Post’s Correspondence Problem (PCP)

Input: Two sequences, \(A = w_1, \ldots, w_k \) and \(B = x_1, \ldots, x_k \), where each \(w_i \) and \(x_i \) is a string over some alphabet \(\Sigma \).

Question: Is there a sequence \(i_1, \ldots, i_m \) such that
\[1 \leq i_j \leq k \text{ for } 1 \leq j \leq m \text{ and } w_{i_1} \cdots w_{i_m} = x_{i_1} \cdots x_{i_m}\]?

Example:
\[
\begin{align*}
A &= 1, 10111, 10 \\
B &= 111, 10, 0
\end{align*}
\]

Solution: 2, 1, 1, 3:
Defn: Let L_{PCP} be the set of all strings of the form $0^k \# w_1 \# \cdots \# w_k \# x_1 \# \cdots \# x_k$ such that $w_1, \ldots, w_k, x_1, \ldots, x_k \in \{0, 1\}^*$ and for some i_1, \ldots, i_m, $w_{i_1} \cdots w_{i_m} = x_{i_1} \cdots x_{i_m}$.

Claim: L_{PCP} is not recursive; i.e., PCP is undecidable.

Modified PCP (MPCP): Same as PCP, except that a solution is required to start with index 1.

Claim: L_{MPCP} is not recursive.

We will show that $L_U \leq L_{MPCP} \leq L_{PCP}$.

$L_U \leq L_{MPCP}$ (outline):

We will describe:

1. for arbitrary $v \in \{0, 1\}^*$, an instance of MPCP that has a solution iff $v \in L_U$; and

2. a TM M, that, given $v \in \{0, 1\}^*$, produces a string $y \in \{0, 1, \#\}^*$ such that $y \in L_{MPCP}$ iff $v \in L_U$.

Let $U = (Q, \{0, 1\}, \Gamma, \delta, q_0, B, F)$ be a universal TM, and let $\$$ be a symbol not in $Q \cup \Gamma$.
Given \(v \in \{0,1\}^* \), consider the following instance of MPCP:

- Let \(w_1 = \$ \) and \(x_1 = \$ q_0 v \$ \).
- For each \(X \in \Gamma \cup \{\$\} \), include the pair \(\langle X, X \rangle \).
- For all \(q \in Q - F, p \in Q, X, Y, Z \in \Gamma \), include
 - \(\langle qX, Yp \rangle \) if \(\delta(q, X) = (p, Y, R) \);
 - \(\langle ZqX, pZY \rangle \) and \(\langle qX, qBY \rangle \) if \(\delta(q, X) = (p, Y, L) \);
 - \(\langle q\$, Yp$ \rangle \) if \(\delta(q, B) = (p, Y, R) \);
 - \(\langle Zq\$, pZY$ \rangle \) and \(\langle q\$, qBY$ \rangle \) if \(\delta(q, B) = (p, Y, L) \).
- For each \(q \in F, X \in \Gamma \), include \(\langle Xq, q \rangle \), \(\langle qX, q \rangle \), and \(\langle q\$$, $ \rangle \).

It can be shown that this instance has a solution iff \(v \in L_U \).

Note that this instance has alphabet \(Q \cup \Gamma \cup \{\$\} \), which is independent of \(v \).

The TM \(M \):

- We encode the symbols of the MPCP instance as fixed-length strings over \(\{0,1\} \).
- Only \(x_1 \) in the MPCP instance depends on \(v \).
- All of \(y \) except the encoding of \(v \) is stored in the finite control of \(M \).
- \(M \) simply encodes its input \(v \) and inserts it into \(y \).
MPCP ≤ PCP:

Let \((A, B)\) be an instance of MPCP over \(\Sigma\), and let \(*\) and \(\$\) be distinct symbols not in \(\Sigma\).

From \(A = w_1, \ldots, w_k\), we construct \(A' = w'_1, \ldots, w'_{k+1}\) as follows:

- Insert \(*\) after each symbol in \(w_1, \ldots, w_k\).
- Also, insert \(*\) before the first symbol in \(w_1\).
- Let \(w'_{k+1} = \$\).

From \(B = x_1, \ldots, x_k\), we construct \(B' = x'_1, \ldots, x'_{k+1}\) as follows:

- Insert \(*\) before each symbol in \(x_1, \ldots, x_k\).
- Let \(x'_{k+1} = *\$\).

It is easily seen that \((A, B)\) has a solution for MPCP iff \((A', B')\) has a solution for PCP.

The construction is clearly computable.
Undecidable CFG Problems

Theorem 9.20: The problem of deciding whether a given CFG is ambiguous is undecidable.

Proof sketch: We will reduce PCP to this problem.

Arbitrary PCP Instance: $w_1, \ldots, w_k, x_1, \ldots, x_k$ over Σ.

Let a_1, \ldots, a_k be symbols not in Σ.

Let G be the CFG given by:

$$S \rightarrow A \mid B$$
$$A \rightarrow w_iAa_i \mid w_ia_i \quad \text{for } 1 \leq i \leq k$$
$$B \rightarrow x_iBa_i \mid x_ia_i \quad \text{for } 1 \leq i \leq k$$

where S, A, and B are distinct symbols not in $\Sigma \cup \{a_1, \ldots, a_k\}$.

If the instance of PCP has a solution, then G is clearly ambiguous.
Suppose G is ambiguous, and let $z \in (\Sigma \cup \{a_1, \ldots, a_k\})^*$,
$\alpha, \beta, \gamma_1, \gamma_2 \in (\Sigma \cup \{a_1, \ldots, a_k, S, A, B\})^*$, and
$C \in \{S, A, B\}$ such that
\begin{itemize}
 \item $S \xrightarrow{*} \alpha C \beta \Rightarrow \alpha \gamma_1 \beta \xrightarrow{*} z$;
 \item $S \xrightarrow{*} \alpha C \beta \Rightarrow \alpha \gamma_2 \beta \xrightarrow{*} z$; and
 \item $\gamma_1 \neq \gamma_2$.
\end{itemize}
It is easily seen that there is at most one derivation $A \Rightarrow \cdots \Rightarrow z$ and at most one derivation $B \Rightarrow \cdots \Rightarrow z$; hence $\alpha C \beta = S$.

The string obtained by removing all a_is from z is a solution to the instance of PCP. The construction is clearly computable. Therefore, the ambiguity problem is undecidable.

\textbf{Lemma:} Let w_1, \ldots, w_k be strings over Σ, and let
a_1, \ldots, a_k and S be distinct symbols not in Σ. Let
$G = (\{S\}, \Sigma \cup \{a_1, \ldots, a_k\}, P, S)$ be the CFG such that
P is given by
\begin{align*}
 S &\rightarrow w_i S a_i \mid w_i a_i \quad \text{for } 1 \leq i \leq k.
\end{align*}
Then we can effectively construct a CFG G' such that
$L(G') = \overline{L(G)}$.

Proof sketch:

- We can easily construct a PDA M such that $L(M) = \overline{L(G)}^R$.
- We can construct a CFG G'' such that $L(G'') = L(M) = \overline{L(G)}^R$.
- By reversing the right-hand-sides of all productions in G'', we obtain a CFG G' such that $L(G') = \overline{L(G)}$.

Theorem 9.22: The following problems are undecidable, where G_1 and G_2 denote given CFGs and R denotes a given regular expression:

- Is $L(G_1) \cap L(G_2) \neq \emptyset$?
- Is $L(G_1) \neq L(G_2)$?
- Is $L(G_1) \neq L(R)$?
- Is $L(G_1) \neq T^*$ for every alphabet T?
- Is $L(G_2) - L(G_1) \neq \emptyset$?
- Is $L(R) - L(G_1) \neq \emptyset$?
We will reduce PCP to each of these problems.

Aribtrary PCP Instance: \(w_1, \ldots, w_k, x_1, \ldots, x_k \) over \(\Sigma \).

Let \(I = \{a_1, \ldots, a_k\} \) be an alphabet such that \(\Sigma \cap I = \emptyset \).

Define

\[
G_A: S \rightarrow w_iSa_i \mid w_ia_i \text{ for } 1 \leq i \leq k.
\]

\[
G_B: S \rightarrow x_iSa_i \mid x_ia_i \text{ for } 1 \leq i \leq k.
\]

Then \(L(G_A) \cap L(G_B) \neq \emptyset \) iff the PCP instance has a solution.

We can construct CFGs \(G'_A \) and \(G'_B \) such that \(L(G'_A) = \overline{L(G_A)} \) and \(L(G'_B) = \overline{L(G_B)} \).

Furthermore, we can construct the following:

- a CFG \(G_1 \) such that \(L(G_1) = L(G'_A) \cup L(G'_B) = \overline{L(G_A)} \cap \overline{L(G_B)} \);
- a CFG \(G_2 \) such that \(L(G_2) = (\Sigma \cup I)^* \); and
- a regular expression \(R \) such that \(L(R) = (\Sigma \cup I)^* \).
Each of the following holds iff the PCP instance has a solution:

- $L(G_1) \neq L(G_2)$
- $L(G_1) \neq L(R)$
- $L(G_1) \neq T$ for every alphabet T
- $L(G_2) - L(G_1) \neq \emptyset$
- $L(R) - L(G_1) \neq \emptyset$