

ONLINE FILE SHARING

by

PALANIAPPAN RAMANATHAN

B.E., Annamalai University, India, 2004

A REPORT

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2006

Approved by:

Major Professor

Daniel Andresen, Ph.D.

ABSTRACT

File sharing is one of the oldest applications of the internet. One way of sharing

files online is for a user to upload files to a common space on the web and others users

can download the files from the common web space.

The objective of this project was to design an online file sharing website where

users can upload files and other users can download them. To attain this objective an

AJAX enabled interactive user interface involving features like versioning control, RSS

syndication and extensive search capabilities was developed. To make the website more

user friendly, users were given two space-constrained visualizations of their file system

to view space occupied by the files and folders, and three AJAX based file management

system that works like browsing files on a desktop computer with drag and drop, context

menu functionalities etc.

This report discusses the implementation details of the website, and the

advantages of having different visualizations of the file system. This report also addresses

one frequently asked question regarding file storage; where to store the files, in database

as BLOBs or as files in the file system on web server? This report analyzes the time

needed to upload, download and search the files stored in both places and discusses the

advantages and disadvantages of both techniques in terms of performance, security,

integrity, maintenance and code complexity.

 i

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES.. v

ACKNOWLEDGEMENTS... vi

Chapter 1 - Introduction.. 1

1.1 Problem... 1

1.2 Objective... 1

1.3 Document Overview ... 2

Chapter 2 - Related Work ... 4

2.1 Online File Sharing... 4

2.2 File System Views .. 5

2.2.1 Space-constrained hierarchical visualization ... 5

2.2.1.1 Space-filling treemaps .. 5

2.2.1.2 Squarified treemaps .. 6

2.2.1.3 Cone trees.. 7

2.2.1.4 Information Cube .. 7

2.2.2 Traditional file system visualization.. 8

2.3 Database Vs File System .. 9

Chapter 3 - Implementation .. 10

3.1 Technologies ... 10

3.1.1 ASP.NET 2.0 / Microsoft Visual Studio 2005... 10

3.1.2 Microsoft SQL Server 2005... 11

3.1.3 AJAX / ATLAS & Web Services .. 11

3.1.4 XML / XSLT / XPATH ... 12

3.1.5 JavaScript / Prototype library... 12

3.2 System Architecture.. 12

3.3 Database Design ... 15

3.4 Functionalities... 16

3.4.1 User Registration ... 17

 ii

3.4.2 Upload Files ... 17

3.4.3 Share Files.. 17

3.4.4 Version Control.. 18

3.4.5 RSS Feeds .. 18

3.4.6 Search... 18

3.4.7 File management / File system visualization ... 19

3.5 Design ... 19

3.5.1 Use case diagram ... 19

3.5.2 Navigation flow diagram ... 20

3.5.3 Class diagram... 21

3.6 Testing .. 24

3.6.1 ANTS Load Test .. 24

3.7 Screen Shots.. 26

Chapter 4 - File System Views ... 28

4.1 Space-constrained visualization.. 28

4.1.1 Treemap visualization .. 29

4.1.1.1 Features ... 30

4.1.1.2 Limitations .. 31

4.1.1.3 Problems faced.. 32

4.1.1.4 Advantages.. 32

4.1.2 Custom visualization.. 32

4.1.2.1 Features ... 33

4.1.2.2 Limitations .. 34

4.1.2.3 Advantages.. 34

4.2 AJAX based file management .. 34

4.2.1.1 Windows view .. 34

4.2.1.2 Explorer view.. 35

4.2.1.3 Drag N Drop Tree view .. 36

4.3 Comparison... 38

Chapter 5 - Database Vs File System ... 40

5.1 Storing files in database.. 40

 iii

5.2 Storing files in file system .. 41

5.3 Results obtained.. 41

5.3.1 File upload results .. 42

5.3.2 File download results ... 43

5.3.3 File Search results .. 45

5.4 Comparison... 46

5.4.1 Performance ... 46

5.4.2 Maintenance ... 47

5.4.3 Integrity.. 48

5.4.4 Security .. 48

5.4.5 Code complexity .. 48

Chapter 6 - Conclusions and Future work .. 50

6.1 Conclusions... 50

6.2 Future work... 51

References... 52

 iv

LIST OF FIGURES

Figure 2.1 Treemap example .. 6

Figure 2.2 Squarified treemap example .. 6

Figure 2.3 Cone tree example ... 7

Figure 2.4 Information Cube... 8

Figure 3.1 System Architecture .. 13

Figure 3.2 Database Design .. 16

Figure 3.3 Use case diagram... 20

Figure 3.4 Navigation flow diagram... 21

Figure 3.5 Class diagram .. 23

Figure 3.6 Test summary information by page... 24

Figure 3.7 Test summary information by objects ... 25

Figure 3.8 Profile page.. 26

Figure 3.9 User groups.. 26

Figure 3.10 Upload page... 27

Figure 3.11 Search page.. 27

Figure 4.1 Simple treemap algorithm ... 30

Figure 4.2 Treemap visualization ... 31

Figure 4.3 Custom visualization ... 33

Figure 4.4 Windows view... 35

Figure 4.5 Explorer view .. 36

Figure 4.6 Tree view showing drag and drop option .. 37

Figure 4.7 Tree view showing context menu.. 37

Figure 5.1 Database Vs Server (Upload) .. 43

Figure 5.2 Database Vs Server (Download) ... 44

 v

LIST OF TABLES

Table 5.1 – Test suite .. 42

Table 5.2 – Database Vs Server (Upload) .. 43

Table 5.3 – Database Vs Server (Download).. 44

Table 5.4 – Database Vs Server – Search comparison ... 45

 vi

ACKNOWLEDGEMENTS

I would like to thank my Major Professor Dr. Daniel Andresen for guiding me

throughout this project. I would also like to thank my other committee members Dr.

William J. Hankley and Dr. Mitchell L. Neilsen for helping me in completing this project

report

1

Chapter 1 - Introduction

1.1 Problem

Online File Sharing is practice of sharing files among different users across the

internet. Common forms of file sharing are FTP (File Transfer Protocol) model and P2P

(Peer-to-Peer) file sharing network. Another common form of sharing files over the

internet is for a user to upload files to a website and allow other users to download them

from the website. There are a lot of issues to consider when developing such a website.

 Users of an online file sharing website who use features like upload, download,

share, search etc would want a website that is very interactive and fast and not annoying

with a lot of post backs and flashing screens. Another issue is the visualization of their

file system where usually users have a limit to upload files. The normal web based file-

folder view would be good, but if there are other types of visualizations it would be great.

Another important issue to consider is the location where the website stores the uploaded

files. Two places where one can store the uploaded files are Database and Server.

1.2 Objective

There were three main objectives in this project. First objective was to build an

AJAX enabled online file sharing website which not only reduces the annoying postbacks

and loss of control focus, but also gives a faster and more interactive user interface.

Moreover to make the website more feature rich, features like RSS syndication, extensive

searching (inside documents uploaded), group option to share a file, versioning control to

2

get back deleted or archived files, organization of the files using folders were added to

the website.

Second objective was to give the users different visualizations of their file system.

Usually in a file sharing website, users will be given only one option where they can view

their files and folders in the traditional windows style folder view i.e. where they have the

option to sort their files and folders based on size, type, and time uploaded etc, and

navigate through their file system by clicking on the folders. In this website, users were

given different visualizations of their file system i.e. one traditional windows style folder

view with postbacks as seen in other similar websites, three AJAX based windows style

folder view with no postbacks and additional functionalities like right click menus, drag

and drop functionalities, and two space-constrained hierarchical visualizations of their

file system with which users can know how their files and folders occupy their allotted

space.

Third objective was to analyze the issue of file storage. Two common places

where files can be stored are database and the web server. In the first option, files can be

stored as BLOBs (Binary Large OBjects) which is the place for storing huge files in the

database. Second option is to store the file in the file system on the web server and to

store a pointer to the file location in the database. This report analyzes both options and

discusses the advantages and disadvantages of both techniques.

1.3 Document Overview

The rest of this documentation first discusses related work in Chapter 2, and then

describes the implementation details of the website in Chapter 3. Chapter 4 describes the

different visualizations designed and the advantages of having such visualizations.

3

Chapter 5 presents the results obtained when storing files in database and storing files in

the file system, and discusses the pros and cons of both techniques by analyzing them.

Chapter 6 presents the conclusions and describes future work.

4

Chapter 2 - Related Work

2.1 Online File Sharing

There are a lot of file sharing websites online. Some famous sites are

www.rapidshare.com, www.megaupload.com, www.xdrive.com, www.box.net etc.

www.box.net is an AJAX enabled website with a lot of cool features and is also very

interactive. All the websites which serves the purpose of online file storage/sharing

usually have a size limit to upload files and some have size limit to download files per

hour due to space and bandwidth constraints.

Other forms of file sharing as described in the previous chapter are FTP and P2P.

FTP or file transfer protocol is a commonly used protocol for exchanging files over any

network that supports the TCP/IP protocol (such as the Internet or an intranet) [15]. The

FTP server, running FTP server software, listens on the network for connection requests

from other computers. The client computer, running FTP client software, initiates a

connection to the server. Once connected, the client can do a number of file manipulation

operations such as uploading files to the server, download files from the server, rename

or delete files on the server and so on [16]. Most of the browsers present now can act as a

FTP client. Common FTP client software’s are CuteFTP, SmartFTP and DirectFTP etc.

FTP is a common standard for file sharing and is used by a lot of people today.

P2P or Peer-to-Peer network is a type of network in which each workstation has

equivalent capabilities and responsibilities. P2P file sharing network is usually used for

5

sharing content files containing audio, video, data or anything in digital format and real-

time data. BitTorrent is a famous peer-to-peer file distribution client application. P2P is

best known for sharing files online and is more popular than the others methods

available.

2.2 File System Views

This section of the document discusses about the research that has been done and

the tools that are available for visualizing the file system.

2.2.1 Space-constrained hierarchical visualization

Several types of visualization are out there for visualizing a file system. In a file

sharing website where each user has a size limit, a hierarchical visualization would be a

very useful visualization compared to other visualizations, since the user would be able to

see how his/her files have occupied his/her allotted space. There are lots of hierarchical

visualization tools available for visualizing file system in Linux operating systems which

can be used as a base model for visualizing file system in a website. The most commonly

used hierarchical visualizations techniques are:

2.2.1.1 Space-filling treemaps

The idea of treemaps is to visualize a tree by dividing a rectangle into smaller

rectangular objects, one rectangle for each node in the hierarchy. These rectangles have

size proportional to some node property (usually file size, if the tree is a file system). [9].

Figure 2.1 shows a simple treemap. fsv (http://fsv.sourceforge.net) is a file system

visualizer that’s uses the Treemap visualization technique. StepTree is a visualization tool

which is also a three dimensional extension of space filling Treemap concept.

6

Figure 2.1 Treemap example

2.2.1.2 Squarified treemaps

Squarified treemaps are an extension to the concept of treemaps in which the

rectangles are made to look like squares as much as possible [7]. An example of a

Squarified treemap can be seen in Figure 2.2. Squarified treemaps are the most popular

form of space constrained visualization. Chapter 4 discusses Treemaps in detail.

Figure 2.2 Squarified treemap example

7

2.2.1.3 Cone trees

Cone trees are basically an extension of the normal two-dimensional trees we are

used too [6]. The difference is that instead of placing all child nodes along a horizontal

line, they are placed on a horizontal circle below the root node.

Figure 2.3 Cone tree example

2.2.1.4 Information Cube

In “The Information Cube”, every node in a hierarchy is visualized as a semi-

transparent cube. The contents of a node are shown as cubes within its cube. What you

see if you look at this visualization is lots of cubes within cubes within cubes, and so on

[6]. An example of an information cube can be seen in Figure 2.4.

Most of the hierarchical file system visualizers (like fsv, StepTree, XCruiser,

tdfsb, etc) available are for Linux/Mac systems. So using this concept of hierarchical file

system visualization in a website can be complicated, especially when you consider

techniques like cone trees and information cubes which are 3D visualizations. 3D file

system visualization in a website where data is being retrieved from a database and using

8

technologies like ASP.NET would be very complicated. It could be done using tools like

Flash. But visualizations based on treemaps or Squarified treemaps can be done using the

technologies and tools that have been used in this project.

Figure 2.4 Information Cube

2.2.2 Traditional file system visualization

Traditional file system visualization is the view in which users get the Microsoft

windows styled folders and files, and they navigate through folders into the child folders

by clicking on a folder and so on. Most of the present websites which visualize a file

system use this method. Until the sudden growth of AJAX, this model was very non-

interactive with its postback for every operation since it had to go to the database where

the details about a particular folder or file were stored. In these past few years, after

AJAX became an important web development technique, all these drawbacks can be

overcome. With these latest technologies, web sites have developed an user interface with

which user can browse his/her file system in the web just like browsing a file system on a

PC by dragging and dropping files into folders etc. In fact it could be made more

9

interactive and attractive like a file system view on an Apple computer with the

JavaScript libraries available today like script.aculo.us and Rico etc.

2.3 Database Vs File System

This question has been asked by a lot of web developers and programmers in the

past i.e. where should files be stored – in database as BLOBs or in the file system.

Another frequently asked question is where should images that are used in the website

stored – in database as BLOBs or in the file system as .gif or .jpeg etc. Answers to both

questions are different because images used in a website are usually small in size and are

retrieved every time a page is loaded, whereas in a files upload (say an online file

sharing/storage) website, files are usually big and are retrieved only when someone

requests the file.

People have proposed different solutions to these questions, but no solution has

been confirmed as the best solution. The answer usually depends on the requirements of

the website.

10

Chapter 3 - Implementation

This chapter discusses the implementation details of the website developed. It

discusses about the latest technologies and tools that were used, the system architecture,

database design, functionalities and features available.

3.1 Technologies

Latest technologies and tools were used in developing the website. With these

tools and technologies, complex coding can be made very simple.

3.1.1 ASP.NET 2.0 / Microsoft Visual Studio 2005

ASP.NET 2.0 is a technology for building powerful, dynamic Web applications

and is part of the .NET framework 2.0. The Microsoft .NET Framework 2.0 is a platform

for building, deploying, and running Web Services and applications. ASP.NET 2.0 makes

web programming dramatically easier compared to technologies like ASP, JSP, and PHP

etc. In fact building web applications with ASP.NET 2.0 is very easier than building them

with ASP.NET 1.1.

Web applications can be developed with ASP.NET 2.0 using Visual Studio 2005

which is an advanced integrated development environment developed by Microsoft for

building applications that run on Microsoft Windows and the World Wide Web. It has

got some great features which were missing in the previous version like better

intellisense, configuration of datasets with a few clicks etc.

11

3.1.2 Microsoft SQL Server 2005

Microsoft SQL Server is a relational database management system from

Microsoft. There are lot a features in .NET that are only available for SQL Server like

SqlCacheDependency, membership, role and session state providers etc. When the

project was started, initial plan was to use SQL Server 2005 Express, but it was upgraded

to SQL Server 2005 in order to utilize the full-text indexing which is used for searching

through BLOBs.

3.1.3 AJAX / ATLAS & Web Services

AJAX is the short form of Asynchronous JavaScript and XML which is a Web

development technique for creating interactive web applications. The main concept of

AJAX is to process one part of a web page behind the scene with disturbing the other

parts of the website.

Atlas is the new Web development technology from Microsoft which integrates

client script libraries with the ASP.NET 2.0 server-based development framework. It is

the Microsoft’s version of AJAX for ASP.NET 2.0. Since the objective of the project was

to build an AJAX enabled website, AJAX was used in most of the pages. To decrease the

complexity of coding, Atlas was used to send asynchronous calls (using Atlas Script

Manager) to web services which interacted with the database. Other than sending

asynchronous calls to the server, the Atlas control extenders were used to make the

website more rich and interactive.

12

3.1.4 XML / XSLT / XPATH

XML (eXtensible Markup Language) was used as the format for transferring data

between the server and client using AJAX. XML returned by the web service was

transformed into HTML using XSLT (eXtensible Stylesheet Language Transformation).

As discussed in the Features section of this chapter and in next chapter, XML was

transformed into HTML with JavaScript incorporated into it using XSLT. Also XML is

the preferred format when using AJAX to transfer data between server and client.

3.1.5 JavaScript / Prototype library

For the website to be fast, most of the operations had to be done in the client side

rather than on the server side. To do that JavaScript is the best option. Moreover to give a

good graphical look to the website, the Prototype JavaScript library was used.

3.2 System Architecture

The system architecture is shown in Figure 3.1. The figure shown is slightly

different from the typical n-tier architecture, because the pages when loaded for the first

time act similar to the normal asp.net web application, but the user interactions, where the

user requests something, are handled in the form of asynchronous calls through Ajax.

Hence, the left side of the architecture is used when loading the page for the first time,

and to do operations that are not possible through Ajax. The right side of the architecture

is used when the user requests something and calls to the server are made behind the

scenes.

In the architecture shown below, Client UI is the client browser which is present

in the client’s machine. The Presentation layer consists of standard ASP.NET web forms,

13

and documents, etc. This layer works with the results/output of the business logic layer

and transforms the results into something usable and readable by the end user.

Figure 3.1 System Architecture

Business Logic Layer allows users to share and control business logic by isolating

it from the other layers of the application. The business layer functions between the

14

presentation layer and data access layers, sending the client's data requests to the database

layer through the data access layer.

Data Access Layer provides access to the database by executing a set of SQL

statements or stored procedures. This is where generic methods to interface with data is

written like creating and opening a SqlConnection object, creating a SqlCommand object

for executing a stored procedure, etc. As the name suggests, the data access layer

contains no business rules or data manipulation/transformation logic. It is merely a

reusable interface to the database [14]. This layer was not available in ASP.NET 1.1. In

ASP.NET 1.1 both Business Logic layer and Data Access Layer combined were known

as Logical Layer. The Business Logic Layer and Data Access Layer are usually in the

App_Code folder in the application server. When using datasets to interact with the

database they are separated, but if the interaction is done through C# classes they are

combined into one layer.

Database Tier consists of database and data layer which consists of stored

procedures to manipulate and retrieve data from the database i.e. SQL Server.

In the above architecture when the user requests something from the server, a

JavaScript call is made to the Ajax Engine, which is Atlas here. The Ajax Engine creates

an XmlHttpRequest object and sends it to the web service without affecting the control

flow of the webpage. The web service interacts with the database by calling the stored

procedure, gets the result from the database, converts it to XML and returns XML or

HTML data by transforming the XML into HTML using XSLT to the Ajax Engine. If the

result returned is XML, Ajax Engine processes it and transforms it to HTML, or else just

the returned HTML is send to the client browser.

15

Apart from these usual advantages like scalability, availability, and ease of

integration etc, the n-tier architecture also allows any of the n tiers to be upgraded or

replaced independently as requirements or technology change. For example, a change of

database from SQL Server to Oracle 10g would only affect the data storage layer and

data access layer.

3.3 Database Design

The database schema for the website consists of six tables, out of which one table

is used to store BLOBs. So if the files are stored in the file system, the table could be

removed. There is one main table to store the primary details of the file uploaded, one

table to keep track of various versions of the same file i.e. versioning control, two table

for creating groups and sharing a file within that group, and the last table for organizing

the files with use of folders.

The tables for managing users, roles, profile properties etc were in-built with

ASP.NET 2.0 membership, role and profile providers. The UserName column present in

the table created by membership provider is referenced by all the tables of the schema

shown in Figure 3.2.

16

Figure 3.2 Database Design

3.4 Functionalities

Since the project was done for educational purposes, there was no size limit given

to users to upload or download files. The main features of the website are:

17

3.4.1 User Registration

News users can register to upload files and create their own file system. The user

management was easily integrated into the website with the providers that ship in with

ASP.NET 2.0. Users have their own profile page to update their profile (using profile

providers). These pages are Atlas enabled i.e. the page uses AtlasCTK extenders. Other

than these users have got option to change their password, request for a new password

etc.

3.4.2 Upload Files

This part is the heart of the project where the user can upload a file. Part of this

page is Atlas enabled. File upload takes place in the form of a wizard control, where the

user does the upload in a step by step manner. When the user uploads a file, he/she will

be given a progress bar indicator to show what the status of the upload is. Metadata about

the file upload can also be entered in the first step. Second step gives the option to enter

the activation and expiration date of the uploaded files. Third step allows the user to

organize the files by creating folders and the last step given the option of sharing. i.e.

whether the file is public, private, or can be shared by groups.

3.4.3 Share Files

In the last step of the upload process, users can choose to share the file by creating

groups. A group will consist of one or more registered users of the website. When a user

is in a group, then only he/she will be able to see the file while searching or downloading.

A user can have any number of groups. The process of creating groups, adding/deleting

18

members from the group are all Atlas enabled i.e. everything happens without page

refreshes.

3.4.4 Version Control

When the users updates a file, the old file will be archived so that, if the user

wants to access it later he/she can retrieve that file. Files will not be archived if the user

deleted the files or the folder containing the files.

3.4.5 RSS Feeds

Users have an option to publish their RSS feed (RSS 2.0 format) so that others

can use the feed to show the latest files changes and uploads in their website. Users will

be given an option whether to include a file in the RSS feed while uploading the file.

3.4.6 Search

Another important feature available is the extensive search feature. It is a

completely AJAX enabled (both simple search and advanced search) with no page

refreshes at all. Concepts used to attain this no page refresh feature were AJAX,

XML/XSLT, and web services. Search feature searches not just the file name and

metadata about it, but through the document files uploaded like .doc, .xls, .htm, .ppt, .pdf

etc. It makes use of the full-text indexing available in SQL Server to search through

BLOBs and Microsoft’s indexing service to search though the files stored in the server.

19

3.4.7 File management / File system visualization

As discussed in Chapter 1, one objective of this project was to give the users

different visualizations to view and manage their file system. Chapter 4 discusses in more

detail about management and visualization of file system.

3.5 Design

3.5.1 Use case diagram

Use case diagrams describe what a system does from the standpoint of an external

observer [18]. The use case diagram in Figure 3.3 depicts the relationships among the

actors and use cases where actors represent the external entities of the system and use

cases represent the functional parts of the system.

In this web application, there are two external actors – Registered and

Unregistered users. The ‘include’ association tells that the use case included includes the

task described by the other use case. The different use cases present in the system can be

seen in the figure below.

20

Figure 3.3 Use case diagram

3.5.2 Navigation flow diagram

Figure 3.4 shows the control flow of the entire application. When a user is not

logged in he/she will only be able to access the Search and RSS features. Only logged in

users will be able to access all the other features like upload/edit/deletion of files, file

system visualizations, file search, group management, and profile management etc. All

21

the users will be able to download the files available or visible to them i.e. for

unregistered users, the search results will only return files that are public. Also necessary

authentication is done before downloading a file.

Figure 3.4 Navigation flow diagram

3.5.3 Class diagram

The class diagram in Figure 3.5 depicts the classes, components and their

relationships among each other in the web application. It gives a very high level overview

of the application. Since the website uses AJAX in most of the pages, web services are

utilized the most. Hence there are five web services, out of which three are for file system

management i.e. different file system views, one for search service, and one for managing

22

groups. The different pages access these web services and also the DB files which act as

the logical layer i.e. Business Logic Layer + Data Access layer. The web services also act

as the logical layer. There are also datasets in which the business logic layer and data

access layer are separated. The datasets are usually utilized by the pages when the page is

loaded. There is also the ProgressBar component which is used to show the progress of

the upload as explained in the last section.

Classes related to user management are not depicted in the figure since all the

functionalities are taken care by ASP.NET 2.0. All the classes depicted below except for

the Search and RSS classes are available only to registered users.

23

Figure 3.5 Class diagram

24

3.6 Testing

3.6.1 ANTS Load Test

ANTS Load is used to predict a web application's behavior and performance

under the stress of a multiple user load. It does this by simulating multiple clients

accessing a web application at the same time, and measuring what happens. It has the

ability to test web services too. It helps in finding out the slowest and fastest objects and

pages in the web application. It is very important to do load testing because if the page

takes a long time to load, users get frustrated and will leave the site. Hence the response

time as well as the download time should be as low as possible.

Test script that was recorded to load test the website created a group, added

members to the group, viewed an RSS page, viewed the tree view page in which files

were dragged and dropped, renamed and deleted, viewed the windows view page in

which files and folders were opened, deleted and renamed, and a search was done to

search files in the database and server.

Figure 3.6 shows time required to connect, time to receive the first byte, and time

to receive the last byte for the pages visited. The times shown below are in milliseconds,

and it can be seen that the time to connect is negligible. Also time to receive the first byte

and last byte is less than one second.

Figure 3.6 Test summary information by page

25

Figure 3.7 shows the average timings for each object of the web application. Time

required connecting, to receive the first byte and last byte is less than one second even

when the number of bytes received is greater than 60,000 bytes. It can also be seen that

the average timings to access a web service is significantly less.

Figure 3.7 Test summary information by objects

Test results also showed that the time to connect was always less than 50

milliseconds for both pages and objects. Time to receive the first and last byte

occasionally went up to one or two seconds, but was usually less than 100 milliseconds.

26

3.7 Screen Shots

Figure 3.8 Profile page

Figure 3.9 User groups

27

Figure 3.10 Upload page

Figure 3.11 Search page

28

Chapter 4 - File System Views

This chapter discusses the different file system visualizations and file

management options available to the users. Section 4.1 discusses about the space

constrained visualizations in detail i.e. what are the techniques used, implementation

details and advantages of such visualizations. Section 4.2 discusses about the traditional

file management options available to the users. Section 4.3 gives a comparison of both

visualizations with respect to ease of coding, interactivity and user friendliness.

4.1 Space-constrained visualization

Visualization is a method for seeing the unseen [10]. Thus a custom visualization

of a file system should allow the users to see something that they cannot see in the

traditional visualization. Traditional visualization mentioned here is the file management

option available in Microsoft windows and other operating systems.

If the website developed for this project was commercial and not educational,

then each user will surely have a size limit he/she can upload files to his/her account. In

that case the users would find a space constrained visualization of their hierarchical file

system very useful, which is discussed in the next two sub sections.

Developing and integrating file management options in space constrained

visualization is possible, but requires a lot of time and coding, which was not an objective

of this project. Hence users were only given option to navigate through the file system

and view the visualization, and the ability to edit/delete files and folders were not given.

29

Next two sub sections of this document discusses in detail about the two space-

constrained visualizations developed for the project.

4.1.1 Treemap visualization

Treemap concept was initially developed by Ben Shneiderman during 1990 in the

HCI Lab at the University of Maryland to show a file system in a space-constrained

layout. His initial design simply nested the rectangles, and used borders to show nesting

i.e. the technique mapped a tree structure (e.g. file directory) into nested rectangles with

each rectangle representing a node. A rectangular area is first allocated to hold the

representation of the tree, and this area is then subdivided into a set of rectangles that

represent the top level of the tree. This process continues recursively on the resulting

rectangles to represent each lower level of the tree, each level alternating between vertical

and horizontal subdivision. The parent-child relationship is indicated by enclosing the

child-rectangle by its parent-rectangle i.e. all descendents of a node are displayed as

rectangles inside its rectangle. Associated with each node is a numeric value (e.g. size of

a directory) and the size of a nodes rectangle is proportional to its value [8].

 Later many PhD and Masters students contributed to the initial design by adding

features like zooming, hue/saturation control, many border variations, and labeling

control [8]. Later the application was adapted to different operating systems.

While all the research and tools done on treemaps have been for desktop

applications, this project implemented similar treemap visualization for visualizing a file

system on a web site. There are several algorithms for placing the rectangles in the

treemap. A simple algorithm [6] in shown in Figure 4.1

30

1. Decide on a position and size for the root rectangle that contains all other

rectangles. This can be set to fill the entire screen area, for example.

2. Divide the root rectangle into as many sub-rectangles as there are children

of the root node. Each of these rectangles is as high as the root rectangle,

so they go from its bottom to its top. Each sub-rectangle has width

proportional to its size divided by the total size of all children. If the

rectangle represents a file, its size is the size of that file in. For a directory,

the sum of all sizes of its contents is used.

3. Repeat step 2 and 3 for every sub-node of the root node, with the

determined rectangle for that node as root node. Alternate the direction of

the subdivision this time, so that sub-nodes are placed vertically if they

were placed horizontally this time and horizontally otherwise. Alternating

the direction of subdivision makes it possible to see to which level of the

hierarchy rectangles belong.

Figure 4.1 Simple treemap algorithm

The disadvantage of the above algorithm is that, when the number are files and

folders in a parent folder is many, the algorithm produces thin, elongated rectangles

which are difficult to compare and analyze. Hence the algorithm used for this project is

different from the above one. It uses the sqaurified treemap algorithm to make the

rectangles look like squares as much as possible. This project used the

TreeMapGenerator library developed by the Microsoft Research Community

Technologies team which had the algorithm already implemented and integrated. The

paper Squarified Treemaps [7] gives the squarified treemap layout algorithm.

4.1.1.1 Features

This visualization allows the user to look at the file system at any depth i.e. how

the files occupy the space at level x. User can go into the subdirectory by clicking on the

link to it and open file in a similar manner. To improve the visualization, color of each

cell was made distinct from its adjacent cells. This visualization is completely Ajax

31

enabled i.e. no page refreshes. A sample screen shot of the treemap visualization at level

1 and depth 1 is shown in Figure 4.2.

Figure 4.2 Treemap visualization

4.1.1.2 Limitations

Limitations in this implementation of treemap are:

• Features for file manipulation were not implemented i.e. feature to edit or

delete a file. Only features to navigate through the file system were

implemented.

• Small files or folders of smaller size are not visible i.e. if there is a file

which is 100 KB and another file which is 1 KB, the smaller file would

not be very visible. It as actually a limitation in all implementations of

32

treemaps in desktop application too, but this limitation has been overcome

in desktop application with zooming facility.

4.1.1.3 Problems faced

Some problems faced during the implementation of this version of treemap which

used the TreeMapGenerator Library from Microsoft were:

• When the feature to increase the depth was implemented, all the folders

names were jumbled with its child folders and files. Especially when the

depth was set to complete, all the folder names and file names were

generated inside its respective rectangle and nothing was legible. In order

to overcome this problem only the last level of folder names and file

names were generated.

4.1.1.4 Advantages

Treemap visualization has got its own set of advantages and disadvantages. Some

disadvantages were discussed in Section 4.1.1.2. Some of its advantages are:

• The user can know how his/her files have occupied his/her allotted space

and the amount of free space available.

• Helps the user to know how a particular folder is occupied i.e. the ratio of

sizes of child files and child folders in it.

4.1.2 Custom visualization

The custom space constrained visualization was developed based on XCruiser, a

file system visualization tool for desktop applications. This visualization is a very limited

version of its original with only the basic look and basic functionalities implemented.

33

4.1.2.1 Features

The file system is visualized with 2D spheres. The parent folder is represented by

a big blue 2D sphere, child folders are represented by blue 2D spheres with its area

proportional to its size, child files are represented by brown 2D spheres with its area

proportional to its size, and empty folders are represented by a small grey 2D sphere.

File/Folders details can be viewed by placing the mouse over a sphere, which pops up a

hover menu. Files can be opened by clicking on the respective spheres. Navigation into

child folders is possible by clicking on a folder which would open a new modal window

containing the files and folders in it. Screen shot of the custom visualization shown in

Figure 4.3 shows the new modal window opened for navigation and the hover menu for

viewing file/folder details.

Figure 4.3 Custom visualization

34

4.1.2.2 Limitations

Due to the limitations of technologies involved, and the complexity of coding

needed, some cool features like zooming into a folder or a file, relationships between

ancestors, etc were not implemented.

Also people would find it more difficult to figure out the ratio of child folder to

parent folder just by looking at it i.e. if the visualization was in the form of a Venn

diagram, it would be easier to find out ratio of the size of child folder.

4.1.2.3 Advantages

With the custom visualization, user can see all files and folders available, unlike

the treemap visualization where really small files would not be seen. In fact, in this

visualization, the user can see even empty folders as grey spheres. User can navigate

through any folder to any level since every folder is opened in a new window like the file

managers in Linux operating systems. Like all other visualizations implemented for this

project, this one is also Ajax enabled, which makes it very user friendly.

4.2 AJAX based file management

Since users are used to managing their files and folders in desktop applications, a

desktop style file management would be the easiest way to get used to managing file

system in a website. In this website users were given three desktop style interactive

AJAX based file managers. It is the traditional file visualization.

4.2.1.1 Windows view

In this traditional view shown in Figure 4.4, users have the option to

open/rename/delete folders, option to open/rename/delete/edit files, option to go to home

35

directory, go back to the parent folder, option to refresh the current folder etc. All the

operations involved do not post back, but they give a loading message as seen in the

figure while the modifications are done to the page. Technologies involved in developing

this file manager were Atlas, Prototype library etc.

Figure 4.4 Windows view

4.2.1.2 Explorer view

Explorer view is similar to the Windows explorer available in Microsoft windows.

In addition to all the functionalities of the above view, Explorer view has got a tree view

to navigate more easily as shown in Figure 4.5. Advantage of this view over the

Windows view is the navigation i.e. user can go to a child filer without traversing through

all its parent folders.

36

Figure 4.5 Explorer view

4.2.1.3 Drag N Drop Tree view

The desktop feel that was missing in the above two file managers was the drag

and drop option and the right click menu option. The Drag N Drop Tree view has got all

the features mentioned above. Figure 4.6 and Figure 4.7 illustrate that. Concepts used for

developing this file manager were AJAX, XML/XSLT, JavaScript, Prototype Library,

and web services etc.

37

Figure 4.6 Tree view showing drag and drop option

Figure 4.7 Tree view showing context menu

38

4.3 Comparison

This section of the document compares space-constrained visualization and

traditional visualization implemented for this project and in general with respect to

usability, features and complexity of coding.

Space-constrained visualizations implemented for this project does not have file

management options. So usability wise the traditional visualization would attract users

more since they are used to traditional file management. If the space-constrained

visualization had the file manager incorporated with it, even then it would take some time

for the users to get used to it. If the space constrained visualization is implemented as a

3D visualization with zooming feature, users would find it more interactive i.e. like a

combination of TreeV of fsv (file system visualization) and XCruiser. But implementing

a 3D visualization with zoom feature as discussed in Chapter 2 would require different

technologies and more time. Hence with more features added to the space-constrained

visualization, it could be better usability wise, but at the level both visualizations are

implemented for this project, the traditional visualization (especially Drag N Drop Tree

View) would be more users friendly.

Both traditional and space constrained visualizations implemented have their own

unique features. As discussed above, if the file management options are added to the

space constrained visualizations, then for sure the space constrained visualizations would

have more features. Features of all visualizations implemented have been discussed in the

previous sections of this chapter.

Complexity of coding in implementing space-constrained visualizations was not

much, since it did not have the file management options (i.e. drag and drop, context menu

39

etc). But while implementing the traditional visualization, Ajax based file managers

required more complicated coding. Thus the level of difficulty (i.e. complexity of coding,

time required, lines of code etc) in implementing these visualizations can be rated in

ascending order as:

• Traditional file system visualization with postbacks - easiest of all because

of the in built features of ASP.NET 2.0

• Space-constrained visualization – easier than the Ajax based file

visualization, since the file management option was not implemented.

Also since the TreeMapGenerator library was used, the need to implement

the Treemap algorithm was not needed.

• Ajax based file managers – Time required and the lines of code in

implementing this file visualization were more than all the other

visualizations.

40

Chapter 5 - Database Vs File System

This chapter compares database and file system with respect to file storage. As

discussed in Chapter 2, the two primary options of file storage in a web application are

storing files as BLOBs in database and as files in file system of the web server. This

chapter explores both possibilities by first presenting the results obtained from the tests

i.e. time required to upload, download and search files present in both places, and then

gives a comparison of both techniques.

5.1 Storing files in database

When storing the uploaded file in database, all the file details i.e. file name, file

size, file type, share options etc and the BLOB i.e. binary representation of the file, are

stored in the database (BLOB data types in SQL Server are image, text and ntext). The

data type used to store BLOBs for this project was the image data type. Full-text indexing

were enabled for the BLOB column, file name column and file description column to

speed up the search. BLOBs were inserted to the database using transactions with 32

kilobytes of data being appended to the BLOB in each round. Transactions were used

since the file being uploaded can be a large file.

While downloading the file, the binary data (BLOB), content type, file name etc

are retrieved from the database, and the binary data is written to the output stream after

setting the content type of the output stream. Necessary authentication procedures are

done before retrieving and writing the file to the output stream.

41

5.2 Storing files in file system

When storing the uploaded file in the file system, the file details i.e. file name, file

size, file type, share options etc are stored in the database, the file is stored in the file

system on the web server inside the uploads directory with a naming mechanism. While

saving the file to the server, the file is appended in 32 KB chunks. After saving the file to

the file system on the web server, the specially given name for the file in the file system

is updated to the database in its respective row i.e. the path to the saved file in server is

updated in the database.

While downloading the file from server, if direct access to the file is given by

giving the absolute path to the file, then anyone can download any file with a brute force

attack. Since the direct access option isn’t realistic, the file should be converted to a byte

array and should be written to output stream of the response object, after setting the

content type and name of the file to the values retrieved from database. Even though this

option is slower than the direct access method, it is more realistic where you can allow

only authenticated users to download the file.

5.3 Results obtained

In order to analyze the performance of both techniques, a simple testing was

conducted and the results were recorded. Tests were done to record the download time,

upload time and time needed to search files.

Table 5.1 shows the details of files that were used to test the upload and download

time. All the files shown were uploaded five times to the server and five times to the

database. Similarly they were downloaded five times from database and server.

42

File size (Approximate) File size (Actual) File Type

10 KB 10 KB .ml

20 KB 21 KB .pdf

50 KB 54 KB .js

100 KB 101 KB .pdf

200 KB 198 KB .zip

500 KB 505 KB .pdf

1 MB 1.06 MB .zip

2 MB 1.99 MB .chm

3 MB 3.11 MB .pdf

5 MB 4.98 MB .mp3

10 MB 9.75 MB .exe

20 MB 20.4 MB .chm

30 MB 30.3 MB .pdf

50 MB 48.9 MB .avi

75 MB 74.9 MB .mdf

100 MB 105 MB .avi

Table 5.1 – Test suite

5.3.1 File upload results

Files of sizes given in Table 5.1 were uploaded sequentially to database and

server and the time needed to do those operations were recorded. All the files were

uploaded five times to database and server. Table 5.2 shows the average time (of the five

timings recorded) taken to upload files to database and server in milliseconds. It also

gives the standard deviation of the timings recorded.

Figure 5.1 gives the graphical representation of the results obtained. In the figure,

x-axis represents the file size and y-axis represents the time required to upload the file in

milliseconds. From the figure it is very clear that there is only a very negligible difference

in the time required to upload a file which is 3 MB or less (since the timing recorded are

in milliseconds). But there is a dramatic rise in the time required to store a file in the

database which is 5 MB or more. So if the size of the file uploaded is going to be usually

small, then there would be no big difference.

43

File size
Average time

(Database)

Average time

(Server)

Std deviation

(Database)

Std deviation

(Server)

10 KB 37 57 21 19

20 KB 27 35 23 23

50 KB 23 59 22 39

100 KB 66 35 53 24

200 KB 57 47 61 32

500 KB 79 63 58 39

1 MB 113 89 81 25

2 MB 822 227 1096 134

3 MB 1086 227 1721 73

5 MB 2478 263 3880 40

10 MB 4860 554 4442 91

20 MB 10177 2292 7811 1872

30 MB 13596 3998 7289 1476

50 MB 17918 4672 3122 715

75 MB 38955 7035 20585 1956

100 MB 57978 14732 41924 6535

Table 5.2 – Database Vs Server (Upload)

0

10000

20000

30000

40000

50000

60000

70000

10

KB

20

KB

50

KB

100

KB

200

KB

500

KB

1

MB

2

MB

3

MB

5

MB

10

MB

20

MB

30

MB

50

MB

75

MB

100

MB

File size

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Database

Server

Figure 5.1 Database Vs Server (Upload)

5.3.2 File download results

Files of sizes given in Table 5.1 were downloaded sequentially from database and

server and the time needed to do those operations were recorded. All the files were

44

downloaded five times from database and server. Table 5.3 shows the average time (of

the five timings recorded) taken to download files from database and server in

milliseconds. It also gives the standard deviation of the timings recorded.

File size
Average time

(Database)

Average time

(Server)

Std deviation

(Database)

Std deviation

(Server)

10 KB 82 100 67 91

20 KB 126 182 65 178

50 KB 82 138 29 73

100 KB 120 114 36 53

200 KB 140 196 83 78

500 KB 238 344 58 379

1 MB 270 170 130 82

2 MB 364 208 62 107

3 MB 557 2982 40 1745

5 MB 959 2141 532 1019

10 MB 3269 7877 1127 2955

20 MB 5972 9502 954 3569

30 MB 8107 13623 833 3146

50 MB 11829 17970 2135 1826

75 MB 18070 23386 1817 2202

100 MB 25434 25446 4258 2158

Table 5.3 – Database Vs Server (Download)

0

5000

10000

15000

20000

25000

30000

10

KB

20

KB

50

KB

100

KB

200

KB

500

KB

1

MB

2

MB

3

MB

5

MB

10

MB

20

MB

30

MB

50

MB

75

MB

100

MB

File size

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s

Database

Server

Figure 5.2 Database Vs Server (Download)

45

The timings recorded above, are the time required to read the BLOB from

database into a byte array / read the contents of a file in server into byte array, and write it

to the output stream of the response object. It can be seen from Table 5.3 and Figure 5.2

that both techniques perform in a similar way, unlike the timings recorded when

uploading a file. The server method seems to take a little bit more time than reading a

BLOB. If the direct path to the file in server was given instead of reading the contents

into a byte array and writing it to output stream, the server method would be much faster

than reading a BLOB.

5.3.3 File Search results

In order to compare the search performance of both techniques, twenty searchable

files i.e. .doc, .pdf, .xls, .htm, .ppt were uploaded to both database and server. Then the

search was done with keywords present inside the documents and files.

Search text Time taken to search

files in database (ms)

Time taken to

search files in

server (ms)

Number of

records

returned

Obtention 30 70 1

Requirement 30 420 10

Agents 40 170 2

Wiki 70 120 2

Simulation 30 200 5

Eligibility

immigration
40 150 2

Examination

schedule
40 270 6

Visualization 30 160 2

Microarray 70 140 1

Compiler content

management
90 390 14

Table 5.4 – Database Vs Server – Search comparison

46

Searching through BLOBs in SQL Server was done with the help of full-text

indexing, and searching through the files in file system was done with the help of

Microsoft’s indexing service. Table 5.4 shows the time taken by both techniques to

complete the search, number of records returned and the search word used.

As it can be seen in the table above searching through the files in the file system

takes more time than searching through BLOBs. Searching files in file system is slower

because, unlike the database technique were the search is completely done in one query,

in the file system search, the file details stored in the database is searched separately, and

the files in the file system are searched separately, and then the results should be

compared and combined, which takes a lot of time. Another problem is that, while

searching files in the file system, only the files that the searching user can have access

should be searched. So each time a file is about to be searched, the control should go to

the database to check if the user has got access to the file which would also take a lot of

time.

5.4 Comparison

5.4.1 Performance

When a file is stored in the file system and direct access to the file is given, the

time needed to download the file would surely be lesser than the time needed to

download a file that is stored as a BLOB in database. But, if authentication is necessary

before access to download is given, then the method described in Section 5.2 is

necessary. In that case both methods take almost the same time to download a file.

47

As discussed in Section 5.3, while uploading a file to database or server, time

taken to upload a file which is 3 MB or less takes almost the same time, since the timings

recorded are in milliseconds. But for files which are 5 MB or more the server option

seems to perform better.

 So, if files that are being stored are usually small, then both methods perform

well. If the files stored are the like images that are used in the web site and are visible to

all users, then the server option would perform better, because there is no need for any

authentication and direct access to the file can be given while downloading.

When searching a through a file, if the file is stored as a blob, full-text indexing of

SQL Server can be used and the search would be faster since one query can be used to

search the blob, file name, metadata etc. But if the file is stored in the server, then

Microsoft’s indexing service can be used to search the files, but the need to have two

queries (one to search in database and another the file in server), and the time needed to

combine the results of both queries would slower the search operation.

5.4.2 Maintenance

Taking backup of the uploaded files would be much easier if the files are stored in

database, since it would happen in the process of taking regular backup, whereas if the

files are stored in the file system, the backup has to be taken separately. Moreover the

copy of multiple files can be stored in the database without coming up with some naming

mechanism.

When migrating to a different database (say SQL Server to Oracle), the BLOBs

would not be compatible, but if the server is changed there would be no problem.

48

5.4.3 Integrity

When files are stored in database, the database’s built-in referential integrity

checking can be used to check the integrity of the files, whereas if the files are stored in

the file system, then the integrity should be checked manually.

Similarly when performing backup of the database, where files are stored in the

file system and its location in the database, extra care should be taken to preserve

integrity between the file and the associated database record. If the files are stored as

BLOBs then no extra care is needed.

5.4.4 Security

Files stored in database are more secure then files stored in file system. If users

find the path of uploads directory, then they can try different names to get access to the

files in that folder if there are no security restrictions for the folder. Anyway with the files

stored in database users cannot do that.

Moreover files stored in the database are isolated from the file system. Hence if

the file system is cracked, it will not affect the files stored in database. If the files are

stored in the file system then it could be a security risk. One way to overcome this risk is

to store the files outside the document root of the web server.

5.4.5 Code complexity

Storing BLOBs to database, and retrieving them from database is more

complicated than storing files in file system and retrieving files from file system. For a

novice web developer, procedures involved into storing and retrieving BLOBs is more

complicated than the other option. Especially when the file being uploaded is big, and the

49

file has to be uploaded to the database using transaction by appending chunks of data, it

is more complex than just saving a file to the file system.

Lines of code needed to store and retrieve BLOBs are more than storing files to

file system and retrieving files from file system. Also with in-built controls like

ASP.NET 2.0 file upload control, uploading files to the file system is comparatively very

easy.

50

Chapter 6 - Conclusions and Future work

6.1 Conclusions

An interactive file sharing website with very few page refreshes was developed

using ASP.NET 2.0 and SQL Server 2005 as the back end. Users were given multiple

views for viewing their file system. There were three AJAX based traditional desktop

style file system visualizations with file management options, two space-constrained

visualizations without file management options and one traditional file system

visualization with file management options. Custom visualizations would take more time

for the users to get adjusted, but would be helpful in many ways. Also other features like

RSS Syndication, share groups, search etc were integrated.

An analysis was done on where to store the uploaded files – database or file

system. Storing files and large data in database is not new. Microsoft’s sharepoint

products and technologies store all contents, document files, images, etc in SQL Server.

Also WinFS (Windows Future Storage) plans to store all the files and data in a relational

database derived from SQL Server 2005.

The answer to the above question depends on the requirements of the application.

In the website developed for this project, it is clear that the upload time increases for files

stored in database as the file size increases, but download time of files, whether stored in

database or file system is almost the same. Also database has got more advantages when

considering maintenance, security, integrity etc. Considering these facts, the

administrator can store the files in the database, if the users do not care much about the

51

upload time, since the administrator would find it easy to administer and maintain the

files when stored in the database. But if upload time is taken into consideration, and then

file system option would be better. Also if authentication is not required to download file

(e.g. images that are used in a web application), then file system option would perform

much better while uploading as well as downloading. If the question is asked when

developing a document management system, where users will use the search feature to

search trough the files than any other feature, then database option would be much better

than the file system option, since it is faster in retrieving the search results.

6.2 Future work

The website could be made more interactive by having an AJAX file upload.

Right now the file is not uploaded asynchronously, but if the file is uploaded

asynchronously, the user could enter other options and details of the files while the file is

being uploaded (like attaching a file in GMail).

The space constrained visualization could be made better by adding file

management features to it as discussed in the previous sections. Also navigation through

the file system can be made better by having features like zooming, preview, etc.

The analysis between database and file system could have been done better, by

uploading, downloading and searching files from a different computer that does not host

the web application. Analysis would have also been better if files of bigger size (like 1GB

or 2 GB) were uploaded and downloaded.

52

References

[1] Microsoft, “Conserving Resources When Writing BLOB Values to SQL Server”,

http://msdn2.microsoft.com/en-us/library/3517w44b.aspx

[2] Daniel Anderson, “Paging through Records using a Stored Procedure”, June 2003,

http://www.aspfaqs.com/webtech/062899-1.shtml

[3] Joe Slovinski, “Advanced UI Design Using XML and XSL”,

http://www.15seconds.com/issue/010921.htm

[4] Thiru Thangarathnam, “Professional ASP.NET 2.0 XML”, 2006

[5] Sikha Saha Bagui & Richard Walsh Earp, “Learning SQL on SQL Server 2005”,

2006.

[6] Niklas Höglund, “3D Graphics in the User Interface of a File System Browser”,

Royal Institute of technology, Sweden, 2004.

[7] Mark Bruls, Kees Huizing, and Jarke J. vanWijk, “Squarified Treemaps”,

Eindhoven University of Technology, The Netherlands.

[8] Ben Shneiderman, “Treemap for space-constrained visualization of hierarchies”,

April 2006, http://www.cs.umd.edu/hcil/treemap-history/index.shtml

[9] Ben Shneiderman, “Tree visualization with tree-maps: A 2-D space-filling

approach”, ACM Transactions on Graphics, 11(1):92–99, 1992.

[10] Klaus Mueller, Yinlong Sun and Penny Rheingans, “Introduction to Visualization”,

http://www.cs.umbc.edu/~alark1/cmsc435/lectures/Visualization.pdf

[11] MyCongress, “Storing files in a database vs. on the file system”, June 2005,

http://mycongress.org/blog/2005/06/29/storing-files-in-a-database-vs-on-the-

filesystem/

[12] ASPFAQ, “Should I store images in the database or the file system?”, August 2000,

http://www.aspfaq.com/show.asp?id=2149

[13] Microsoft, “Chapter 11 – Using BLOBs”,

http://www.microsoft.com/technet/prodtechnol/sql/2000/reskit/part3/c1161.mspx?

mfr=true

53

[14] Thiru Thangarathinam, “N-Tier Web Applications using ASP.NET 2.0 and SQL

Server 2005”, 2005, http://www.15seconds.com/issue/050721.htm

[15] Wikipedia, “File Sharing”, http://en.wikipedia.org/wiki/File_sharing

[16] Wikipedia, “File Transfer Protocol”,

http://en.wikipedia.org/wiki/File_Transfer_Protocol

[17] Jesse James Garrett, “Ajax : A New Approach to Web Applications”, February

2005, http://adaptivepath.com/publications/essays/archives/000385.php

[18] Randy Miller, “Practical UML: A Hands-On Introduction for Developers”, April

2003, http://bdn.borland.com/article/0,1410,31863,00.html

