Defn: Let $G = (V, T, P, S)$ be a CFG. A symbol $X \in V \cup T$ is said to be

- **generating** if $X \xrightarrow{*} w$ for some $w \in T^*$;
- **reachable** if $S \xrightarrow{*} \alpha X \beta$ for some $\alpha \beta \in (V \cup T)^*$;
- **useful** if $S \xrightarrow{*} \alpha X \beta \xrightarrow{*} w$ for some $w \in T^*$, $\alpha \beta \in (V \cup T)^*$; or
- **useless** if it is not useful.

Chomsky Normal Form

Defn: A CFG is said to be in *Chomsky Normal Form* (CNF) if every symbol is useful and every production is of one of the following forms:

- $A \rightarrow BC$, where A and B are variables; or
- $A \rightarrow a$, where A is a variable and a is a terminal.

Theorem 7.16: Let G be a CFG such that $L(G) - \{\epsilon\} \neq \emptyset$. Then we can effectively construct a CNF grammar G' such that $L(G') = L(G) - \{\epsilon\}$.
Theorem 7.2: Let $G = (V, T, P, S)$ be a CFG such that $L(G) \neq \emptyset$, and let

- V_g be the set of generating variables in V;
- P_g be the set of productions in P whose variables all belong to V_g;
- V_u and T_u be the sets of reachable variables and terminals, resp., in $G_g = (V_g, T, P_g, S)$;
- and P_u be the set of productions in P_g containing only symbols in $V_u \cup T_u$.

Then $G_u = (V_u, T_u, P_u, S)$ has no useless symbols, and $L(G_u) = L(G)$.

G_u is a CFG:

- Because $L(G) \neq \emptyset$, $S \in V_g$; hence, G_g is a CFG.
- $S \in V_u$, so G_u is a CFG.
\(G_u \) has no useless symbols:

- Let \(X \in V_u \cup T_u \).
- Because \(X \) is reachable in \(G_g \), \(S \xRightarrow{G_g} \cdots \xRightarrow{G_g} \alpha X \beta \).
- Because every symbol in \(V_g \cup T_g \) is generating in \(G \), \(\alpha X \beta \xRightarrow{G} \cdots \xRightarrow{G} w \) for some \(w \in T^* \).
- Clearly, \(S \xRightarrow{G_g} \cdots \xRightarrow{G_g} \alpha X \beta \xRightarrow{G_g} \cdots \xRightarrow{G_g} w \).
- Clearly, \(S \xRightarrow{G_u} \alpha X \beta \xRightarrow{G_u} w \), so \(X \) is useful in \(G_u \).

\[L(G_u) = L(G) : \]

- Because \(P_u \subseteq P \), \(L(G_u) \subseteq L(G) \).
- Let \(w \in L(G) \).
- Then \(S \xRightarrow{G} \cdots \xRightarrow{G} w \).
- Clearly, \(S \xRightarrow{G_g} \cdots \xRightarrow{G_g} w \).
- Clearly, \(S \xRightarrow{G_u} w \).
GENVARS(*V*, *T*, *P*, *S*)

\[
V_g \leftarrow \emptyset \\
// \text{Invariant: } V_g \subseteq V, \text{ each } A \in V_g \text{ is generating}
\]

repeat

\[
V'_g \leftarrow V_g \\
\text{foreach } A \rightarrow \alpha \in P, A \not\in V'_g \\
\text{if } \alpha \in (V'_g \cup T)^* \\
\quad V_g \leftarrow V_g \cup \{A\}
\]

until \(V'_g = V_g\)

// \(V_g \subseteq V\), each \(A \in V_g\) is generating, and for
// each \(A \rightarrow \alpha \in P\) s.t. \(\alpha \in (V_g \cup T)^*\), \(A \in V_g\)

return \(V_g\)

Claim: **GENVARS**(*V*, *T*, *P*, *S*) always terminates.

Proof sketch:

- If \(V_g\) does not increase in size, the loop terminates.

- \(V_g \subseteq V\).

- because \(V\) is finite, \(V_g\) can increase in size only finitely many times.
Claim: \textsc{Genvars}(V, T, P, S) returns the set of all generating variables in \((V, T, P, S)\).

Proof sketch:

- Clearly, \(V_g\) contains only generating variables.
- We will show by induction on \(\Rightarrow\) that if \(\alpha \Rightarrow w \in T^*\), then \(\alpha \in (V_g \cup T)^*\).
- It will follow that if \(A\) is a generating variable, then \(A \in V_g\).

Base: \(\alpha = w\). Then \(\alpha \in T^* \subseteq (V_g \cup T)^*\).

IH: Assume that given \(\alpha \Rightarrow w \in T^*\), we have \(\alpha \in (V_g \cup T)^*\).

IS: Suppose \(\beta \Rightarrow \alpha \Rightarrow w\).

- Then \(\beta = \gamma_1 A \gamma_3\) and \(\alpha = \gamma_1 \gamma_2 \gamma_3\) where \(A \rightarrow \gamma_2 \in P\).
- Because \(\alpha \in (V_g \cup T)^*\), \(\gamma_2 \in (V_g \cup T)^*\), so \(A \in V_g\).
- Therefore, \(\beta \in (V_g \cup T)^*\).
Claim: There is an algorithm to find all reachable symbols in a given CFG.

Proof sketch:

- Construct a directed graph whose nodes are the symbols of G and such that (X, Y) is an edge if there is a production $X \rightarrow \alpha Y \beta$.
- Find all nodes reachable from S using depth-first search.

Corollary: For a CFG G such that $L(G) \neq \emptyset$, we can effectively construct a CFG G' with no useless symbols such that $L(G') = L(G)$.