Counter Machines

A *counter machine* is a machine consisting of a read-only input tape, a finite-state control, and a fixed number of *counters*, each capable of storing an arbitrary natural number.

The following operations can be performed on the counters:

- increment by 1;
- decrement by 1 if nonzero; and
- comparison with 0.

Theorem 8.14: Every RE language is accepted by a 3-counter machine.

Proof sketch: Let L be an RE language, and let M be a 2-stack machine such that $L(M) = L$.

- Suppose the stack alphabet Γ of M contains $r - 1$ symbols.
- We can define $f : \Gamma \xrightarrow{1-1} \text{onto} \{1, \ldots, r - 1\}$.
- We define $g : \Gamma^* \rightarrow \mathbb{N}$ such that
 \[
 g(\epsilon) = 0 \\
 g(X\alpha) = f(X) + rg(\alpha) \text{ for } X \in \Gamma
 \]
- It is easily seen by induction on $\alpha \in \Gamma^*$ that if $g(\alpha) = g(\beta)$, then $\alpha = \beta$.
- We can store the contents α of a stack in a counter as $g(\alpha)$.
- The third counter is used as temporary storage.

To examine the top symbol of a stack, we compute
 \[
 g(X\alpha) \mod r = f(X)
 \]
 as follows:
 - Use finite control to implement a $\mod r$ counter c.
 - While decrementing the counter storing $g(X\alpha)$, increment the temporary counter and c.
To remove the top symbol of a stack, we compute

\[[g(X\alpha)/r] = g(\alpha). \]

To push a symbol \(X \), we compute

\[rg(\alpha) + f(X) = g(X\alpha) \]

Theorem 8.15: Every RE language is accepted by a 2-counter machine.

Proof sketch: Let \(L \) be an RE language, and let \(M \) be a 3-counter machine such that \(L(M) = L \).

- We define \(f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) such that
 \[f(i, j, k) = 2^i 3^j 5^k. \]
- Because 2, 3, and 5 are prime, and because every positive integer has a unique prime factorization, \(f \) is one-to-one.
- We encode the three counter values \(i, j, \) and \(k \) as \(f(i, j, k) \).
• We can increment/decrement these values by multiplying/dividing by 2, 3, or 5, using the other counter as temporary storage.

• We can compare any of these values with 0 by computing \(f(i, j, k) \mod 2, 3, \) or 5.

Reduction

Defn: Let \(L_1 \subseteq \Sigma^* \), \(L_2 \subseteq \Delta^* \). We say that \(L_1 \) is many-one reducible to \(L_2 \) (\(L_1 \leq L_2 \)) if there is a TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, B, \{q\}) \) such that

- \(\Delta \subseteq \Gamma \);

- on every input, \(M \) halts in an ID \(qy \) for some \(y \in \Delta^* \); and

- if \(q_0x \vdash_M^* qy \), then \(x \in L_1 \) iff \(y \in L_2 \).

Claim: \(L_1 \leq L_2 \) iff \(\overline{L_1} \leq \overline{L_2} \).
Theorem 9.7: Let $L_1 \leq L_2$. Then

- If L_2 is RE, then L_1 is RE.
- If L_2 is recursive, then L_1 is recursive.

Proof sketch: Let M reduce L_1 to L_2, and let $L(M_2) = L_2$. We construct M_1 that on input x:

1. Simulates M on x, producing y.
2. Simulates M_2 on y.

$x \in L(M_1)$ iff $y \in L(M_2)$ iff $x \in L_1$, and M_1 halts on every input iff M_2 halts on every input.

Defn: Given a string $w \in \{0,1\}^*$, let $M(w)$ denote the TM with input alphabet $\{0,1\}$ that w encodes in some fixed TM encoding scheme.

We can define a function $f : \{0,1\}^* \rightarrow 2^{\{0,1\}^*}$ such that

$$f(w) = L(M(w)).$$

Note that the range of f is the set of RE languages over $\{0,1\}$.
Cantor’s Theorem: Let A be a set, and let $f : A \to 2^A$. Then

$$B = \{x \in A \mid x \not\in f(x)\} \not\in \text{ran}(f)$$

Proof: By contradiction.

- Assume that for some $a \in A$, $f(a) = B$.
- Then $a \in B$ iff $a \not\in B$ — a contradiction.

Theorem 9.2: Let $L_d = \{w \in \{0,1\}^* \mid w \not\in L(M(w))\}$. Then L_d is not RE.

The Universal Language

Defn: Let

$$L_U = \{wx \in \{0,1\}^* \mid x \in L(M(w))\}.$$

We call L_U the universal language.

Assumption: Our TM encoding scheme is such that if w is a valid TM encoding and x is a proper prefix of w, then x is not a valid TM encoding.
Claim: $\overline{L_U}$ is not RE.

Proof sketch: We will show that $L_d \leq \overline{L_U}$. Let M be a TM that operates as follows on input $x \in \{0,1\}^*$:

1. If x is not a valid TM encoding, output ϵ.
2. Otherwise, output xx.

$x \in L_d$ iff $y \in \overline{L_U}$, where y is the string output by M.

Claim: L_U is RE.

Proof sketch: We define a 4-tape TM U such that $L(U) = L_U$.

- **Tape 1:** The input.
- **Tape 2:** The contents of $M(w)$'s tape encoded in binary.
- **Tape 3:** The current state of $M(w)$, encoded in binary.
- **Tape 4:** Temporary storage.
• U first scans the input for a prefix w that is a valid TM encoding.

• U then encodes x, the remainder of the input, on Tape 2 in binary, with encoded symbols separated by #.

• U then writes 0 on Tape 3.

• U then simulates $M(w)$ on x.

Theorem 9.3: For any alphabet Σ, the set of recursive languages over Σ is closed under complement.

Proof sketch:

• Let $L \subseteq \Sigma^*$ be recursive.

• Let $M = (Q, \Sigma, \delta, q_0, B, F)$ be a TM such that $L(M) = L$ and M halts on all inputs.

• W.o.l.o.g., assume there are no transitions from any final state of M.
We construct a TM $M' = (Q \cup \{q_f\}, \Sigma, \Gamma, \delta', q_0, B, \{q_f\})$, where

- $\delta'(q, X) = \delta(q, X)$ if $\delta(q, X)$ is defined or if $q \in F$;
- $\delta'(q, X) = (q_f, X, R)$ if $q \in Q$, $\delta(q, X)$ is undefined, and $q \not\in F$; and
- $\delta'(q_f, X)$ is undefined.

Then $x \in L(M')$ iff $x \not\in L(M)$ iff $x \in \overline{L}$, and M' halts on all inputs.

Corollary: L_U is not recursive.

Corollary: $\overline{L_d}$ is RE but not recursive.