Independent Set (IS)

Input: An undirected graph G and a natural number k.

Question: Does G contain and *independent set* of size k? I.e., is there a set of k nodes of G in which no two nodes are adjacent?

Claim: $\text{IS} \in \mathcal{NP}$.
- Guess a set of nodes.
- Count this set.
- Verify that it is an independent set.

Theorem 10.18: IS is \mathcal{NP}-complete.

Proof sketch: We will show that $3\text{SAT} \leq_p \text{IS}$.
- Let \mathcal{F} be a 3CNF formula.
- We will construct a graph G and a positive integer k such that G has an independent set iff \mathcal{F} is satisfiable.
General Strategy for Finding Reductions

- Focus on what the nondeterministic TMs guess.
- Try to find a correspondence between what is guessed; e.g., between a satisfying assignment and an independent set.

Construction of G, Step 1

For each variable v_i:

$v_i \rightarrow \neg v_i$
Construction of G, Step 2

For each conjunct c_j:

For $c_j = \alpha_{j1} \lor \alpha_{j2} \lor \alpha_{j3}$:
Example: \((v_1 \lor \neg v_3 \lor \neg v_4) \land (\neg v_1 \lor v_2 \lor \neg v_4)\)

- \(G\) contains \(2n + 3m\) nodes, where \(n\) is the number of variables and \(m\) is the number of conjuncts.

- Let \(k = n + m\).

- For any satisfying assignment, the set of false literals and one node from each clause adjacent to a true literal forms an independent set of size \(k\).

- For any independent set of size \(k\), we can form a satisfying assignment by setting literals in the independent set to false.
Node Cover (NC)

Input: A graph G and a natural number k.

Question: Does G have a *node cover* of size at most k?
I.e., is there a set of nodes such that every edge is incident on some node in that set?

Claim: Let N be the set of nodes in a graph G and $C \subseteq N$. Then C is a node cover iff $N - C$ is an independent set.

Theorem 10.20: NC is \mathcal{NP}-complete.