Computational Complexity

Defn: Let $T : \mathbb{N} \rightarrow \mathbb{N}$. A TM M is said to have time complexity $T(n)$ if on every input string w, M takes no more than $T(|w|)$ transitions.

Defn: \mathcal{P} is the set of all languages $L \subseteq \{0, 1\}^*$ such that there is a polynomial $p(n)$ and a TM M with time complexity $p(n)$ such that $L(M) = L$.

Defn: \mathcal{NP} is the set of all languages $L \subseteq \{0, 1\}^*$ such that there is a polynomial $p(n)$ and a nondeterministic TM M with time complexity $p(n)$ such that $L(M) = L$.

Motivation

- \mathcal{P} represents the set of decision problems that can be decided by polynomial-time algorithms (see Section 8.6).
- The set of 1-variable polynomials over \mathbb{N} is closed under addition, multiplication, and composition.
- If there is a polynomial-time algorithm for a problem, there is usually an efficient one.
- There are many interesting problems in \mathcal{NP} that are not known to be in \mathcal{P}.
Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

Open Question: Is $\mathcal{P} = \mathcal{NP}$?

Defn: A language L_1 is polynomially many-one reducible to a language L_2 ($L_1 \leq^p_m L_2$) if there is a TM with polynomial time complexity that reduces L_1 to L_2.

Claim: If $L_1 \leq^p_m L_2$, $L_1 \subseteq \{0, 1\}^*$, and $L_2 \in \mathcal{P}$, then $L_1 \in \mathcal{P}$.

Defn: A language L is said to be \mathcal{NP}-hard if for every $L' \in \mathcal{NP}$, $L' \leq^p_m L$. If $L \in \mathcal{NP}$, then L is said to be \mathcal{NP}-complete.

Theorem 10.5: If $L \in \mathcal{P}$ is \mathcal{NP}-complete, then $\mathcal{P} = \mathcal{NP}$.

Proof: Let $L' \in \mathcal{NP}$.

- Because L is \mathcal{NP}-complete, $L' \leq^p_m L$.
- Because $L \in \mathcal{P}$, $L' \in \mathcal{P}$.
- Because $\mathcal{P} \subseteq \mathcal{NP}$, it follows that $\mathcal{P} = \mathcal{NP}$.

We therefore consider \mathcal{NP}-completeness of a language L to be strong evidence that $L \notin \mathcal{P}$.
Claim: If $L_1 \leq_m L_2$ and $L_2 \leq_m L_3$, then $L_1 \leq_m L_3$.

Corollary: If L_1 is \$NP\$-hard and $L_1 \leq_m L_2$, then L_2 is \$NP\$-hard.

We can therefore show a language to be \$NP\$-hard by reducing a known \$NP\$-hard language to it.

In order to get our first \$NP\$-hard language, we must reduce every language in \$NP\$ to it.

Boolean Satisfiability (SAT)

Input: A boolean formula \mathcal{F} consisting of boolean variable and the operators \land, \lor, and \neg.

Question: Is there an assignment of boolean values to the variables in \mathcal{F} that causes \mathcal{F} to evaluate to $true$?

Claim: $L_{SAT} \in \mathcal{NP}$, where L_{SAT} denotes the language of satisfiable formulas encoded over \{0, 1\}.
Cook’s Theorem: \(SAT \) is \(\mathcal{NP} \)-hard.

Proof idea:

- For each language \(L \) in \(\mathcal{NP} \), there is a polynomial \(p(n) \) and a nondeterministic TM \(M \) with time complexity \(p(n) \) such that \(L(M) = L \).
- From \(w \in \{0, 1\}^* \), we construct a formula \(\mathcal{F} \) that is satisfiable iff there is an accepting computation of \(M \) on \(w \).
- The time for the construction will be polynomial in \(p(n) \).

Construction overview:

- We will view a computation as a sequence of IDs \(\alpha_0, \ldots, \alpha_{p(n)} \) such that either \(\alpha_i \downarrow \alpha_{i+1} \) or \(\alpha_i = \alpha_{i+1} \).
- Each \(\alpha_i \) will be of the form \(X_{-p(n)} \cdots X_0 \cdots X_{p(n)+1} \) where \(X_j \) is either a tape symbol or a state.
- We use boolean variable \(y_{ij}A \) to denote whether symbol \(X_j \) of \(\alpha_i \) is \(A \).
- \(\mathcal{F} \) will constrain the sequence of IDs to be an accepting computation on \(w \).