The Chomsky Hierarchy

We can define four types of grammars by restricting the form of productions $\alpha \rightarrow \beta$ for $\alpha, \beta \in (V \cup T)^*$.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Restriction</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RE</td>
<td>None</td>
<td>TM</td>
</tr>
<tr>
<td>1</td>
<td>CSL</td>
<td>$</td>
<td>\alpha</td>
</tr>
<tr>
<td>2</td>
<td>CFL</td>
<td>$\alpha \in V$</td>
<td>PDA</td>
</tr>
<tr>
<td>3</td>
<td>Regular</td>
<td>$\alpha \in V$, $\beta \in T^V \cup T^$</td>
<td>DFA</td>
</tr>
</tbody>
</table>

Computational Complexity

Defn: Let $T : N \rightarrow N$. A TM M is said to have *time complexity* $T(n)$ if on every input string w, M takes no more than $T(|w|)$ transitions.

Defn: \mathcal{P} is the set of all languages $L \subseteq \{0,1\}^*$ such that there is a polynomial $p(n)$ and a TM M with time complexity $p(n)$ such that $L(M) = L$.

Defn: \mathcal{NP} is the set of all languages $L \subseteq \{0,1\}^*$ such that there is a polynomial $p(n)$ and a nondeterministic TM M with time complexity $p(n)$ such that $L(M) = L$.
Motivation

- \(\mathcal{P} \) represents the set of decision problems that can be decided by polynomial-time algorithms (see Section 8.6).
- The set of 1-variable polynomials over \(\mathbb{N} \) is closed under addition, multiplication, and composition.
- If there is a polynomial-time algorithm for a problem, there is usually an efficient one.
- There are many interesting problems in \(\mathcal{NP} \) that are not known to be in \(\mathcal{P} \).

Claim: \(\mathcal{P} \subseteq \mathcal{NP} \).

Open Question: Is \(\mathcal{P} = \mathcal{NP} \)?

Working Hypothesis: \(\mathcal{P} \neq \mathcal{NP} \).

Defn: A language \(L_1 \) is polynomially many-one reducible to a language \(L_2 \) (\(L_1 \leq_p L_2 \)) if there is a TM with polynomial time complexity that reduces \(L_1 \) to \(L_2 \).

Claim: If \(L_1 \leq_p L_2 \), \(L_1 \subseteq \{0,1\}^* \), and \(L_2 \in \mathcal{P} \), then \(L_1 \in \mathcal{P} \).

Defn: A language \(L \) is said to be \(\mathcal{NP} \)-hard if for every \(L' \in \mathcal{NP} \), \(L' \leq_p L \). If, in addition, \(L \in \mathcal{NP} \), then \(L \) is said to be \(\mathcal{NP} \)-complete.
Theorem 10.5: If $L \in \mathcal{P}$ is \mathcal{NP}-complete, then $\mathcal{P} = \mathcal{NP}$.

Proof: Let $L' \in \mathcal{NP}$.

- Because L is \mathcal{NP}-complete, $L' \leq^p_m L$.
- Because $L \in \mathcal{P}$, $L' \in \mathcal{P}$.
- Because $\mathcal{P} \subseteq \mathcal{NP}$, it follows that $\mathcal{P} = \mathcal{NP}$.

We therefore consider \mathcal{NP}-completeness of a language L to be strong evidence that $L \not\in \mathcal{P}$.

Claim: If $L_1 \leq^p_m L_2$ and $L_2 \leq^p_m L_3$, then $L_1 \leq^p_m L_3$.

Corollary: If L_1 is \mathcal{NP}-hard and $L_1 \leq^p_m L_2$, then L_2 is \mathcal{NP}-hard.

We can therefore show a language to be \mathcal{NP}-hard by reducing a known \mathcal{NP}-hard language to it.

In order to get our first \mathcal{NP}-hard language, we must reduce every language in \mathcal{NP} to it.
Boolean Satisfiability (SAT)

Input: A boolean formula \mathcal{F} consisting of boolean variables and the operators \land, \lor, and \neg.

Question: Is there an assignment of boolean values to the variables in \mathcal{F} that causes \mathcal{F} to evaluate to true?

Claim: $L_{\text{SAT}} \in \mathcal{NP}$, where L_{SAT} denotes the language of satisfiable formulas encoded over $\{0, 1\}$.

Cook’s Theorem: SAT is \mathcal{NP}-hard.

Proof idea:

- For each language L in \mathcal{NP}, there is a polynomial $p(n)$ and a nondeterministic TM M with time complexity $p(n)$ such that $L(M) = L$.

- From $w \in \{0, 1\}^*$, we construct a formula \mathcal{F} that is satisfiable iff there is an accepting computation of M on w.

- The time for the construction will be polynomial in $p(n)$.
Construction overview:

- We will view a computation as a sequence of IDs \(\alpha_0, \ldots, \alpha_{p(n)} \) such that either \(\alpha_i \vdash \alpha_{i+1} \) or \(\alpha_i = \alpha_{i+1} \).
- Each \(\alpha_i \) will be of the form \(X_{-p(n)} \cdots X_0 \cdots X_{p(n)+1} \) where \(X_j \) is either a tape symbol or a state.
- We use boolean variable \(y_{ijA} \) to denote whether symbol \(X_j \) of \(\alpha_i \) is \(A \).
- \(\mathcal{F} \) will constrain the sequence of IDs to be an accepting computation on \(w \).

We will describe a set of formulas, each enforcing certain constraints on the variables \(y_{ijA} \), for \(0 \leq i \leq p(n), -p(n) \leq j \leq p(n) + 1, A \in Q \cup \Gamma. \) \(\mathcal{F} \) will be the conjunction of these formulas.

\(\alpha_0 \) is the initial ID:

- \(y_{00q_0} \)
- \(y_{0ja_j} \) for \(1 \leq j \leq n \), where \(a_1 \cdots a_n = w \).
- \(y_{0jB} \) for \(-p(n) \leq j < 0, n < j \leq p(n) + 1 \).

\(\alpha_{p(n)} \) contains a final state:

\[
\bigvee_{j=-p(n)}^{p(n)+1} \bigvee_{q \in F} y_{p(n)jq}
\]
- We still need to enforce that $\alpha_i \models \alpha_{i+1}$ or $\alpha_i = \alpha_{i+1}$ for $0 \leq i < p(n)$.
- For $0 \leq i < p(n)$, $-p(n) \leq j \leq p(n) + 1$, we construct a formula enforcing one of the following
 1. X_{ij} is a state and $X_{i+1,j-1}X_{i+1,j}X_{i+1,j+1}$ results from doing nothing or taking a transition of M from $X_{i,j-1}X_{ij}X_{i,j+1}$ (if $j = -p(n)$ or $j = p(n) + 1$, this is omitted); or
 2. $X_{i,j-1}$, X_{ij}, and $X_{i,j+1}$ are not states, and $X_{i+1,j} = X_{ij}$.

Constraint 1 is enforced by the disjunction of the following formulas:

- For each $q \in Q$, $X, Y \in \Gamma$, and $(q', Z, R) \in \delta(q, Y)$:
 $$y_{i,j-1,X} \land y_{i+1,j-1,X} \land y_{ijq} \land y_{i+1,j,Z} \land y_{i,j+1,Y} \land y_{i+1,j+1,q'}.$$
- For each $q \in Q$, $X, Y \in \Gamma$, and $(q', Z, L) \in \delta(q, y)$:
 $$y_{i,j-1,X} \land y_{i+1,j-1,q'} \land y_{ijq} \land y_{i+1,j,X} \land y_{i,j+1,Y} \land y_{i+1,j+1,Z}.$$
- For each $q \in Q$, $X, Y \in \Gamma$: $y_{i,j-1,X} \land y_{i+1,j-1,X} \land y_{ijq} \land y_{i+1,j,q} \land y_{i,j+1,Y} \land y_{i+1,j+1,Y}$.

Constraint 2 is enforced by the conjunction of:

- $\bigvee_{X \in \Gamma} y_{i,j-1}, x$;
- $\bigvee_{X \in \Gamma} (y_{ij} x \land y_{i+1,j}, x)$; and
- $\bigvee_{x \in \Gamma} y_{i,j+1}, x$.

Conjuncts containing out-of-bounds subscripts are omitted.

- The formula can be constructed in polynomial time.
- The formula is satisfiable iff M has an accepting computation on w.
- Therefore, SAT is \mathcal{NP}-hard.