Claim: Let L be an RE language such that \overline{L} is also RE. Then L is recursive.

Proof sketch:

- Let $L(M) = L$.
- Let $L(M') = \overline{L}$.
- We construct M'' to simulate M and M' in parallel using two tapes.
- Because either M or M' must accept x, M'' halts on all inputs.

Defn: A language L is said to be co-RE if \overline{L} is RE.

Corollary: If L is a recursive language, then L is co-RE.
Claim: For any language L, $L \leq L$.

Claim: Let L_1, L_2, and L_3 be languages such that $L_1 \leq L_2$ and $L_2 \leq L_3$. Then $L_1 \leq L_3$.

Defn: L_1 and L_2 are said to be many-one equivalent ($L_1 \equiv L_2$) if $L_1 \leq L_2$ and $L_2 \leq L_1$.

Rice’s Theorem

Defn: Let $RE(\Sigma)$ denote the set of RE languages over Σ. A property of $RE(\Sigma)$ is any subset of $RE(\Sigma)$. \emptyset and $RE(\Sigma)$ are trivial properties; all other properties are nontrivial.

Defn: Let $\mathcal{P} \subseteq RE(\{0, 1\})$. Then

$$L_\mathcal{P} = \{w \in \{0, 1\}^* \mid L(M(w)) \in \mathcal{P}\}.$$

Theorem 9.11: (Rice’s Theorem) If \mathcal{P} is a nontrivial property of $RE(\{0, 1\})$, then $L_\mathcal{P}$ is not recursive.
Case 1: $\emptyset \notin \mathcal{P}$.

- We will show that $L_U \leq L_{\mathcal{P}}$.
- Because \mathcal{P} is a nontrivial property of $\text{RE}\{\{0,1\}\}$, there exist $L \in \mathcal{P}$, and a TM M_L such that $L(M_L) = L$.
- We will construct a TM M that, on input x, produces an output y such that $x \in L_u$ iff $L(M(y)) \in \mathcal{P}$.

$M(y)$ will be a 2-track TM operating as follows on input w:

1. Write x to track 2, leaving w on track 1.
2. Return to the left end of x and w.
3. Simulate U on x using track 2.
4. If U accepts x, simulate M_L on w using track 1.
5. If M_L accepts w, accept.

If $x \in L_U$, then $w \in L(M(y))$ iff $w \in L$; i.e., $L(M(y)) = L \in \mathcal{P}$. If $x \notin L_U$, then $L(M(y)) = \emptyset \notin \mathcal{P}$.
How M computes y given x:

- Only step 1 of $M(y)$ depends on x; hence the remainder of y can be stored in the finite control of M.

- M only needs to insert the states and transitions needed to write x on track 2.

Case 2: $\emptyset \in \mathcal{P}$. By Case 1, $L_{\overline{\mathcal{P}}}$ is not recursive.

$$L_{\overline{\mathcal{P}}} = \{w \in \{0, 1\}^* \mid L(M(w)) \in \overline{\mathcal{P}}\}$$

$$= \{w \in \{0, 1\}^* \mid L(M(w)) \notin \mathcal{P}\}$$

$$= \{w \in \{0, 1\}^* \mid L(M(w)) \in \mathcal{P}\}$$

$$= \overline{L_\mathcal{P}}.$$

Because $\overline{L_\mathcal{P}}$ is not recursive, $L_\mathcal{P}$ is not recursive.