
Pruning Interference and Ready Dependence
for Slicing Concurrent Java Programs?

Venkatesh Prasad Ranganath and John Hatcliff

Department of Computing and Information Sciences, Kansas State University,
234 Nichols Hall, Manhattan KS, 66506, USA

{rvprasad,hatcliff}@cis.ksu.edu

Abstract. In this paper, we show how previous work on escape analysis
can be adapted and extended to yield a static analysis that is efficient
yet effective for reducing the number of interference dependence edges
considered while slicing concurrent Java programs. The key idea is to
statically detect situations where run-time heap objects are reachable
from a single thread and use it to prune spurious interference dependence
edges. We also show how this analysis can be extended to reduce the
number of ready dependence edges – dependences that capture indefinite
delay due to Java synchronization constructs.
The analysis we describe has been implemented in the Bandera[9] slicer
which is being applied to reduce the size of software models for model-
checking. Using this implementation, we give experimental results that
demonstrate the effectiveness of our approach. We believe leveraging es-
cape information in the manner we describe is a crucial element in scaling
slicing techniques to larger concurrent object-oriented programs.

1 Introduction

Program slicing has proven to be effective for program debugging, understand-
ing, and specialization. Despite the widespread use of concurrent object-oriented
languages such as Java and C#, the amount of work on relevant techniques for
slicing programs in these languages is much less than the amount of work devoted
to slicing sequential programs written in languages such as C. Most of the algo-
rithms [32] proposed for slicing concurrent programs extend the structures and
algorithms proposed for slicing sequential programs. Results from such exten-
sions are often overly pessimistic as they adapt a rather simplified approach to
deal with the additional dependencies ([13]) that arise in concurrent programs.

Interference dependence [18] is one such additional dependence that is similar
to the notion of data dependence that exists in conventional slicing for sequential
programs. In a sequential program, a statement s2 is said to be data dependent
on another statement s1 if a definition to (i.e., an assignment to) variable x at s1

? This work was supported in part by the U.S. Army Research Office
(DAAD190110564), by DARPA/IXO’s PCES program (AFRL Contract F33615-
00-C-3044), and by Rockwell-Collins and by Intel Corporation (Grant 11462).

reaches a use of x in s2 along a particular program control-flow path. In concur-
rent program slicing, an interference dependence may be explained intuitively as
a data dependence between s1 and s2 where these statements occur in different
threads, i.e., thread interleaving allows a definition of x at s1 to be used at s2.
Just as with data dependences, calculation of interference dependences becomes
complicated when reaching definitions associated with heap-allocated objects are
considered. In particular, precise alias information is required to avoid retreating
back to safe but very conservative definitions such as “any definition of a field
f of any object o1 of type T can reach any use of field f of any object o2 of the
same type T”.

Efficient calculation of precise interference information for concurrent OO
programs is challenging because it is difficult to statically reason about all the
possible run-time thread interleavings. Existing approaches for Java slicing tend
to fall into two categories: approaches that use exponential symbolic execution
to approximate interleavings [5, 18, 24] and approaches that avoid the high cost
of the symbolic execution technique by making very conservative assumptions
[13, 32].

The techniques that we propose in this paper are based on two well-studied
forms of static analysis for concurrent Java – escape analysis and race detection
analysis – that can be leveraged to improve the precision of interference depen-
dence, hence, the resulting program slice. Our approach is much more precise
than the conservative approaches mentioned above and much less expensive than
the symbolic execution-based techniques.

Until now, as far as we know, there has been no work reporting the use of
these analyses to improve the precision of dependence information required to
slice concurrent OO programs. In fact, the recent work by Krinke ([19]) that
uses symbolic execution to prune interference edges does not consider dynam-
ically created objects or pointers, and so our approach can also be viewed as
complementary to such techniques.

The contributions of this paper are as follows.

– We adapt and extend the escape analysis by Ruf [28] (which was targeted to
removal of unnecessary synchronization) to yield more precise information
about sharing and aliasing of objects across threads by changing the points
at which flow data is merged and by adding additional symbolic entities to
track specific def/use and wait/notify relationships.

– We describe how to apply the results of escape analysis to improve the
precision of calculation of interference and ready dependences in the context
of program slicing.

– We report experimental results from applying our techniques to Java Grande
benchmarks that demonstrate their effectiveness in removing spurious depen-
dence edges.

The following section defines the notions of interference and ready depen-
dence used in slicing concurrent programs, and it presents an example to illus-
trate the reductions that can be achieved by using escape analysis. Section 3
presents our modified version of Ruf’s escape analysis. Section 4 explains how

the information from our analysis can be used to drive transformations such as
program slicing. Section 5 presents the results of our experiments. Section 6 de-
scribes related work, and Section 7 concludes and describes possible extensions
to our approach.

2 Background

2.1 Data flow across threads in Java

Interference dependences can only arise when an update is made to a data item
that is “shared” between two or more threads. Thus, we begin by considering how
an object can be shared between threads using the simple program of Example 1
(ignore the mainAlt method for now). Java[12] supports threads via Thread
objects.1 The example program has three threads: the main thread which runs
the method main in class Home, a thread associated with an instance of Man,
and a thread associated with an instance of Wife. In Java, a thread becomes
“alive” when java.lang.Thread.start() is dispatched on the associated thread
object (e.g., the calls to start at line 30 and line 31). This dispatch results in
the invocation of run() on the receiver of the start() method (e.g., the call to
start() at line 31 causes the newly activated thread to invoke the run method
at line 16).

Let us now consider all possible ways in which a heap object o created by a
thread t can be communicated to a newly created thread t′. Java disallows any
parameters for the run() or start() methods of java.lang.Thread. Thus, the
only way to provide data to the run method of t′ is to have it be reachable2

from the this variable of the Thread instance for t′ or to have it be reachable
from static fields (in essence, global variables). Note also that there are only
two ways to assign data/values to instance fields of an object. One is via direct
assignments to reachable fields. The other is via invocation of an instance method
in which the fields reachable via the receiver will be assigned data reachable
from the arguments to the method. For instance, in the example program, the
main thread communicates the savings account object to the run() method of
the Wife thread by invoking the constructor of Wife with the account as a
parameter; the constructor then assigns the account object to the savings field
reachable from this. The main properties of this example that we will use to
illustrate object escape properties are: (a) an escaping savings account object
ends up being shared between Man and Wife instances and (b) a new Acct object
is created and used only in the run() method for Wife.

1 The term thread indicates an executing entity and the term thread object indicates
an instance of java.lang.Thread or any of it’s subclasses.

2 From here on, “reachable” will signify reachability based on following references held
in accessible fields.

1 class Acct {
2 protected int balance;
3 Acct() {
4 balance = 100;
5 }
6 } // End of class Acct
7

8 class Man extends Thread {
9 protected Acct savings;

10 protected Acct checking;
11 Man(Acct act) {
12 this.savings = act;
13 checking = new Acct();
14 int i = checking.balance;
15 }
16 public void run() {
17 savings.balance += 20;
18 synchronized(savings) {
19 savings. notify ();
20 }
21 checking.balance += 10;
22 }
23 } // End of class Man
24

25 public class Home {
26 public static void main(String[] s) {
27 Acct savings = new Acct();
28 Wife wife = new Wife(savings);
29 Man man = new Man(savings);
30 wife. start ();
31 man.start();
32 }
33

34 public static void mainAlt(String[] s) {
35 Acct savings = new Acct();
36 Thread wife, man;
37 for(int i = 2; i <= 3; i++)
38 if (i % 2 == 0)
39 wife = new Wife(savings);
40 if (i % 3 == 0)
41 man = new Man(savings);
42 wife. start ();
43 man.start();
44 }
45 } // End of class Home
46

47 class Wife extends Thread {
48 protected Acct savings;
49 protected Acct checking;
50 Wife(Acct act) {
51 this.savings = act;
52 checking = new Acct();
53 }
54 public void run() {
55 Acct newAcct = new Acct();
56 synchronized(savings) {
57 savings.wait ();
58 }
59 savings.balance −= 20;
60 synchronized(checking) {
61 checking.wait();
62 }
63 checking.balance −= 10;
64 newAcct.balance += 10;
65 }
66 } // End of class Wife

Fig. 1: A simple Java program illustrating object sharing between threads.

2.2 Interference Dependence

Definition 1. Let P be a program, o be an object with field f , and t1 and t2
be threads such that t1 6= t2. If there exists an execution trace of P such that
f is written at trace state sm by a statement at program point m executed by
t1 and read at state sn by a statement at program point n executed by t2 (with
sn occurring after sm) and no write to o.f occurs between sm and sn, then n is
interference dependent on m.

Given the above definition of interference dependence in terms of traces of
concurrent programs, it is obvious that precise and efficient calculation of in-
terference edges is infeasible. Therefore, one must generally fall back to safe
approximations that are cheaper to compute such as the following:

If a field f of object o is being written and read at program points m and
n, respectively, and m and n occur in different threads tm and tn, then
n is interference dependent on m

By referring to the example of Figure 1, we now explain (1) how interference
edges are detected in previous presentations of slicing [13, 32], (2) how our modi-
fication of Ruf’s escape analysis can be used to safely reduce the number of edges,
and (3) how simple extensions to track aliasing gives even further reduction.

Type-based approach: A simple approach is to classify field read/writes as
interfering if m represents a read of an expression such as a1.f, n is a write
to a2.f, and a1.f and a2.f have identical signature (i.e., both instances of f
represent the same field of the same class – note that field resolution in Java
is based on the static type of the primary3 and not it’s dynamic type) then m
is interference dependent on n. While this approximation of interference depen-
dence is easy to compute, it includes inference edges even for objects that are
not shared. Hence, it leads to spurious interference dependence edges such as
ones between line 21 and both line 59 and line 64.

Leveraging escape analysis: The definition of interference dependence implies
that objects that induce interference dependences must be accessible from more
than one thread at run-time. Escape analyses (e.g., Ruf’s) can determine when
objects are accessed by at most one thread, and these objects cannot participate
in an interference dependence. In Figure 1, typical escape analyses will mark
newAcct in Wife.run() as holding only thread-local objects. This allows the
elimination of a spurious edge between line 21 and line 64 generated in the naive
method. However, Ruf’s escape analysis would mark checking and savings in
Wife.run() as escaping since they are both accessed in the constructor for Wife
which is executed by the main thread – not the wife thread. This means that
the edge between line 21 and line 59 cannot be removed.

Leveraging alias information: Alias information can be used to prune edges
relating checking.balance and saving.balance. For example, the knowledge
that the primaries in line 21 and line 59 are not aliases can be used to remove
the interference edges between these lines. One of our several modifications that
we give to Ruf’s analysis is an extension that uses what we call share entities to
detect such information (see Section 4.1).

2.3 Ready Dependence

In simple words, a statement m is ready-dependent on a statement n if the ex-
ecution of m can be infinitely delayed due to the fact that n fails to complete
its execution and n is a synchronization related construct. This notion of de-
pendence is relevant when using slicing to generate reduced models for checking
temporal properties (specifically, liveness properties) [13]. We shall use notify()
to denote both notify() and notifyAll() methods in java.lang.Object and
wait() to denote all overloaded versions of wait() in java.lang.Object.

Definition 2. If m and n are program points in a given Java program then m
is ready dependent on n if any one of the following is true.

1. m and n occur in the same thread and m is reachable from n and n is an
entermonitor.

2. m and n occur in the same thread and m is reachable from n and n is an
invocation of wait().

3 In a.f and a[b], a is referred to as the primary.

3. m and n occur in different threads and m is an entermonitor statement on
object o and n is an exitmonitor statement on object o.

4. m and n occur in different threads and n is an invocation of notify() on
object o and m is an invocation of wait on object o.

Condition 1 and 2 are uninteresting for us as they can be dealt with a simple
sequential control flow graph. Condition 3 and 4 provide interesting cases as
they span across threads. From here on, by ’ready dependence’ we mean ’ready
dependence resulting from conditions 3 and 4 only’. The techniques we consider
for pruning interference dependences can also be used to prune ready dependence
(e.g., if an object o is not shared then it cannot generate a ready dependence
via conditions 3 or 4).

In Figure 1, a naive type-based ready dependence calculation as implemented
previously in Bandera[9] will report ready dependence edges between line 19
and both line 57 and line 61. However, the latter edge is a spurious one which
cannot be eliminated by escape information. However, it can eliminated using
alias information computed using what we call ready entities as described in
Section 3.

3 Details of the Analysis

Although there are numerous escape analyses, we choose to work with Ruf’s
escape analysis because it is relatively easy to understand, straightforward to
implement, scales well, and its particular strategy for identifying thread-local
data yields more precise results than several other approaches (see [28] for de-
tails).

Our goal is to create an analysis that calculates information that will enable
the following questions to be answered.

– Given a field/array read expression m and a field/array write expression n,
is m interference dependent on n?

– Given a entermonitor statement m and a exitmonitor statement n, is m
ready dependent on n under condition 3 in the definition of ready depen-
dence?

– Given a wait() call-site m and a notify() call site n, is m ready dependent
on n under condition 4 in the definition of ready dependence?

The analysis proceeds in three phases. The first phase collecting information
about the system to be used during phase two and three. In phase two, intra-
procedural analysis happens along with bottom-up(in the call graph) interproce-
dural analysis in an interleaved fashion. In phase three, the information from the
callers is propagated to the callees. After presenting the details of the analysis,
we summarize how it differs from Ruf’s original version.

3.1 Alias sets and contexts

Each program variable v is associated with an alias set – an abstract object
that summarizes properties of concrete objects that may be referenced by v at

run-time. An alias set for v is either ⊥ (indicating that only null reference values
are assigned to v at run-time, or that v is of non-reference type) or a tuple of
properties as follows

aliasSet ::= ⊥ | 〈global, fieldMap, accessed, escapes, waits, notifies, readyEntities〉.

The elements of the tuples are described below.

global is a boolean that when true indicates that the abstract object is reachable
via static fields.

fieldMap associates each field f of the abstract object with an alias set ab-
stracting the concrete objects that may be referenced by f at run-time, i.e.,
it maps fully quantified field names to alias sets. $ELT is a special field used
to represent all cells in a dimension of an array.

accessed is a boolean that when true indicates that the abstract object was read
or written.

escapes is a boolean that when true indicates that the abstract object is accessed
by more than one thread.

waits is a boolean that when true indicates that the abstract object received a
wait().

notifies is a boolean value that when true indicates that the abstract object
received a notify() or notifyAll().

readyEntities is a set of entities drawn from a domain E. It forms a finer partition
than the alias sets. This entity set indicates the participation of the objects
represented by the alias set in wait/notify relationship (leading to a ready
dependence). Specifically, if the intersection of the ready entities for some
alias sets a1 bound to variable v1 and a2 bound to v2 is non-empty, then
invocations of wait/notify on v1 and v2 can lead to a ready dependence.

As the analysis manipulates alias sets, certain invariants representing consis-
tency properties must be enforced. If an alias set has global=true, then all alias
sets reachable via fieldMap should have global=true (indicating that if an object
o is reachable from more than one thread, then the objects referenced by o’s fields
are as well). If global = true, then escapes = true. Finally, if readyEntities 6= ∅
then escapes = true.

Upon creation of an alias set, all boolean elements of the alias set are set
to false except for accessed which is set to true 4 readyEntities is set to ∅ and
the fieldMap is empty. Alias sets of fields are created on demand. Alias sets are
operated on by clone, unify, and unifyAtStart operations.

The clone operation creates a new alias set isomorphic to the existing one.
As a space optimization, when cloning alias sets marked as global, a reference to
the existing alias set is returned. In addition, the elements of readyEntities are
always shared when cloning.

4 The mere existence of the alias set can be substituted for the truth value of accessed.
Hence, this field is redundant, however, it is used as it makes explanation of the
analysis more intuitive.

Domain
v ∈ V set of variables
f ∈ F set of fields

m, p ∈ M set of methods
a, r, e ∈ A set of alias sets

mc, sc ∈ C set of alias contexts
s ∈ CS set of call sites

Mappings
AS : V → A alias set lookup

MC : M → C method context lookup
CALLEES : M × V → ℘(M) callee lookup

SCC : M × ℘(M) SCC lookup
MULTI EXEC : CS → {true, false} multiply executed call-site lookup

Rules
statement action
v1 = (t)v2 unify(AS(v1), AS(v2))

v1 = v2.f unify(AS(v1), AS(v2).fieldMap(f))
v2.f = v1

v1[] = v2 unify(AS(v1).fieldMap($ELT), AS(v2))
v = v1[]

return v unify(AS(v), AS(r))

throw t unify(AS(t), AS(e))

vr = vt.m(a1, . . . an) let sc = 〈AS(vt), 〈AS(a1), . . . AS(an)〉, AS(vr), e〉
∀p ∈ CALLEES(m, vt).

let mc = MC(p) and unifier = unify
if m = java.lang.Thread.start then

unifier = unifyStart
if SCC(m) = SCC(p) then

unifier(sc, mc)
else

unifier(sc, newInstance(mc))
if MULTI EXEC(vt.m(a1, . . . an)) and

m = java.lang.Thread.start then
unifier(sc, sc)

Fig. 2: Domains, mappings and rules used in intra-procedural analysis. In the
rules, m represents the method in which the rules are being applied and e is the
alias set corresponding to the exceptions thrown in m.

The unify operation merges the information represented by elements of the
tuple (except for escapes and readyEntities as explained below). The unification
of the boolean and map values is defined as the join under the boolean lattice
(with true as the top element) and function lattice, respectively. The domain of
the resulting fieldMaps is the union of the domains of the maps being unified.
The alias sets of the field names occurring in the domains of both the maps are
(recursively) unified, as well.

The escapes and readyEntities elements represent information that spans
threads, and thus these elements should only be merged at thread start sites. The
unifyAtStart operation implements this distinct form of merging. Intuitively, an
object should be considered escaping when it is accessed in more than one thread.
To capture this, the unification of the escapes element is defined as the join under
the boolean lattice when either one of the arguments is true (i.e., if objects are

arg1.accessed arg2.accessed result.escapes
false false false
false true false
true false false
true true true

Table 1: Rules to unify escapes under unifyAtStart operation when arg1.escapes
= arg2.escapes = false.

already marked escaping in at least one of the alias sets being merged, then they
should continue to be considered as escaping). However, when the escapes field
in both the alias sets being unified is false, the value of escapes in the merged
alias set is given by Table 1 (intuitively, the arguments to unifyAtStart are alias
sets coming from two different threads, and the resulting merged alias set should
only be marked as escaping (i.e., shared) if accessed is true from both threads).

The result of unifying readyEntities is determined by the waits and notifies
elements of the alias sets being unified. The readyEntities of the alias sets being
unified is modified only when waits element of one alias set is true and the
notifies element of the other alias set is true. In this case, the readyEntities
set is modified by injecting a fresh entity into the readyEntities of the alias set
occurring in the site context (introduced below). In all other cases, readyEntities
set is unmodified in the result of unification.

An alias context is an aggregate data structure used to represent the flow of
information into and out of a method. An alias context is a tuple of alias sets
corresponding to this, method arguments (a1, a2, a3, . . .), return value(r), and
the exceptions thrown by the method (e).

aliasContext ::= 〈this, 〈a1, a2, a3, . . .〉, r, e〉
Like alias sets, alias contexts support clone and unify operations. clone cre-

ates a new alias context isomorphic to the existing one. The unify operation is a
point-wise extension of alias set unification to alias contexts tuples. For the sake
of simplicity, we use the the term method context to indicate the alias context
of a method at its entry point and the term site context to indicate the alias
context at a call-site.

Both alias set and alias context are implemented as union-find data structures
[29].

3.2 Phase One

The analysis begins by forming abstract representatives for groups of one or more
concrete threads. The abstract representative of a group of threads is a call graph
rooted at the start site of each thread. Thus, there is an abstract thread for each
start site, and this abstract thread represents all concrete threads started at
that site. The complete collection of such call graphs for a program is called a
threaded call graph.

The threaded call-graph is constructed as follows. First, a value-flow-based
framework is used to construct a traditional call graph [27]. Strongly-connected
components (SCC) of the call graph are calculated. This is followed by identifying
call-sites which invoke java.lang.Thread.start(). If any of these call-sites can
be executed more than once during the life-time of the system, (i.e., if they occur
in a method called more than once, if the method occurs in a SCC of size greater
than one, or the call-site is enclosed in a loop), then the associated call-graph is
marked as possibly representing more than one concrete thread. The intuition
is that if an object is thread-local to an abstract thread representing multiple
concrete threads then one must assume that it can be shared between multiple
concrete threads created at the same start site – the analysis cannot distinguish
between threads started at the same start-call site.

3.3 Phase Two

This phase starts off by creating alias sets with global=true for static fields. It
then performs an interprocedural analysis by processing each method in each
SCC in a bottom-up fashion on the call graph. The processing of the meth-
ods includes the creating of the method context and performing flow-insensitive
intra-procedural analysis on the method as described below. The effect of this
phase is to accumulate information about object accesses in the call-graph of a
particular thread t, bubble this information up, and expose it at the start call
site for a particular thread.

Intra-procedural analysis Figure 2 presents the rules for processing the state-
ments of a method during intra-procedural analysis. These rules ensure that the
aliasing of data inside the method is represented appropriately in method con-
texts and global alias sets. In a method, all statements not containing calls to
start() are processed before processing statements containing calls to start()
to capture the effect of post-start() site data accesses at start() sites. During
processing, if an alias set for a variable does not exist, a new instance is created.

The interesting rule is the one for method invocation. At a call-site, if the
caller and the callee exist in the different strongly connected components in the
call graph then the method context of the callee is cloned and the clone is unified
with the site context to achieve context sensitivity. When both caller and callee
occur in the same SCC, the method context of the callee is unified with the site
context to achieve an effect similar to simple fixed-point iteration.

The rule for method invocation varies the alias set unifier depending on the
method being invoked. For method calls other than start(), the same thread
executes the caller and the callee (thus unify is used as the unifier operation).
For start(), different threads execute the caller and the callee, and thus es-
capes in the alias sets needs to be updated (thus unifyAtStart is used as the
unifier operation). As readyEntities depend on waits and notifies of alias sets
representing values in different threads, they are also updated via unifyAtStart.
If the call-site invokes start() and is determined to be executed multiple times,

the site context is unified with itself via unifyStart to account for the effect of
multiple executions as described in Section 3.7.

3.4 Phase Three

In this phase, the call hierarchy is traversed in a top-down fashion. This en-
sures that any changes to the information accumulated by the parent thread are
exposed to children threads.

Call-sites are the only points of processing in this phase. At each call-site
encountered in the top-down traversal of the call graph, each alias set in each
method context is visited recursively. On visiting an alias set of a method context,
the escapes element of the alias set is joined with the escapes element of the
alias set’s counterpart in the site context. As for readyEntities, the values are
not joined (which would destroy context sensitivity), but rather values from the
site context alias sets are injected into the readyEntities of method context alias
sets.

3.5 A comparison to Ruf’s analysis

We now summarize how our escape analysis differs from the original version
given by Ruf.

– Ruf’s analysis is geared towards the removal of unnecessary synchroniza-
tion operations. Hence, Ruf’s alias sets have elements synchronized and
syncThreads to capture information indicating whether or not objects rep-
resented by the alias set are used in synchronization and the number of
threads that synchronize on the objects, respectively. However, the alias sets
in our analysis have other fields tailored to calculate escape information and
dependence information.

– Unlike Ruf’s analysis, we have used two versions of unification (unify and
unifyAtStart), and the form that is used at start() call-sites alters the
escape information while the other form does not.

– The unification rules in Ruf’s analysis mark an alias set as synchronized only
at synchronization expressions. However, in our analysis, if a variable occurs
in an access expression then the associated alias set is marked as accessed
and the decision to mark the alias set as escaping is deferred to our new
unifyAtStart unification operation that is used at start() call-sites.

3.6 Example

When the analysis is applied to the program of Figure 1, Phase 1 is uninteresting
since there aren’t any start() call sites that will be executed multiple times in
this simple program.

Phase 2 starts by processing Acct.Acct(), Wife.Wife(Acct), Man.Man(Acct),
Wife.run(), Man.run(), and Home.main(). On processing Acct.Acct(), a method

context 〈α0, 〈〉, α0,⊥〉5 is created where and α0 = 〈false, 〈〉, false, false, false, false, ∅〉
where α0 is a newly created alias set6. Note that the accessed element of αo is
set to false as a result of WHB optimization.

The method context at the start of the processing of Wife.Wife(Acct) will
be 〈α1, 〈α2〉, α1,⊥〉 in which α1 and α2 are newly created alias sets. After process-
ing the method, α1 = 〈false, {savings → α2, checking → α3}, false, false, false, false, ∅〉
where α3 is a newly created alias set and α2.accessed = false. A similar method
context 〈α4, 〈α5〉, α4,⊥〉 occurs for Man.Man(Acct) where α4 = 〈false, {savings →
α5, checking → α6}, false, false, false, false, ∅〉.

Upon processing Wife.run(), it’s method context will be 〈α7, 〈〉,⊥,⊥〉 where
α7 = 〈false, {savings → α8, checking → α9}, true, false, false, false, ∅〉, α8/9 =
〈false, 〈〉, true, false, true, false, ∅〉. The local variable newAcct in Wife.run() is
associated with α10, however, this alias set is not visible from the method context.
We omit the details of these alias sets from here on due to space constraints. A
similar method context occurs for Man.run() except that the notifies element in
the alias sets of savings and checking fields is set to true and false, respectively.

The processing of the line 27 creates a new alias set, α10, associated with
the local variable savings. The processing of line 28 associates wife with α11 =
〈false, {savings → α10, checkings → α12}, true, false, false, false, ∅〉. The process-
ing of line 30 will unify 〈α11, 〈〉,⊥,⊥〉 with an isomorphic copy of the method
context of Wife.run(). This will result in accessed and wait in α10 being set to
true due to unification with an isomorphic copy of α8. By the unification rules
in Table 1, escapes element of α10 is set to true.

The processing of line 31 will unify α10 with an isomorphic copy in which
accessed is set to true, hence, based on the unification rules at start() call-
sites α10.escapes is set to true. Also, as notifies will be true on the isomorphic
copy, by the unification rule for readyEntities, a new object is inserted into
α10.readyEntities indicating that wait() and notify() on saving should be
considered for ready dependence.

3.7 Allocation sites executed multiple times

Call-sites and allocation sites that are executed multiple times pose a major
obstacle for static analyses such as escape analysis.

For example, if Home.mainAlt() was considered as the entry point to the
system, then the abstract thread corresponding to the thread allocation site in
the loop at line 37 in Figure 1 represents more than one run-time thread object.
In such situations and also when start() call-sites are executed multiple times,
Ruf’s analysis will provide pessimistic information by marking all reachable alias
set from such site contexts as shared.

However, upon unrolling the loop once and analyzing using the rules given
earlier, each alias set reachable from the site context will be unified with itself.
5 The alias set, α0, indicates that the constructor returns a value to signify the creation

of the object and the invocation of the constructor on it.
6 We use the term newly created alias set to indicate an alias set unaltered after

creation.

Hence, in our analysis, we use this observation in Phase 3 to unify the site
context with itself via unifyStart before propagating the information across a
start() call-site that is executed multiple times (note that due to the definition
of unification on escape and ready information, unifying an alias set with itself
does not necessarily correspond to the identity function). This captures the effect
of the loop on the flow of information. This is not done at other call-sites as
they all occur in the same thread, hence, the optimization cannot affect escape
information.

3.8 Complexity

The algorithm visits each node in the call graph twice and at each node it
visits the statements of the methods once. The worst case processing time for
unification is dictated by the recursive nature of the data structures used in the
program, in particular when propagating information across method boundaries.
Hence, the worst case time complexity for the analysis should be in the order of
O(N + S) where N is the number of nodes in the call graph and S is the total
number of statements in the system if time complexity of object construction is
considered as a constant.

New instances of alias sets are created at method call sites. Hence, a data
structure with m fields being passed across n call sites at each level of a call
chain of length p can lead to alias sets whose accumulated size is in the order
of O(m ∗ np). However, in reality, large data structures are recursive in nature
rather than a single big chunk. Hence, reaching worst case space complexity
should be a rarity.

4 Transformations

We now describe how the information computed by our escape analysis can be
used in slicing and other applications.

Our slicer implementation proceeds in two phases: an initial phase collects
various dependence information, and the second phase follows the dependence
edges to calculate the program slice. As we have indicated, the results of our anal-
ysis can be used to prune interference dependence edges between non-escaping
primaries. Also, ready dependence edges can be pruned when the readyEntities
of the alias sets corresponding to the receivers of wait() and notify() are
disjoint.

An interesting by-product of this analysis is detection of buggy wait()s and
unnecessary notify() calls in the system. From the semantics of wait() and
notify() it can be inferred that the receiver object should be shared across
threads for these calls to be safe and useful, respectively. Hence, if waits and/or
notifies element of an alias set are set to true and escapes is set to false, then
the corresponding invocations can be concluded as buggy and unnecessary. In
the former case, the developer can use this information to make the program

safe by avoiding infinite waits. In the latter case, the corresponding invocations
of notify() can be removed to improve run-time performance.

As with other escape analyses, we can use the result of our analysis to remove
unnecessary synchronization and stack allocate objects. Both optimizations can
be triggered when the escapes element of the alias set associated with the par-
ticipating variable is set to false.

4.1 Increased precision using share entities

Detection of interference based on escape information is still pessimistic as it
may be the case that two field access expression may have the same signature
but may correspond to different run-time primaries. This can be remedied to
some degree by extending the alias set with the following three elements.

read is a boolean that when true indicates that the value was read,
written is a boolean that when true indicates that the value was written, and
shareEntities is a set of object entities that represents objects which participate

in the interference dependence. It is similar to readyEntities in meaning.From
the nature of interference dependence, shareEntities 6= ∅ ⇒ escapes = true.

Similar to the unification rule of readyEntities, the shareEntities of the alias
sets being unified is modified only when read element of one alias set is true and
the written element of the other alias set is true. In this case, the shareEntities
set is modified by injecting a fresh entity into the shareEntities of the alias set
occurring in the site context. In all other cases, shareEntities set is unmodified
in the result of unification.

With this information, access expressions can be considered for interference
dependence only when the shareEntities of their corresponding alias sets are not
disjoint. This information can also be used to improve the precision of ready
dependence based on condition three of Definition 2.

5 Experimental Results

We have implemented all variants of the analysis described in the previous sec-
tions in the the Indus Slicer component of the Bandera tool set [16]. Soot [30]
was used as the intermediate representation. Unlike Ruf’s analysis, we use local
variable splitting transformation of Soot instead of SSA representation to ensure
that variables are defined only once.

We summarize the results of applying the analysis to the Java Grande[17]
benchmark suite. Java Grande provides three classes of applications: low-level
operations, kernels, and large scale applications. In our experiments, we consid-
ered each method with the signature public static void main(String[]) as
representing a possible entry point into the system.

Table 2 presents the results of applying the previously described escape anal-
ysis followed by the generation of interference dependence edges. We not give
timing data in the table, since all the runs completed in less than 3 seconds

Reachable Interference edges based on
Program Names methods Type Escape info Entity info

JGFBarrierBench 117 117 29 29

JGFForkJoinBench 121 1929 155 16

JGFSyncBench 87 122 36 36

JGFCryptBenchSizeA 110 1228 180 58

JGFLUFactBenchSizeA 139 3624 181 24

JGFSORBenchSizeA 143 2318 162 23

JGFSeriesBenchSizeA 136 2138 157 8

JGFSparseMatmultBenchSizeA 144 3833 183 14

JGFMolDynBenchSizeA 146 8026 373 209

JGFMonteCarloBenchSizeA 394 5245 309 11

JGFRayTracerBenchSizeA 157 1330 171 166

Table 2: Results of analysis and interference dependence generation applied to Java
Grande benchmarks.

on 2.5GHz machine with 2GBs of RAM using Sun JDK1.4.2 with a maximum
heap-size of 1GB. Note that this timing data does not include the cost of pars-
ing, basic control-flow analysis and call-graph construction; the call-graph and
threaded-graph construction complete in less than 100 milli-seconds for each
example.

The “Type” column in the table contains the baseline data for our experi-
ments – it shows the number of interference edges created based on the simple
field signature and value type-compatibility approach described in Section 2.2.
The “Escape Info” column shows the number of interference edges detected us-
ing escape analysis without share entities optimization. These results indicate an
order of magnitude reduction of the simple previous approach. The “Entity Info”
column shows the number of interference edges detected using escape analysis
along with share entities optimization of Section 4.1. These results indicate that
the simple extension of using entities to form relationships between read/writes
can dramatically improve the precision of the analysis with marginal increase
in time and space. We believe that this optimization can be incorporated in
other variants of escape analysis to obtain more precise results. Given the low
cost (time) of the analysis, the results provide convincing evidence that escape
information should be leveraged in slicing concurrent object-oriented programs.

6 Related Work

Numerous escape analyses have been proposed to calculate if an object escapes
(i.e., can be accessed outside of) a particular method m and/or thread t. Ruf’s
equivalence-class-based analysis [28] for calculating if an object is only accessed
in a single thread and Choi et.al.’s fixed-point-based analysis [6] to calculate if an
object escapes a method or a thread are two well-known escape analyses. Aldrich
et.al. [1], Blanchet [2], and Bogda and Hölzle [3] also propose similar analyses

to improve runtime performance of Java programs by removing unnecessary
synchronization and to enable stack allocation of objects.

Similarly, numerous data-race detection algorithms have been proposed. Choi
et.al. propose an on-the-fly technique[7] to detect data-race conditions (i.e., situa-
tions where accesses to shared objects are not protected by locks). This requires
instrumentation and various optimizations such as static data-race detection
analysis as a pre-phase to the dynamic analysis [8]. Flanagan and Freund pro-
posed a annotated type-based technique [10] along with an annotation inference
mechanism which is similar to escape analysis [11] for the purpose of detecting
race-condition by ensuring objects annotated/marked as thread-local are indeed
thread-local (i.e., through the entire execution, they are only reachable from a
particular thread t). A similar sort of analysis presented by Boyapati and Rinard
[4] proposes extensions to Concurrent Java [10] and uses the auxiliary informa-
tion to deduce escape information.

There is a wide body of literature on slicing sequential programs, beginning
with Weiser’s original paper on slicing [31]. Horwitz et.al[15] proposed a interpro-
cedural program slicing algorithm which has been extended by others to handle
various features such as exceptions and unconditional jumps. There has been
effort ([20, 14, 22, 21]) in addressing issues involved in slicing program written in
object oriented languages with features such as pointers and/or references.

In the realm of slicing concurrent programs, Ramalingam[26] proved the
calculation of context-sensitive synchronization-sensitive program slices is un-
decidable. Later on, Müller-Olm[23] provided tighter lower bounds for slicing
synchronization-free programs in the absence of procedures and loops.

Krinke[18] considered intra-procedural slicing for a simple while-language
with co-begin/co-end statements and proposed a form of symbolic execution
to prune interference dependences starting from the observation that consider-
ing interference dependences to be transitive is overly conservative. Nanda[24]
proposed algorithms that he described as context sensitive for slicing concurrent
programs. Recently, Krinke[19] proposed a context-sensitive algorithm for slic-
ing concurrent programs. However, these algorithms rely on symbolic execution
and/or may-happen-in-parallel(MHP) [1, 25] information to prune interference
dependences. However, in the absence of synchronization operations, the use
of MHP algorithms will not provide large reductions in the dependences as it
is harder to detect instruction execution ordering. Also, these techniques does
not address pruning of interference dependences arising from language features
such as dynamically created objects and threads. As the justification for pruning
interference dependences are independent (thread locality of objects vs instruc-
tion execution ordering), orthogonal pruning techniques such as ours and those
mentioned above can be combined to obtain further reductions.

7 Conclusion

We have demonstrated how an existing escape analysis can be adapted and ex-
tended to produce information that is useful for reducing the number of edges

in dependence graphs used in slicing concurrent Java programs. In addition,
the simple addition of what we called entity information to the analysis yields
dramatic improvement in precision with very little cost. We believe that lever-
aging escape information in this way is absolutely necessary for scaling slicing
of concurrent object-oriented programs to larger code bases.

References

1. J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggers. Static analyses for elimi-
nating unnecessary synchronization from java programs. In Proceedings of Static
Analysis Symposium (SAS’99), pages 19–38, 1999.

2. B. Blanchet. Escape analysis for object-oriented languages: application to Java.
ACM SIGPLAN Notices, 34(10):20–34, 1999.

3. J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java. ACM
SIGPLAN Notices, 34(10):35–46, 1999.

4. C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In Proceedings of 16th Annual Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’01), Tampa Bay, FL, USA,
Oct 2001.

5. Z. Chen and X. Baowen. Slicing concurrent java programs. SIGPLAN Notices,
36(4):41–47, April 2001.

6. J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Escape
analysis for object oriented languages. application to Java. In Proceedings of Con-
ference on Object-Oriented Systems, Languages and Applications (OOPSLA’99),
volume 34(10) of ACM SIGPLAN Notices, pages 1–19, Denver, CO, USA, Oct
1999. ACM.

7. J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Ef-
ficient and precise datarace detection for multithreaded object-oriented programs.
In Proceedings of ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02), June 2002.

8. J. D. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded
object-oriented programs. Technical report, IBM Research Division, Thomas J.
Watson Research Centre, 2001.

9. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Pro-
ceedings of the 22nd International Conference on Software Engineering (ICSE’00),
pages 439–448, June 2000.

10. C. Flanagan and S. N. Freund. Type-based race detection for Java. ACM SIG-
PLAN Notices, 35(5):219–232, 2000.

11. C. Flanagan and S. N. Freund. Detecting race conditions in large programs. In
Proceedings ACM SIGPLAN/SIGFSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE’01), 2001.

12. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, second edition, 2000.

13. J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal
study of slicing for multi-threaded programs with jvm concurrency primitives. In
Lecture Notes in Computer Science, Sept 1999. Proceedings on the 1999 Interna-
tional Symposium on Static Analysis (SAS’99).

14. S. Horwitz, P. Pfeiffer, and T. W. Reps. Dependence analysis for pointer variables.
In Proceedings of the ACM SIGPLAN ’89 Conference on Programming Language
Design and Implementation (PLDI’89), pages 28–40. ACM, 1989.

15. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation (PLDI’88), volume 23, pages 35–46, 1988.

16. Indus, a toolkit to customize and adapt java programs. This software is available
at http://indus.projects.cis.ksu.edu.

17. Java grande forum benchmark suite - thread version 1.0. This software is available
at http://www.epcc.ed.ac.uk/computing/research activities/java grande/. Java
Grande Benchmarking Project at Edinburgh Parallel Computing Centre.

18. J. Krinke. Static slicing of threaded programs. In Proceedings ACM SIG-
PLAN/SIGFSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE’98), pages 35–42, Montreal, Canada, June 1998. ACM SIGPLAN
Notices 33(7).

19. J. Krinke. Context-sensitive slicing of concurrent programs. In Proceedings of
ESEC/SIGSOFT FSE’03, 2003.

20. L. Larsen and M. J. Harrold. Slicing object-oriented software. In Proceedings
of International Conference on Software Engineering (ICSE’96), pages 495–505,
1996.

21. D. Liang and M. J. Harrold. Slicing objects using system dependence graphs.
In Proceedings of International Conference on Software Maintenance (ICSM’98),
pages 358–367, 1998.

22. P. Livadas and A. Rosenstein. Slicing in the presence of pointer variables, 1994.
23. M. Müller-Olm and H. Seidl. On optimal slicing of parallel programs. In

Proceedings of the thirty-third annual ACM symposium on Theory of computing
(STOC’01), pages 647 – 656, Hersonissos, Greece, 2001. ACM, ACM Press.

24. M. G. Nanda and S. Ramesh. Slicing concurrent programs. In Proceedings of Inter-
national Symposium on Software Testing and Analysis (ISSTA’00), pages 180–190,
2000.

25. G. Naumovich, G. Avrunin, and L. Clarke. An efficient algorithm for computing
MHP information for concurrent java programs. Technical Report UM-CS-1998-
044, University of Massachusetts, Amherst, October 1998.

26. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems (TOPLAS),
22(2):416 – 430, March 2000.

27. V. P. Ranganath. Object-flow analysis for optimizing finite-state models of java
software. Master’s thesis, Kansas State University, 2002.

28. E. Ruf. Effective synchronization removal for java. In Proceedings of the ACM
SIGPLAN ’00 Conference on Programming Language Design and Implementation
(PLDI’00), pages 203–213, June 2000.

29. A. V.Aho, R. Sethi, and J. D.Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley International, 1986.

30. R. Vallée-Rai. Soot: A Java Bytecode Optimization Framework. Master’s thesis,
School of Computer Science, McGill University, Montreal, Canada., Oct 2000.

31. M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

32. J. Zhao. Slicing concurrent Java programs. In Proceedings of the 7th IEEE Inter-
national Workshop on Program Comprehension (IWPC’99), pages 126–133, May
1999.

