
On Asymptotic Notation with Multiple Variables

Rodney R. Howell

Dept. of Computing and Information Sciences

Kansas State University

Manhattan, KS 66506

USA

rhowell@ksu.edu

Technical Report 2007-4

January 18, 2008

Abstract

We show that it is impossible to define big-O notation for functions

on more than one variable in a way that implies the properties commonly

used in algorithm analysis. We also demonstrate that common definitions

do not imply these properties even if the functions within the big-O no-

tation are restricted to being strictly nondecreasing. We then propose

an alternative definition that does imply these properties whenever the

function within the big-O notation is strictly nondecreasing.

1 Introduction

Big-O notation for functions on one variable was introduced by Bachman in 1894
[1]. In the following decades, its properties became well-understood, and it has
been widely used in the analysis of algorithms. Little-o notation for 1-variable
functions was introduced by Landau in 1909 [7], and big-Ω, big-Θ, and little-ω
were defined for single-variable functions by Knuth in 1976 [6]. As with big-O
notation for one variable, these asymptotic notations are all well-understood
and widely used in algorithm analysis.

Many algorithms have more than one natural parameter influencing their
performance. For example, the running times of most graph algorithms depend
on both the number of vertices and the number of edges when the graph is rep-
resented by an adjacency list. However, most textbooks on algorithm analysis
(e.g., [3, 4, 5, 8]) do not explicitly extend the definition of asymptotic notation
to multi-variable functions. Instead, they include analyses using asymptotic no-
tation with multiple variables, applying the properties shown for single-variable
asymptotic notation. The implicit assumption is that these properties extend

1



Figure 1.1 Algorithm illustrating a problem with some definitions

F(m,n) {
for i← 0 to m− 1 do {

G(i, n)
}

}

to more than one variable. In this paper, we demonstrate that this assumption,
which seems to pervade the computing literature, is invalid.

Consider, for example, the algorithm shown in Figure 1.1, and suppose we
are told that G(i, n) runs in O(in) time. Knowing this fact, most computer
scientists would not hesitate to conclude that F(m,n) runs in O(m2n) time.
However, we show in this paper that this conclusion does not necessarily follow
when any of the common definitions of big-O notation are used. Specifically,
we can find an algorithm G(i, n) such that, using a common definition of big-O,
G(i, n) runs in O(in) time, but F(m,n) does not run in O(m2n) time. In fact, in
order to obtain any upper bound on the running time of F(m,n), it is necessary
to know more about the behavior of G(i, n) than standard asymptotic notation
provides.

Ideally, we would like to define big-O so that the commonly-assumed prop-
erties all hold, even when multi-variable functions are used. However, we prove
in this paper that it is impossible to define big-O notation for multi-variable
functions in a way that implies all of these properties. Specifically, we first
identify five properties of big-O notation for unary functions. We argue that
these five properties are commonly assumed to hold for big-O notation on mul-
tiple variables, particularly in the analysis of algorithms. We then show that it
is impossible to satisfy all five properties simultaneously.

The proof of this impossibility relies on a particular set O(g(m,n)) such
that g(m,n) decreases at infinitely many points; specifically, there are infinitely
many pairs (m,n) such that g(m,n) > g(m + 1, n). However, the functions
used in algorithm analysis are nearly always strictly nondecreasing. Unfortu-
nately, we demonstrate that the common definitions of big-O notation do not
satisfy all five properties even when the functions within the notation are strictly
nondecreasing. We then propose an alternative definition that implies all five
properties, provided the functions within the asymptotic notation are strictly
nondecreasing. Furthermore, given this restriction, we show that our definition
implies all of the properties that are commonly assumed to hold. Finally, we
extend this definition to big-Ω, big-Θ, little-o, and little-ω, and prove similar
results for these definitions.

The remainder of the paper is organized as follows. In Section 2, we iden-
tify five properties of big-O notation on one variable, and show that they are

2



inconsistent for multi-variable functions. In Section 3, we present our proposed
definition of big-O for multiple variables, and show that it satisfies the desired
properties when the functions within the notation are strictly nondecreasing.
In Section 4, we extend these results to big-Ω, and in Section 5, we extend our
results to big-Θ, little-o, and little-ω. Finally, we give some concluding remarks
in Section 6.

2 Inconsistent Properties

Let f : N → R
≥0, where N denotes the natural numbers and R

≥0 denotes the
nonnegative real numbers, and let R

>0 denote the strictly positive real numbers.
O(f(n)) is then defined to be the set of all functions g : N → R

≥0 such that
there exist c ∈ R

>0 and N ∈ N such that for every n ≥ N

g(n) ≤ cf(n).

If we wish to extend this definition to multi-variable functions f : N
k → R

≥0,
we would expect, at a minimum, that the set O(f(n1, . . . , nk)) should satisfy
the following property:

Property 1 For every function g(n1, . . . , nk) ∈ O(f(n1, . . . , nk)), there exist
c ∈ R

>0 and N ∈ N such that for every n1 ≥ N,n2 ≥ N, . . . , nk ≥ N ,

g(n1, . . . , nk) ≤ cf(n1, . . . , nk).

It is this property that gives O(f(n1, . . . , nk)) its “asymptotic” nature. Note
that a single threshold N is sufficient, because if the inequality holds whenever
each variable is sufficiently large, where “sufficiently large” is defined as a sep-
arate threshold for each variable, then we can pick N to be the maximum of
these individual thresholds.

A common definition of O(f(n1, . . . , nk)) is exactly the set of all functions
satisfying Property 1 (see, e.g., [2, 9]). In order to distinguish this definition
from others, let us denote it as O∀(f(n1, . . . , nk)). We will now demonstrate
that this definition is too weak.

Consider, for example, the algorithm shown in Figure 1.1, and suppose we
know that G(i, n) runs in O∀(in) time. Applying standard algorithm analysis
techniques, we would then conclude that F(m,n) runs in O∀(m

2n) time. How-
ever, this conclusion is invalid. To see why, consider the function g : N

2 → R
≥0

such that

g(m,n) =

{
2n if m = 0

mn if m ≥ 1.
(2.1)

3



Because g(m,n) ≤ mn whenever both m and n are at least 1, g(m,n) ∈ O∀(mn),
but

m−1∑

i=0

g(i, n) = 2n +

m−1∑

i=1

mn

= 2n +
mn(m− 1)

2

6∈ O∀(m
2n).

This example illustrates a property that is commonly assumed for asymptotic
notation, but which does not hold for O∀(f(n1, . . . , nk)):

Property 2 Let f : N
k → R

≥0 be an eventually positive function; i.e., for
some N ∈ N, f(n1, . . . , nk) > 0 whenever n1 ≥ N, . . . , nk ≥ N . Then for every
g(n1, . . . , nk) ∈ O(f(n1, . . . , nk)) and every positive integer j ≤ k,

nj∑

ij=0

g(n1, . . . , nj−1, ij , nj+1, . . . , nk)

∈ O




nj∑

ij=0

f(n1, . . . , nj−1, ij , nj+1, . . . , nk)


 .

We have required that f be eventually positive because otherwise, this prop-
erty fails even for k = 1, as g(n) ∈ O(0) may have finitely many positive values.
This property is used whenever we analyze a for loop in which the index vari-
able runs from 0 to nj . It is easily shown to hold for big-O with k = 1, but
as we have seen above, it does not necessarily hold for O∀ with k > 1. This is
actually a less general property than we really need, as it deals only with indices
ranging from 0 to nj ; however, it is sufficient to demonstrate the inconsistencies
in the commonly-assumed properties.

Note from the above discussion that we have shown that Property 2 does not
hold for O∀ when f is chosen to be f(m,n) = mn — a strictly nondecreasing
function. We therefore have the following theorem:

Theorem 2.1 Property 2 does not necessarily hold for O∀(f(n1, . . . , nk)) even
if f(n1, . . . , nk) is strictly nondecreasing.

A stronger definition of O(f(n1, . . . , nk)) is the set of all functions g : N →
R

≥0 such that there exist c ∈ R
>0 and N ∈ N such that

g(n1, . . . , nk) ≤ cf(n1, . . . , nk)

whenever nj ≥ N for some positive integer j ≤ k. Let us denote this set as
O∃(f(n1, . . . , nk)). Functions in this set may violate the above inequality for at
most finitely many points. As a result, it is not hard to show that Properties
1 and 2 both hold for this definition. On the other hand, because mn = 0

4



at infinitely many points and mn + 1 > 0 for all m and n, it follows that
mn + 1 6∈ O∃(mn).

One property that is used to show that n + 1 ∈ O(n) is the summation rule,
namely, that O(f1(n)) + O(f2(n)) = O(max(f1(n), f2(n))). (In the expression,
“O(f1(n)) + O(f2(n))”, we are using the standard technique of adding two
sets of functions; i.e., if A and B are sets of functions mapping k-tuples of
natural numbers into the nonnegative reals, then A+B is the set of all functions
g1(n1, . . . , nk) + g2(n1, . . . , nk) such that g1 ∈ A and g2 ∈ B.) It is not hard to
show that when generalized to multiple variables, the summation rule holds for
O∃. However, there is one more rule involved that allows us to conclude that
O(max(n, 1)) ⊆ O(n) — namely, that if g(n) ≤ f(n) when n is sufficiently large,
then O(g(n)) ⊆ O(f(n)). In order to generalize this rule to multiple variables,
we need to consider how it applies to algorithm analysis.

We typically deal with the point-wise maximum of two functions either as
a result of applying the summation rule when analyzing two blocks of code
executed in sequence or as a result of analyzing an if statement. For example,
consider again Figure 1.1. We can separate the initialization code consisting
of the assignment of 0 to i from the remainder of the code. Suppose, for the
sake of argument, that we have analyzed the loop (excluding the initialization)
and discovered that it runs in O(mn) time. We then have code running in O(1)
time followed by code running in O(mn) time. In order to avoid a complicated
expression like O(mn + 1) or O(max(mn, 1)), we would like to conclude that
the algorithm runs in O(mn) time. We therefore need a rule that allows us to
use the maximum of mn and 1 as both m and n become sufficiently large. We
therefore need the following property:

Property 3 Let f1 : N
k → R

≥0 and f2 : N
k → R

≥0 be two functions such that
for some N ∈ N, and every n1 ≥ N, . . . , nk ≥ N ,

f1(n1, . . . , nk) ≤ f2(n1, . . . , nk).

Then
O(f1(n1, . . . , nk)) ⊆ O(f2(n1, . . . , nk)).

By taking f1(m,n) = max(mn, 1), and f2(m,n) = mn, we can see that
Property 3 does not hold for O∃. Furthermore, these functions are strictly
nondecreasing. We therefore have the following theorem:

Theorem 2.2 Property 3 does not necessarily hold for O∃(f1(n1, . . . , nk)) and
O∃(f2(n1, . . . , nk)) even if f1(n1, . . . , nk) and f2(n1, . . . , nk) are strictly nonde-
creasing.

It is not surprising that Property 3 does not always hold for O∃, as Property
3 is very nearly the converse of Property 1; hence, when we combine Properties
1 and 3, we will have very nearly restricted our possible definitions to just O∀.
Furthermore, because Property 2 fails for O∀, our properties are already very
nearly inconsistent. However, we still need one additional property to ensure

5



that we cannot trivially satisfy all the properties by making O(f(n1, . . . , nk)) =
∅ for all f(n1, . . . , nk).

Property 4 For all functions f : N
k → R

≥0, f(n1, . . . , nk) ∈ O(f(n1, . . . , nk)).

Theorem 2.3 For k > 1, Properties 1–4 are inconsistent.

Proof: We will prove the theorem for k = 2, as it will be easy to see how it
can be generalized to larger k. The proof is by contradiction.

Suppose O is defined so that all four properties hold. Let g(m,n) be as
defined in (2.1). By Property 3, O(g(m,n)) ⊆ O(mn); hence, by Property 4,
g(m,n) ∈ O(mn). By Property 2, we have

m∑

i=0

g(i, n) ∈ O

(
m∑

i=0

in

)

2n +
mn(m + 1)

2
∈ O

(
mn(m + 1)

2

)
,

which clearly contradicts Property 1. �

Observe that in the above proof, the functions used within the big-O notation
are all eventually nondecreasing; i.e., there is some natural number N such that
whenever m ≥ N and n ≥ N , f(m,n) ≤ f(m+1, n) and f(m,n) ≤ f(m,n+1).
However, the function g(m,n) is not strictly nondecreasing. In particular, we
used Properties 3 and 4 with O(g(m,n)). Because functions used within big-
O notation in algorithm analysis typically are strictly nondecreasing, it might
make sense to consider whether these properties are still inconsistent when the
functions are restricted in this way.

Rather than proceeding to such an examination, however, we instead need
to consider one additional property that also causes problems. This property
is used when we analyze a loop in which the running time of the body of the
loop is independent from the iteration number. In this case, we would typically
compute the total running time by multiplying the running time of the body by
the number of iterations. We therefore need the following property:

Property 5 For all functions f1 : N
k → R

≥0 and f2 : N
k → R

≥0,

O(f1(n1, . . . , nk))O(f2(n1, . . . , nk)) ⊆ O(f1(n1, . . . , nk)f2(n1, . . . , nk)).

Theorem 2.4 For k > 1, Properties 1–5 are inconsistent even if Properties 1–3
are restricted so that the functions within the asymptotic notation are strictly
nondecreasing.

Proof: Again, we will proceed by contradiction with k = 2. Suppose O is
defined so that all five properties hold. Let g(m,n) be as defined in (2.1).

6



Observe that for all natural numbers m and n, mng(m,n) = m2n2; hence, by
Property 5,

O(mn)O(g(m,n)) ⊆ O(m2n2).

Because both max(mn, 1) and mn are strictly nondecreasing, by Property 3,
O(max(mn, 1)) ⊆ O(mn); hence,

O(max(mn, 1))O(g(m,n)) ⊆ O(m2n2).

From Property 4, we therefore have

max(mn, 1)g(m,n) ∈ O(m2n2).

Now by Property 2, we have

m∑

i=0

(max(in, 1)g(i, n)) ∈ O

(
m∑

i=0

i2n2

)

g(0, n) +

m∑

i=1

in g(i, n)) ∈ O

(
mn2(m + 1)(2m + 1)

6

)

2n +
mn2(m + 1)(2m + 1)

6
∈ O

(
mn2(m + 1)(2m + 1)

6

)
,

which clearly contradicts Property 1. �

We conclude from the above theorem that in addition to restricting at least
one of Properties 1–4, we must also restrict one of Properties 4 and 5. In the
next section, we propose a definition big-O notation for multiple variables that
implies Properties 1 and 4, as well as restricted versions of Properties 2, 3 and
5.

3 A Proposed Solution

In view of Theorems 2.1 and 2.2, we need a new definition of big-O. In view
of Theorems 2.3 and 2.4, we cannot expect any alternative definition to satisfy
Properties 1–5 without restriction. Furthermore, we would like for our definition
to be a generalization of the accepted definition for a single variable.

It would appear that in order to meet these constraints, our definition must
strengthen Property 1 by utilizing, in some way, the function values at points
for which one or more of the parameters is small. To formalize this idea, we
define, for any function f : N

k → R
≥0,

f̂(n1, . . . , nk) = max{f(i1, . . . , ik) | 0 ≤ ij ≤ nj for 1 ≤ j ≤ k}.

We then define, for f : N
k → R

≥0, Ô(f(n1, . . . , nk)) to be the set of all functions
g : N

k → R
≥0 such that there exist c ∈ R

>0 and N ∈ N such that for all
n1 ≥ N, . . . , nk ≥ N , the following conditions hold:

g(n1, . . . , nk) ≤ cf(n1, . . . , nk); (3.1)

7



and
ĝ(n1, . . . , nk) ≤ cf̂(n1, . . . , nk). (3.2)

Condition (3.1) is simply Property 1; hence,

Ô(f(n1, . . . , nk)) ⊆ O∀(f(n1, . . . , nk))

for every f : N
k → R

≥0. Condition (3.2) restricts the set so that function values
for small parameters are considered. Thus, for example, it is not hard to see that
g(m,n) 6∈ Ô(mn), where g(m,n) is as defined in (2.1). On the other hand, even
infinitely many large function values will not cause the function to be excluded
if these values are not too large in comparison to growth of the function as all
variables increase. Thus, for example, by taking N = 1 and c = 2, we can see
that mn + 1 ∈ Ô(mn).

Note that even though the definition uses only one real constant c and one
natural number constant N , this is only for simplicity of the definition. Cer-
tainly, if a proof were to show the two conditions with different constants, we
could use the larger of the two real values and of the two natural number values
to conclude that the two conditions hold simultaneously.

Condition (3.2) of the definition of Ô makes it a bit more complicated than
either the definition of O∀ or the definition of O∃. However, as we have already
pointed out, the definition of big-O is rarely used in practice. Instead, properties
of big-O are used to analyze algorithms. If we can show that Ô satisfies the
properties we expect, then the definition itself will be rarely needed. It will,
however, give us a formal justification for asymptotic analyses of algorithms
with more than one natural parameter.

Before we begin proving properties of Ô, let us first consider how it compares,
when k = 1, to the standard definition of big-O for single-variable functions.
Unfortunately, it is not hard to see that O(0) 6⊆ Ô(0), as Ô(0) contains only the
constant function 0. However, we will show that, with this one exception, the
definitions are equivalent.

Theorem 3.1 Let f : N → R
≥0 such that for some n ∈ N, f(n) > 0. Then

Ô(f(n)) = O(f(n)).

Proof:

⊆: Let g(n) ∈ Ô(f(n)). Then by Condition (3.1), g(n) ∈ O(f(n)).
⊇: Let g(n) ∈ O(f(n)). Then there exist c ∈ R

>0 and N ∈ N such that for
every n ≥ N ,

g(n) ≤ cf(n);

hence, Condition (3.1) holds.
Because f(i) > 0 for some i ∈ N, we can assume without loss of generality

that for some i < N , f(i) > 0. We now let

c′ = max

(
c,

ĝ(N − 1)

f̂(N − 1)

)
.

8



Then for n ≥ N ,

ĝ(n) = max(ĝ(N − 1),max{g(i) | N ≤ i ≤ n})

≤ max(c′f̂(N − 1),max{cf(i) | N ≤ i ≤ n})

≤ c′f̂(n).

Therefore, Condition (3.2) holds; hence, g(n) ∈ Ô(f(n)). �

We will now begin examining the properties of Ô. First, the following theo-
rem follows immediately from the definition of Ô:

Theorem 3.2 Properties 1 and 4 hold for Ô.

Rather than simply addressing the remaining properties from Section 2, we
will instead consider the most basic properties of asymptotic notation first,
then move on to more involved properties. Hence, we will now observe that the
following theorem also follows immediately from the definition:

Theorem 3.3 For any positive integer k, positive real number c, and f : N
k →

R
≥0, Ô(f(n1, . . . , nk)) = Ô(cf(n1, . . . , nk)).

In addition, the summation rule is easily shown to hold.

Theorem 3.4 For any positive integer k, f1 : N
k → R

≥0, and f2 : N
k → R

≥0,

Ô(f1(n1, . . . , nk)) + Ô(f2(n1, . . . , nk))

= Ô(max(f1(n1, . . . , nk), f2(n1, . . . , nk))).

As we pointed out in Section 2, when we use the summation rule, we need a
way of dealing with the point-wise maximum of two functions. Specifically, we
would like for Property 3 to hold; however, Theorem 2.3 suggests that this may
be impossible. Indeed, if we take g(m,n) as defined in (2.1), then whenever m

and n are at least 1, g(m,n) ≤ mn; however, as we have already pointed out,

g(m,n) 6∈ Ô(mn). We therefore need to weaken the property.

Specifically, we will show that Property 3 holds for Ô when the function f1

is strictly nondecreasing. First, however, because several of the properties will
need to be weakened in this way, let us consider how a strictly nondecreasing
function f : N

k → R
≥0 impacts the definition of Ô(f(n1, . . . , nk)). In particular,

we have the following theorem.

Theorem 3.5 If f : N
k → R

≥0 is strictly nondecreasing, then Ô(f(n1, . . . , nk))
is exactly the set of functions satisfying Condition (3.2).

Proof: We will show that for strictly nondecreasing f , Condition (3.2) implies
Condition (3.1). The theorem will then follow.

9



Because f is strictly nondecreasing,

f̂(n1, . . . , nk) = f(n1, . . . , nk)

for all natural numbers n1, . . . , nk. Furthermore, for any function g : N
k → R

≥0,

ĝ(n1, . . . , nk) ≥ g(n1, . . . , nk)

for all natural numbers n1, . . . , nk. Therefore, whenever

ĝ(n1, . . . , nk) ≤ cf̂(n1, . . . , nk),

it follows that
g(n1, . . . , nk) ≤ cf(n1, . . . , nk).

�

Using Theorem 3.5, we can now show the following theorem.

Theorem 3.6 Property 3 holds for Ô when the function f1 is strictly nonde-
creasing.

Proof: Let g(n1, . . . , nk) ∈ Ô(f1(n1, . . . , nk)). Then for some c ∈ R
>0 and

N ∈ N, whenever n1 ≥ N, . . . , nk ≥ N ,

g(n1, . . . , nk) ≤ cf1(n1, . . . , nk),

and
ĝ(n1, . . . , nk) ≤ cf̂1(n1, . . . , nk).

Without loss of generality, we can assume that f1(n1, . . . , nk) ≤ f2(n1, . . . , nk)
whenever n1 ≥ N, . . . , nk ≥ N . Because f1 is strictly nondecreasing, we also
have

ĝ(n1, . . . , nk) ≤ cf̂1(n1, . . . , nk)

= cf1(n1, . . . , nk)

≤ cf2(n1, . . . , nk)

≤ cf̂2(n1, . . . , nk).

From Theorem 3.5,

g(n1, . . . , nk) ∈ Ô(f2(n1, . . . , nk)).

�

Theorem 3.6 allows us to analyze sequential blocks of code and if -statements.
For example, suppose we have an if -statement in which the guard requires Ô(1)

time, one branch requires Ô(1) time, and the other branch requires Ô(mn) time.

10



We can first use Theorem 3.6 to conclude that each branch runs in Ô(mn)

time and that execution of the guard also runs in Ô(mn) time. Then using the

summation rule, we can conclude that the entire statement runs in Ô(mn) time.
We are now ready to examine Property 5. By Theorem 2.4, it would appear

that we need to restrict this property, as we did Property 3. Indeed, it is not
hard to show, following the first part of the proof of Theorem 2.4, that

Ô(mn)Ô(g(m,n)) 6⊆ Ô(mng(m,n)),

where g(m,n) is as defined in (2.1). We therefore will restrict both f1 and f2

in Property 5 to be nondecreasing.

Theorem 3.7 Property 5 holds for Ô when the functions f1 and f2 are strictly
nondecreasing.

Proof: Let
g1(n1, . . . , nk) ∈ Ô(f1(n1, . . . , nk))

and
g2(n1, . . . , nk) ∈ Ô(f2(n1, . . . , nk)).

Then there exist positive real numbers c1 and c2 and a natural number N such
that whenever n1 ≥ N, . . . , nk ≥ N , each of the following hold:

g1(n1, . . . , nk) ≤ c1f1(n1, . . . , nk);

g2(n1, . . . , nk) ≤ c2f2(n1, . . . , nk);

ĝ1(n1, . . . , nk) ≤ c1f̂1(n1, . . . , nk); and

ĝ2(n1, . . . , nk) ≤ c2f̂2(n1, . . . , nk).

Let c = c1c2. Then for n1 ≥ N, . . . , nk ≥ N , because f1 and f2 are strictly
nondecreasing,

ĝ1g2(n1, . . . , nk) ≤ ĝ1(n1, . . . , nk)ĝ2(n1, . . . , nk)

≤ c1c2f̂1(n1, . . . , nk)f̂2(n1, . . . , nk)

= cf1(n1, . . . , nk)f2(n1, . . . , nk)

= cf̂1f2(n1, . . . , nk).

Because f1f2 must be strictly nondecreasing, by Theorem 3.5,

g1(n1, . . . , nk)g2(n1, . . . , nk) ∈ Ô(f1(n1, . . . , nk)f2(n1, . . . , nk)).

�

The only remaining property from Section 2 is Property 2. Unfortunately,
this property does not hold for arbitrary f : N

k → R
≥0 and g : N

k → R
≥0. For

example, suppose we define

f(m,n) =

{
2n if m = 0, n even

mn otherwise.

11



Then taking g as defined in (2.1), it is easily seen that g(m,n) ∈ Ô(f(m,n)).
However, for every odd n,

m∑

i=0

g(i, n) = 2n +
mn(m + 1)

2
,

whereas
m∑

i=0

f(i, n) =
mn(m + 1)

2
.

Therefore,
m∑

i=0

g(i, n) 6∈ Ô

(
m∑

i=0

f(i, n)

)
.

We therefore need to assume that f is strictly nondecreasing.
Furthermore, as we mentioned in Section 2, we often need a more general

property in which the bounds of the summation index are arbitrary. Therefore,
in what follows, we will show that this more general property holds when f

is strictly nondecreasing. In order to simplify the notation, we will state the
theorem so that the last variable is the summation index; however, it should be
clear that the proof works when any variable is used as the summation index.

Theorem 3.8 Let f : N
k → R

≥0 be a strictly nondecreasing function. Then for
any g(n1, . . . , nk) ∈ Ô(f(n1, . . . , nk)), any natural number m, and any strictly
nondecreasing unbounded function h : N→ N,

h(nk)∑

i=m

g(n1, . . . , nk−1, i) ∈ Ô




h(nk)∑

i=m

f(n1, . . . , nk−1, i)


 .

Proof: Let c ∈ R
>0 and N ∈ N be such that whenever n1 ≥ N, . . . , nk ≥ N ,

g(n1, . . . , nk) ≤ cf(n1, . . . , nk)

and
ĝ(n1, . . . , nk) ≤ cf̂(n1, . . . , nk).

Without loss of generality, we can assume that N ≥ m. In order to simplify the
notation, we first define

f ′(n1, . . . , nk) =

h(nk)∑

i=m

f(n1, . . . , nk−1, i)

and

g′(n1, . . . , nk) =

h(nk)∑

i=m

g(n1, . . . , nk−1, i).

12



We therefore need to show that

g′(n1, . . . , nk) ∈ Ô(f ′(n1, . . . , nk)).

Because f and h are strictly nondecreasing, it follows that f ′ is strictly
nondecreasing; hence, by Theorem 3.5, we only need to show Condition (3.2).
Note that for 0 ≤ i1 ≤ n1, . . . , 0 ≤ ik ≤ nk,

g′(i1, . . . , ik) =

h(ik)∑

i=m

g(i1, . . . , ik−1, i)

≤

h(nk)∑

i=m

ĝ(n1, . . . , nk−1, i);

hence,

ĝ′(n1, . . . , nk) ≤

h(nk)∑

i=m

ĝ(n1, . . . , nk−1, i).

Because h is strictly nondecreasing and unbounded, we can choose N ′ ≥ N

so that for every n ≥ N ′, h(n) ≥ N . Suppose n1 ≥ N ′, . . . , nk ≥ N ′. Then
because f is strictly nondecreasing,

ĝ′(n1, . . . , nk) ≤

h(nk)∑

i=m

ĝ(n1, . . . , nk−1, i)

=

N∑

i=m

ĝ(n1, . . . , nk−1, i) +

h(nk)∑

i=N+1

ĝ(n1, . . . , nk−1, i)

≤

N∑

i=m

ĝ(n1, . . . , nk−1, N) +

h(nk)∑

i=N+1

cf̂(n1, . . . , nk−1, i)

≤ (N −m + 1)cf̂(n1, . . . , nk−1, N) + c

h(nk)∑

i=N+1

f(n1, . . . , nk−1, i)

= c(N −m + 1)f(n1, . . . , nk−1, N) + c

h(nk)∑

i=N+1

f(n1, . . . , nk−1, i)

≤ c(N −m + 1)f ′(n1, . . . , nk)

= c(N −m + 1)f̂ ′(n1, . . . , nk).

Because c(N −m + 1) is a fixed positive constant, by Theorem 3.5,

g′(n1, . . . , nk) ∈ Ô(f ′(n1, . . . , nk)).

�

Now taking m = 0 and h(n) = n, we have the following corollary.

13



Corollary 3.9 Property 2 holds for Ô when the function f is strictly nonde-
creasing.

4 Big-Ω

We can extend the definition of big-Ω to multiple variables by modifying the def-
inition of Ô so that the directions of inequalities (3.1) and (3.2) are reversed. Let

us refer to this extension as Ω̂. Specifically, for f : N
k → R

≥0, Ω̂(f(n1, . . . , nk))
is defined to be the set of all functions g : N

k → R
≥0 such that there exist

c ∈ R
>0 and N ∈ N such that for all n1 ≥ N, . . . , nk ≥ N , the following

conditions hold:
g(n1, . . . , nk) ≥ cf(n1, . . . , nk); (4.1)

and
ĝ(n1, . . . , nk) ≥ cf̂(n1, . . . , nk). (4.2)

It is then easily seen that the standard duality between big-O and big-Ω
holds.

Theorem 4.1 Let f : N
k → R

≥0 and g : N
k → R

≥0. Then f(n1, . . . , nk) ∈

Ô(g(n1, . . . , nk)) iff g(n1, . . . , nk) ∈ Ω̂(f(n1, . . . , nk)).

As with big-O, we would like to know that Ω̂ is the same as Ω when we
restrict our attention to single-variable functions. However, as with big-O, there
are cases in which this equality does not hold. Given Theorems 3.1 and 4.1, we
might suspect that the exceptions would involve the constant function 0. Indeed,
it is not hard to see that if f(n) is positive for at least one value but no more

than finitely many values, then 0 ∈ Ω(f(n)), but 0 6∈ Ω̂(f(n)). However, the
following theorem shows that this is the only exception.

Theorem 4.2 Let f : N → R
≥0. Then Ω̂(f(n)) − {0} = Ω(f(n)) − {0}; i.e.,

Ω̂(f(n)) and Ω(f(n)) are equal if we exclude the constant function 0 from both
sets.

Proof:

⊆: Let g(n) ∈ Ω̂(f(n))−{0}. Then by Condition (4.1), g(n) ∈ Ω(f(n))−{0}.
⊇: Let g(n) ∈ Ω(f(n)) − {0}. Then because g(n) ∈ Ω(f(n)), there exist

c ∈ R
>0 and N ∈ N such that for every n ≥ N ,

g(n) ≥ cf(n);

hence, Condition (4.1) holds.
Because g(n) is not the constant function 0, g(n) > 0 for some n ∈ N; hence,

we can assume without loss of generality that for some i < N , g(i) > 0. We
now let

c′ =

{
c if f̂(N − 1) = 0

min
(
c,

bg(N−1)
bf(N−1)

)
otherwise.

14



Note that c ≥ c′ > 0. Then for n ≥ N ,

ĝ(n) = max(ĝ(N − 1),max{g(i) | N ≤ i ≤ n})

≥ max(c′f̂(N − 1),max{cf(i) | N ≤ i ≤ n})

≥ c′f̂(n).

Therefore, Condition (4.2) holds; hence, g(n) ∈ Ω̂(f(n))− {0}. �

By observing that 0 6∈ Ω(f(n)) ∪ Ω̂(f(n)) when f(n) is eventually positive,
we obtain the following corollary.

Corollary 4.3 Let f : N → R
≥0 be an eventually positive function. Then

Ω̂(f(n)) = Ω(f(n)).

Let us now consider the properties of Ω̂. We first observe that the following
two theorems are easily shown.

Theorem 4.4 For any positive integer k, positive real number c, and f : N
k →

R
≥0, Ω̂(f(n1, . . . , nk)) = Ω̂(cf(n1, . . . , nk)).

Theorem 4.5 For any positive integer k, f1 : N
k → R

≥0, and f2 : N
k → R

≥0,

Ω̂(f1(n1, . . . , nk)) + Ω̂(f2(n1, . . . , nk))

= Ω̂(max(f1(n1, . . . , nk), f2(n1, . . . , nk))).

For each of the five properties presented in Section 2, there is an analogous
property for big-Ω. For example, the analog to Property 1 is simply (4.1).
Furthermore, it is obvious that when we replace big-O with big-Ω in Property
4, the resulting property holds for Ω̂. In what follows, we will show that each
of the remaining analogous properties holds for Ω̂ when the functions inside the
asymptotic notation are strictly nondecreasing.

We begin by considering the impact of a strictly nondecreasing function f

on the definition of Ω̂. By examining the proof of Theorem 3.5, we can see that
reversing the direction of the inequalities in the definition allows us to prove
that Condition (4.1) implies Condition (4.2). Let us define Ω∀(f(n1, . . . , nk)) to
be the set of functions satisfying Condition (4.1). We then have the following
theorem.

Theorem 4.6 If f : N
k → R

≥0 is strictly nondecreasing, then

Ω̂(f(n1, . . . , nk)) = Ω∀(f(n1, . . . , nk)).

The following analog for Property 3 then follows immediately from Theorem
4.6.

15



Theorem 4.7 Let f1 : N
k → R

≥0 and f2 : N
k → R

≥0 be two functions such
that for some N ∈ N, and every n1 ≥ N, . . . , nk ≥ N ,

f1(n1, . . . , nk) ≥ f2(n1, . . . , nk).

Further suppose that f2 is strictly nondecreasing. Then

Ω̂(f1(n1, . . . , nk)) ⊆ Ω̂(f2(n1, . . . , nk)).

Likewise, Theorem 4.6 implies that the analog for Property 5 holds for Ω̂
when the functions involved are strictly nondecreasing.

Theorem 4.8 Let f1 : N
k → R

≥0 and f2 : N
k → R

≥0 be two strictly nonde-
creasing functions. Then

Ω̂(f1(n1, . . . , nk))Ω̂(f2(n1, . . . , nk)) ⊆ Ω̂(f1(n1, . . . , nk)f2(n1, . . . , nk)).

Finally, we will show that the analog of Theorem 3.8 holds for Ω̂. From this
it will follow that the analog of Property 2 holds for Ω̂ as well.

Theorem 4.9 Let f : N
k → R

≥0 be a strictly nondecreasing function. Then for
any g(n1, . . . , nk) ∈ Ω̂(f(n1, . . . , nk)), any natural number m, and any strictly
nondecreasing unbounded function h : N→ N,

h(nk)∑

i=m

g(n1, . . . , nk−1, i) ∈ Ω̂




h(nk)∑

i=m

f(n1, . . . , nk−1, i)


 .

Proof: Let c ∈ R
>0 and N ∈ N be such that whenever n1 ≥ N, . . . , nk ≥ N ,

g(n1, . . . , nk) ≥ cf(n1, . . . , nk).

Furthermore, we can assume without loss of generality that N ≥ m. Because
h is strictly nondecreasing and unbounded, we can choose N ′ ≥ N such that
h(N ′) ≥ 2N .

Suppose n1 ≥ N ′, . . . , nk ≥ N ′. Then

h(nk)∑

i=m

g(n1, . . . , nk−1, i) ≥

h(nk)∑

i=N

g(n1, . . . , nk−1, i)

≥

h(nk)∑

i=N

cf(n1, . . . , nk−1, i)

≥
c

2

h(nk)∑

i=m

f(n1, . . . , nk−1, i)

because f is strictly nondecreasing and h(nk) ≥ 2N . From Theorem 4.6,

h(nk)∑

i=m

g(n1, . . . , nk−1, i) ∈ Ω̂




h(nk)∑

i=m

f(n1, . . . , nk−1, i)


 .

�

16



5 Other Asymptotic Notation

For single-variable functions f(n), it is common to define Θ(f(n)) to be

O(f(n)) ∩ Ω(f(n)).

For functions f : N
k → R

≥0, we can therefore define Θ̂(f(n1, . . . , nk)) to be

Ô(f(n1, . . . , nk)) ∩ Ω̂(f(n1, . . . , nk)).

It then follows from Theorems 3.1 and 4.2 that if f : N → R
≥0 is eventually

positive, then Θ̂(f(n)) = Θ(f(n)). Likewise, it is easily seen that the remaining

theorems in Sections 3 and 4 extend to Θ̂.
In addition, it is common (see, e.g., [3]) to define o(f(n)) to be the set of

all functions g : N→ R
≥0 such that for every positive real number c, there is a

natural number N such that

g(n) < cf(n)

whenever n ≥ N . For functions f : N
k → R

≥0, we can therefore define
ô(f(n1, . . . , nk)) to be the set of all functions g : N

k → R
≥0 such that for

every positive real number c, there is a natural number N such that

g(n1, . . . , nk) < cf(n1, . . . , nk) (5.1)

and
ĝ(n1, . . . , nk) < cf̂(n1, . . . , nk) (5.2)

whenever n1 ≥ N, . . . , nk ≥ N .
Similarly, we can define ω̂(f(n1, . . . , nk)) to be the set of all functions g :

N
k → R

≥0 such that for every positive real number c, there is a natural number
N such that

g(n1, . . . , nk) > cf(n1, . . . , nk) (5.3)

and
ĝ(n1, . . . , nk) > cf̂(n1, . . . , nk) (5.4)

whenever n1 ≥ N, . . . , nk ≥ N . Note that for single-variable functions f(n),
ω(f(n)) is defined as above, but without Condition (5.4).

The following theorem is now easily shown.

Theorem 5.1 Let f : N
k → R

≥0 and g : N
k → R

≥0. Then f(n1, . . . , nk) ∈
ô(g(n1, . . . , nk)) iff g(n1, . . . , nk) ∈ ω̂(f(n1, . . . , nk)).

It is not hard to modify the proofs of Theorems 3.1 and 4.2 to apply to ô and
ω̂, respectively. However, it is interesting to note that we don’t need to restrict f

to be greater that 0 at some point, as in Theorem 3.1, because ô(0) = o(0) = ∅.
Likewise, we do not need to remove the constant function 0 from ω(f(n)) and
ω̂(f(n)), as in Theorem 4.2, because these sets never contain 0. We therefore
have the following theorems.

17



Theorem 5.2 For every function f : N→ R
≥0, ô(f(n)) = o(f(n)).

Theorem 5.3 For every function f : N→ R
≥0, ω̂(f(n)) = ω̂(f(n)).

The other results from Sections 3 and 4 extend to ô and ω̂, respectively,
in a fairly straightforward way, provided we are careful in how we state the
desired properties. For example, the analogs of Property 4 should be that for all
functions f : N

k → R
≥0, f(n1, . . . , nk) 6∈ o(f(n1, . . . , nk)), and f(n1, . . . , nk) 6∈

ω(f(n1, . . . , nk)).

6 Conclusion

We have shown that the properties of big-O notation typically assumed in the
analysis of algorithms are inconsistent when applied to functions on more than
one variable. Furthermore, we have shown that even if the functions inside the
big-O notation are restricted to be strictly nondecreasing, these properties do
not all hold for the standard definition. In order to overcome this deficiency,
we have proposed an alternative definition and showed that, when the functions
inside the notation are nondecreasing, the desired properties hold for this def-
inition. Furthermore, we have extended these definitions to other asymptotic
notation commonly used in the analysis of algorithms, and have shown that
these definitions yield similar results.

Because the worst-case (or expected-case) running times of most algorithms
are strictly nondecreasing, it seems unlikely that the problems exposed by this
paper have led to many (if any) incorrect conclusions in the analysis of agorithms
in the literature. However, there do exists algorithms whose running times are
not strictly nondecreasing. For example, Euclid’s algorithm for finding the
greatest common divisor of two positive integers m and n (see, e.g., [3]) takes
more time for m = 5 and n = 3 than for m = 5 and n = 5. Thus, in terms
of the values of m and n, the running time is not strictly nondecreasing. It
therefore would be too restrictive to restrict the set of functions comprising
O(f(m,n)) to be strictly nondecreasing. Note, however, that we can find a

strictly nondecreasing upper bound (e.g., Ô(lg(max(u, v))) on the running time
of Euclid’s algorithm.

The main contribution of our proposed definition is to provide a mathemati-
cal foundation for performing algorithm analysis with more than one parameter.
Without this foundation, analyses cannot be formally justified, and therefore run
a risk of leading to incorrect conclusions. Furthermore, because the behavior of
our Ô is closer to what is typically expected than is the behavior of O∀, most
analyses in the literature should be valid for this new definition. The only as-
pect that needs to be checked is whether the functions inside the notation are
nondecreasing when this property is required.

18



References

[1] Paul G. H. Bachmann. Analytische Zahlentheorie, Bd 2: Die Analysische

Zahlentheorie. Teubner, Leipzig, Germany, 1894.

[2] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice
Hall, 1996.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. McGraw-Hill, 2nd edition, 2001.

[4] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Founda-

tions, Analysis, and Internet Examples. Wiley, 2002.

[5] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.

[6] Donald E. Knuth. Big omicron and big omega and big theta. ACM SIGACT

News, 8:18–24, 1976.

[7] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen.
Teubner, Leipzig, Germany, 1909.

[8] Anany Levitin. Introduction to The Design & Analysis of Algorithms. Ad-
dison Wesley, 2nd edition, 2007.

[9] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 2nd edition, 2003.

19


