\(\epsilon\)-NFAs

Defn: An \(\epsilon\)-NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where \(Q\), \(\Sigma\), \(q_0\), and \(F\) are as defined for DFAs, and

\[
\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q.
\]

\(\epsilon\)-closure

Defn: Let \(A = (Q, \Sigma, \delta, q_0, F)\) be an \(\epsilon\)-NFA. For \(q \in Q\), we define the \(\epsilon\)-closure of \(q\) to be the least set \(S\) such that

- \(q \in S\) and
- if \(p \in S\) and \(r \in \delta(p, \epsilon)\), then \(r \in S\).

We denote the \(\epsilon\)-closure of \(q\) by \text{ECLOSE}(q).
Defn: Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ϵ-NFA.

We define $\hat{\delta} : Q \times \Sigma^* \rightarrow 2^Q$ as follows:

- $\hat{\delta}(q, \epsilon) = \text{ECLOSE}(q)$ for all $q \in Q$; and
- $\hat{\delta}(q, ay) = \bigcup_{p \in \text{ECLOSE}(q)} \bigcup_{r \in \delta(p, a)} \hat{\delta}(r, y)$ for all $q \in Q$, $a \in \Sigma$, $y \in \Sigma^*$.

Defn: Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ϵ-NFA.

We define the *language accepted by* A to be

$$L(A) = \{x \in \Sigma^* | \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$$

Claim: Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ϵ-NFA.

Then for all $q \in Q$, $a \in \Sigma$, and $y \in \Sigma^*$,

$$\hat{\delta}(q, ya) = \bigcup_{q \in \hat{\delta}(q, y)} \left(\bigcup_{r \in \delta(p, a)} \text{ECLOSE}(r) \right).$$

Theorem 2.22: A language L is regular iff there is some ϵ-NFA N such that $L(N) = L$.

3
Operations on Languages

Defn: Let L_1 and L_2 be two languages. The *concatenation* of L_1 and L_2 is defined to be

$$L_1L_2 = \{ xy \mid x \in L_1, y \in L_2 \}.$$

Defn: Let L be a language. We define the *Kleene closure of L*, denoted L^*, to be the least set S such that

- $\epsilon \in S$; and
- if $x \in L$ and $y \in S$, then $xy \in S$.

Defn: Let $L \subseteq \Sigma^*$. We recursively define:

- $L^0 = \{ \epsilon \}$; and
- $L^{i+1} = LL^i$ for $i \in \mathbb{N}$.

Defn: Let $L \subseteq \Sigma^*$. Then

$$L^+ = \bigcup_{i>0} L^i.$$

Claim: Let $L \subseteq \Sigma^*$. Then

$$L^* = \bigcup_{i \in \mathbb{N}} L^i.$$
Proof sketch:

⊆: By induction on $y \in L^*$.

Base: $y = \epsilon$. Then $y \in L^0$.

IH: Assume that for some $y \in L^*$, $y \in \bigcup_{i \in \mathbb{N}} L^i$.

IS: Let $x \in L$.

- For some i, $y \in L^i$.
- Then $xy \in L^{i+1}$.

⊇: We show by induction on $i \in \mathbb{N}$ that $L^i \subseteq L^*$.

Base: $i = 0$. Then

$$L^0 = \{\epsilon\}$$

$$\subseteq L^*.$$

IH: Assume that for some $i \in \mathbb{N}$, $L^i \subseteq L^*$.

IS:

$$L^{i+1} = LL^i$$

$$\subseteq LL^*$$

$$\subseteq L^*.$$
Defn: Let \(\Sigma \) be an alphabet. We define \(R(\Sigma) \) to be the least set \(R \) such that

- \(\emptyset \in R; \)
- \(\{\epsilon\} \in R; \)
- for each \(a \in \Sigma, \{a\} \in R; \)
- if \(L_1 \in R \) and \(L_2 \in R \), then \(L_1 \cup L_2 \in R; \)
- if \(L_1 \in R \) and \(L_2 \in R \), then \(L_1L_2 \in R; \) and
- if \(L \in R \), then \(L^* \in R. \)

Regular Expressions

Defn: A *regular expression* is a description of a language in \(R(\Sigma) \) using the following notation:

- \(\epsilon \) denotes \(\{\epsilon\}; \)
- \(a \) denotes \(\{a\} \) for \(a \in \Sigma; \) and
- union is denoted by \(+ \).
Precedence in regular expressions:

1. Kleene closure
2. Concatenation
3. Union

Theorem 3.4: Let L be a regular language over Σ. Then $L \in R(\Sigma)$.

Lemma 1: The set of regular languages over Σ is closed under union.

Proof sketch:

![Diagram of two automata](image)

A_1 and A_2 are automata for languages L_1 and L_2, respectively. The union $L_1 \cup L_2$ is represented by the automaton for L.
Lemma 2: The set of regular languages over Σ is closed under concatenation.

Proof sketch:

Lemma 3: The set of regular languages over Σ is closed under Kleene closure.

Proof sketch:
Theorem 3.7: If $L \in R(\Sigma)$, then L is regular.

Proof sketch: By induction on $L \in R(\Sigma)$.

Base: \emptyset, $\{\epsilon\}$, and $\{a\}$ for $a \in \Sigma$ are easily seen to be regular.

IH: Assume that some $L_1, L_2 \in R(\Sigma)$ are regular.

IS: By Lemmas 1-3, $L_1 \cup L_2$, L_1L_2, and L_1^* are regular.