Operations on Languages

Defn: Let L_1 and L_2 be two languages. The *concatenation* of L_1 and L_2 is defined to be

$$L_1 L_2 = \{xy \mid x \in L_1, y \in L_2\}.$$

Defn: Let L be a language. We define the *Kleene closure of L*, denoted L^*, to be the least set S such that

- $\epsilon \in S$; and
- if $x \in L$ and $y \in S$, then $xy \in S$.

Defn: Let $L \subseteq \Sigma^*$. We recursively define:

- $L^0 = \{\epsilon\}$; and
- $L^{i+1} = LL^i$ for $i \in \mathbb{N}$.

Defn: Let $L \subseteq \Sigma^*$. Then

$$L^+ = \bigcup_{i>0} L^i.$$

Claim: Let $L \subseteq \Sigma^*$. Then

$$L^* = \bigcup_{i \in \mathbb{N}} L^i.$$
Proof sketch:

\[\subseteq: \] By induction on \(y \in L^*. \)

Base: \(y = \epsilon. \) Then \(y \in L^0. \)

IH: Assume that for some \(y \in L^*, y \in \bigcup_{i \in \mathbb{N}} L^i. \)

IS: Let \(x \in L. \)

- For some \(i, y \in L^i. \)
- Then \(xy \in L^{i+1}. \)

\[\supseteq: \] We show by induction on \(i \in \mathbb{N} \) that \(L^i \subseteq L^*. \)

Base: \(i = 0. \) Then

\[
L^i = \{ \epsilon \}
\subseteq L^*.
\]

IH: Assume that for some \(i \in \mathbb{N}, L^i \subseteq L^*. \)

IS:

\[
L^{i+1} = LL^i
\]
\[\subseteq LL^*
\]
\[\subseteq L^*. \]
Defn: Let Σ be an alphabet. We define $R(\Sigma)$ to be the least set R such that

- $\emptyset \in R$;
- $\{\epsilon\} \in R$;
- for each $a \in \Sigma$, $\{a\} \in R$;
- if $L_1 \in R$ and $L_2 \in R$, then $L_1 \cup L_2 \in R$;
- if $L_1 \in R$ and $L_2 \in R$, then $L_1L_2 \in R$; and
- if $L \in R$, then $L^* \in R$.

Regular Expressions

Defn: A regular expression is a description of a language in $R(\Sigma)$ using the following notation:

- ϵ denotes $\{\epsilon\}$;
- a denotes $\{a\}$ for $a \in \Sigma$; and
- union is denoted by $+$.
Precedence in regular expressions:

1. Kleene closure
2. Concatenation
3. Union

Theorem 3.4: Let L be a regular language over Σ. Then $L \in R(\Sigma)$.

Lemma 1: The set of regular languages over Σ is closed under union.

Proof sketch:
Lemma 2: The set of regular languages over Σ is closed under concatenation.

Proof sketch:

![Diagram for Lemma 2]

Lemma 3: The set of regular languages over Σ is closed under Kleene closure.

Proof sketch:

![Diagram for Lemma 3]
Theorem 3.7: If $L \in R(\Sigma)$, then L is regular.

Proof sketch: By induction on $L \in R(\Sigma)$.

Base: \emptyset, $\{\epsilon\}$, and $\{a\}$ for $a \in \Sigma$ are easily seen to be regular.

IH: Assume that some $L_1, L_2 \in R(\Sigma)$ are regular.

IS: By Lemmas 1-3, $L_1 \cup L_2$, $L_1 L_2$, and L_1^* are regular.