Multitape Turing Machines

- $\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k$
- IDs are $(k + 1)$-tuples: $Q \times (\Gamma^* \# \Gamma^*)^k$

- \vdash is defined in the natural way

- $L(M)$ is the set of all strings w such that

 \[
 (q_0, \# w, \# , \ldots, \#) \vdash^* (q, \alpha_1 \# \beta_1, \ldots, \alpha_k \# \beta_k)\]

 for some $q \in F$, $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k \in \Gamma^*$.

To simulate a k-tape TM with a TM:

- Use a k-track TM
- Record the state in finite control
- Record each $\alpha \# \beta$ on a separate track
- To simulate a single transition:
 - assume the head is to the left of every $\#$
 - scan right, recording in finite control the symbol following each $\#$ until all k symbols have been recorded
 - scan left, updating each track
Nondeterministic TMs

- $\delta : Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L,R\}}$

To simulate an NTM with a 2-tape TM:

- Do a breadth-first search of all computations
- Use one tape as a FIFO queue containing IDs beginning and ending with *
- δ is stored in finite control

```plaintext
while the queue is not empty do
    find state $q$ and current symbol $X$ in first ID
    for each $(p, Y, D) \in \delta(q, X)$ do
        if $p \in F$ then accept
        copy first ID from queue to second tape, applying transition $(q, X) \rightarrow (p, Y, D)$
        move ID from second tape to end of queue
        overwrite first ID in the queue with blanks
```

3

4
Claim: Every CFL is recursive.

Proof sketch: Let L be a CFL.

- Let G be a CNF grammar such that $L(G) = L - \{e\}$.
- We will construct a 2-track NTM M such that $L(M) = L(G)$, and M is guaranteed to halt.
- It is easy to modify M to accept ϵ if $\epsilon \in L$.
- M will nondeterministically find a derivation of input w.

write S on track 2, move right

while current symbol on track 1 is nonblank **do**

move left

while the current symbol is nonblank **do**

nondeterministically move left or break

nondeterministically select production $A \rightarrow \alpha$, where A is current symbol on track 2

apply $A \rightarrow \alpha$ to track 2

leaving tape head to the right of last nonblank on track 2

move left
while the current symbol is nonblank do
verify that track symbols match or
that there is a production \(A \rightarrow a \)
where \(a \) is on track 1, \(A \) on track 2
move left

- \(M \) accepts \(w \) iff \(w \in L(G) \).
- Each iteration of the first loop either
 increases the number of nonblank symbols
 on track 2 or increases the number of
 terminals.
- The first loop must eventually terminate.
- Therefore, \(M \) always terminates.
Restricted Turing Machines

- Semi-infinite tapes
 - We can simulate a TM tape with a semi-infinite tape by “folding over”.

- Multistack TMs
 - We can simulate a TM tape with two stacks
 - The TM tape is “split” at the tape head position

- Counter machines