obtained from one such test run for
iptables and ipt-ksu is illustrated in Figure 3.
The results of a few of the various test runs are pre-
sented in Table 1 and it clearly indicates that ipt-ksu
fails to outperform iptables, which uses a naive
packet classification algorithm. However, a mere com-
parison of implementation strategy shows that in case
of iptables the functions that are used to match IPT,
TCP, and UDP properties happen to occur in the main
firewall module, whereas in case of ipt-ksu these func-
tions occur in different modules. This alone can con-
tribute up to 5% overhead in terms of function calls
across different kernel modules. The rationale behind
this design decision was to keep the implementation
simple, modular, and uniform. Also, a linear approach
was used to realize set operations in ipt-ksu. A dif-
ferent approach based on tree structures will improve
the performance.
As part of this implementation we also implemented,
an algorithm in the kernel space to check if a rule being
added will be subsumed by an existing rule. This algo-
rithm aids in improving the performance of ipt-ksu
in the case of “kind” rule set by eliminating many rules
which will be subsumed by the general rules entered
earlier on. As the asymptotic complexity of this algo-
rithm is in the order of O(n2), where n is the number
of rules, it largely impacts the time taken to set up the
rule list.

5 Future Work and Conclusion

Following is a non-exhaustive list of work or ideas that
can improve the current implementation and make the

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600

M
es

sa
ge

s/
se

c

Packet size (bytes)

Figure 3. This illustrates the performance of iptables (solid lines/unfilled points) and ipt-ksu (dashed lines/filled
points) with varying number of rules measured in terms of the number of messages handled per second. Circular,
square, and triangular points indicate data corresponding to 200, 1000, and 2500 rules, respectively.

Netperf test Rule set flavor Firewall Packet Size Number of rules
(Bytes) 200 1000 2500

TCP RR

Kind
iptables

128 3013 2969 2891
1518 1054 1057 1036

ipt-ksu
128 2214 1213 669
1518 902 490 247

Harsh
iptables

128 2684 2328 1542
1518 1000 922 666

ipt-ksu
128 2135 1165 666
1518 888 490 248

TCP STREAM

Kind
iptables

128 87447 87085 87326
1518 7377 7373 7372

ipt-ksu
128 69345 21015 7484
1518 7370 1961 802

Harsh
iptables

128 81796 77310 33199
1518 7195 7369 3162

ipt-ksu
128 69002 20824 7378
1518 7368 1923 800

Table 1. The data depicts the performance of iptables and ipt-ksu over various runs with varying test cases,
flavors of rule sets, and number of rules measured in terms of messages handled per second. (Some intermediate data
points were skipped to keep the table short.)

proposed approach more attractive.

1. It has been our experience during test runs
that different orderings of matches in rules af-
fect the performance of various firewall subsys-
tems. For this reason, the existing implemen-
tation of ipt-ksu needs to be extended to in-
clude more matches and targets as provided by
iptables. This will provide a richer rule set in
terms of the matches, thus enabling more elabo-
rate testing. The results from the testing will aid
us to arrive at a crisper comparison of the firewall
subsystems, hence determining the applicability
of the proposed algorithm.

2. The study of the disparity in data collected for
iptables and ipt-ksu has revealed some seri-
ous limitations of the implementation of ipt-ksu.
Remedying these limitations should improve per-
formance and enable more interesting compari-
son of the proposed approach with existing ap-
proaches to packet classification.

3. As mentioned before, at present the rule subsump-
tion is being calculated in kernel space. However,
as this is a one-time calculation for a given rule
set, it can be performed offline in user space to ar-
rive at the least subset of the given rule set which
can then be set up in kernel space with no check-
ing. This will improve the rule set up time by
a large factor. This also creates opportunities for
various static analyses to be conducted on the rule
set to further improve the performance of packet
filtering. These techniques can be implemented
and used independent of the underlying firewall
subsystems.

4. It would be an interesting exercise to recast the
current ipt-ksu implementation to work off tree
structures that capture the hierarchical relation
between various match sorts. This should provide
interesting data to compare the new approach to
that implemented in hipac.

5. The division of criteria into various sorts affects
the application of packet classification. Also, the
choice of sorts is dependent on the environment
in which packet classification is used. Hence, it
would be beneficial as a first step to provide fea-
tures to specify a firewall in such detail. Later on
this can be generalized to packet classification.

We have contributed a new approach to packet classifi-
cation based on relations in set theory, with significant
theoretical advantages over current approaches. We
have applied the same approach to packet filtering by
implementing it as part of a new firewall subsystem
in Linux. We have conducted experiments to study
its impact on the performance of packet filtering. As

illustrated in Section 4, the current implementation
falls short of naive packet-filtering implementations.
However, in the process, we have discovered several
shortcomings in our implementation as listed above,
and we plan to address these issues in the future to
enable a crisper comparison of the proposed approach
with the existing approaches to packet classification.

Acknowledgments

This material is based in part upon work supported
by the National Science Foundation under the award
numbers CCR-0082667 and ACS-0092839. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

References

[1] David A. Bandel. Taming the wild netfilter. Linux
Journal, 89:64, 66–68, 70, 72, September 2001.

[2] Mick Bauer. Paranoid penguin: Using iptables for local
security. Linux Journal, 100:??–??, August 2002.

[3] P. Gupta and N. McKeown. Algorithms for packet clas-
sification, 2001.

[4] Duncan Napier. IPTables/NetFilter – Linux’s next-
generation stateful packet filter. Sys Admin: The Jour-
nal for UNIX Systems Administrators, 10(12):8, 10, 12,
14, 16, December 2001.

[5] Bryan Pfaffenberger. Linux networking clearly ex-
plained. Academic Press, New York, NY, USA, 2001.

[6] R. W. Smith. Advanced Linux Networking. Addi-
son Wesley, June 2002.

[7] Robert L. (Robert Loren) Ziegler and Carl B. Constan-
tine. Linux firewalls. New Riders Publishing, Carmel,
IN, USA, second edition, 2002.

