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ABSTRACT
In this paper, we present a hybridization method for sta-
bility analysis of switched linear hybrid system (LHS), that
constructs a switched system with polyhedral inclusion dy-
namics (PHS) using a state-space partition that is specific to
stability analysis. We use a previous result based on quanti-
tative predicate abstraction to analyse the stability of PHS.
We show completeness of the hybridization based verifica-
tion technique for the class of asymptotically stable linear
system and a subclass of switched linear systems whose dy-
namics are pairwise Lipschitz continuous on the state-space
and uniformly converging in time. For this class of systems,
we show that by increasing the granularity of the region par-
tition, we eventually reach an abstract switched system with
polyhedral inclusion dynamics that is asymptotically stable.
On the practical side, we implemented our approach in the
tool Averist, and experimentally compared our approach
with a state-of-the-art tool for stability analysis of hybrid
systems based on Lyapunov functions. Our experimental
results illustrate that our method is less prone to numerical
errors and scales better than the traditional approaches. In
addition, our tool returns a counterexample in the event that
it fails to prove stability, providing feedback regarding the
potential reason for instability. We also examined heuristics
for the choice of state-space partition during refinement.

1. INTRODUCTION
Stability is a fundamental property in the design of cyber-

physical systems that ensures robustness of these systems
with respect to perturbations in the initial states or in-
puts. Linear hybrid systems (LHS) are an important class of
cyber-physical systems, that manifest in several embedded
control systems. In addition, more often than not, the de-
sign and analysis of non-linear control systems is conducted
by considering linearizations of these systems at different

∗Pavithra Prabhakar is partially supported by EU FP7
Marie Curie Career Integration Grant no. 631622 and NSF
CAREER award no. 1552668.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’16, April 12–14, 2016, Vienna, Austria.
c© 2016 ACM. ISBN 978-1-4503-3955-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2883817.2883840

operating points. Hence, linear hybrid systems have been
extensively studied in the literature; see, for instance, [10]
for a survey of methods for stability analysis.

Stability analysis is a challenging problem, especially, for
hybrid systems. For instance, while it is well-known that the
stability of a purely continuous linear dynamical system can
be inferred solely based on analyzing its eigenvalues, the
same is not true when switching is allowed between these
systems [4]. Hence, alternate methods based on exhibiting
Lyapunov functions, which provide a certificate of stabil-
ity, and their extensions to common and multiple Lyapunov
functions for switched system analysis have gained promi-
nence [9].

Computational methods for stability analysis essentially
consist of a template based search for a Lyapunov func-
tion [3, 12]. Here, a template, for instance, a polynomial
with coefficients as parameters, is chosen. The conditions
on the Lyapunov functions, such as, non-negativity, are en-
coded in a constraint solving formalism. For instance, a
sufficient condition for a polynomial to be non-negative is
to be expressible as a sum of squares of terms. Efficient
tools for semi-definite programming and sum-of-squares op-
timization are employed to solve for the parameters in the
templates.

While the template based search has gained popularity
due to the advances in convex optimization tools over the
last decade, there are some fundamental difficulties with the
approach which have not been adequately addressed. First,
finding the right template requires user ingenuity, and the
alternative of exhaustively iterating over all possible tem-
plates is highly inefficient. Next, the stability analysis tools
provide no insights into the reason for instability or guide
the choice of better templates, when the solvers fail to in-
stantiate the template.

To overcome the difficulties with the template based search,
an alternate approach based on abstraction-refinement was
proposed by the authors in their previous work [14, 15]
for stability analysis of hybrid systems with piecewise con-
stant and polyhedral inclusion dynamics. Here, a quantita-
tive predicate abstraction (QPA) for stability analysis was
presented, which extends the standard finite state graph
construction of predicate abstraction [7], by annotating the
edges with weights which capture information about the dis-
tance of the state to the equilibrium point during evolution
along a trajectory. This approach returned a counterexam-
ple when the abstraction failed to prove stability.

One of the main difficulties in extending QPA to linear
hybrid systems, is the computation of the edges and their



weights, which require computing a reachability relation to
the linear hybrid systems. This is a challenging problem, es-
pecially, when the number of edge switchings is not bounded.
Hence, we propose to abstract the linear hybrid system to
a polyhedral hybrid system for which the edge relation and
weights can be efficiently computed (even in the presence of
unbounded number of mode switches [15]).

Our main result is a novel application of the hybridization
approach [1, 5] for stability analysis. Broadly, hybridiza-
tion consist of splitting the state-space into a finite number
of regions and approximating the dynamics in each of the
regions by a simpler dynamics. Our hybridization is spe-
cialized for stability analysis, and differs from those used
for safety analysis, in the class of partitions considered for
hybridization. We use partitions that split the state-space
into conic polyhedral sets. The linear dynamics in each of
the regions is overapproximated by a polyhedral inclusion
dynamics. Our partitioning is fine tuned for stability analy-
sis, since, it guarantees a bound on the “scaling” in a region,
ratio of the distance to the origin at the end of the execu-
tion to that at the beginning. Hybridization techniques for
safety analysis instead seek a bound on the approximation
error in the reach set [1, 5].

Our main theoretical result is the completeness of the hy-
bridization technique for the class of asymptotically stable
switched linear systems that are “uniformly converging in
time” and Lipschitz continuous. For this class of systems,
we show that by increasing the granularity of the region
partition, we eventually reach a polyhedral switched system
abstraction that is asymptotically stable.

We have implemented our approach in the tool Averist.
We experimentally compared our approach with the state-
of-the-art tool for stability analysis of hybrid systems based
on Lyapunov functions, Stabhyli. Our experimental results
illustrate that our method is less prone to numerical errors
and scales better than the traditional approaches. In ad-
dition, our tool returns a potential counterexample in the
event that it fails to prove stability, providing feedback re-
garding the potential reason for instability. This is a result
of the quantitative algorithmic method that we use in the
back-end for analyzing polyhedral switched systems. We
also investigate some heuristics for partitioning the state-
space in a more efficient manner.

2. HYBRID AUTOMATA
In this section, we define hybrid automata, which are a

popular formalism for capturing the mixed discrete-continuous
behaviors of cyber-physical systems. We consider switched
systems that do not allow instantaneous jumps in the con-
tinuous state of the system. Below, we define a subclass
of switched hybrid systems. Let Poly(n) denote the set of
all convex polyhedra in the n-dimensional state-space. In
the sequel, by a polyhedral set, we always mean a convex
polyhedral set.

Definition. A hybrid automaton (HA) is a tuple H =
(Loc,Edges,Cont, Flow, Inv,Guard), where:

• Loc is a finite set of control modes or locations;

• Edges ⊆ Loc× Loc is a finite set of edges;

• Cont = Rn, for some n, is the continuous state-space;
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Figure 1: Linear systems

• Flow : Loc→ (Rn 7→ 2Rn) is the vector field function;

• Inv : Loc→ Poly(n) is the invariant function; and

• Guard : Edges→ Poly(n) is the guard function.

We call n, the dimension of H.
The hybrid automaton evolves continuously by following

the vector field function at each location. It executes start-
ing in a mode q and a continuous state x. For every location
q ∈ Loc the state follows the vector field Flow(q) while being
inside the invariant Inv(q). The continuous state switches
from one location to other when it satisfies the guard be-
tween these locations. The vector field function is typically
represented as a differential inclusion ẋ ∈ F (x) or a linear
differential equation ẋ = Ax, where F (x) represents a poly-
hedron and A is a real matrix.

We say that a hybrid automaton is linear if in every mode
q the behaviour of the system is determined by a linear dy-
namical system of the form ẋ = Aqx. Hence, for every
q ∈ Loc and x ∈ Inv(q), the flow in the hybrid automaton
is given by Flow(q)(x) = {Aqx}. And we say that a hy-
brid automaton is polyhedral, when, for every mode q, the
dynamics is defined by a polyhedral inclusion of the form
ẋ ∈ Pq where Pq is a polyhedron. Here, the flow is specified
as Flow(q)(x) = Pq for every q ∈ Loc and x ∈ Inv(q).

Let I denote the set of all closed intervals over R. Given
an interval I ∈ I, let first(I) and last(I) denote the greatest
lower bound and the least upper bound of I. Let F�X denote
the restriction of the function F to the set X as its domain.

Definition. An execution of a HA H = (Loc,Edges,Cont,
Flow, Inv,Guard) is a function σ : I → Rn, where I = [0, T ]
or I = [0,∞), such that there exists a finite or infinite se-
quence (q0, I0), (q1, I1), (q2, I2) . . . satisfying for all i ≥ 0:

• (qi, Ii) ∈ Loc × I, such that ∪iIi = I and last(Ii) =
first(Ii+1);

• σ�Ii is a solution of ẋ ∈ Flow(qi)(x), that is, d
dt
σ�Ii

(t) ∈ Flow(qi)(σ�Ii (t)) and satisfies σ�Ii (t) ∈ Inv(qi)
for all t ∈ Ii and σ(last(Ii)) ∈ Guard(qi, qi+1).

Let Exec(H) denote the set of all executions of H.
The evolution of a linear dynamical system is determined

by the equation ẋ = Ax where A is a real square matrix.
Consider two linear dynamical systems of the form ẋ = A1x
and ẋ = A2x, where the matrices are given as follows

A1 =

(
0 1
−4 0

)
A2 =

(
0 1
−0.1 0

)



The phase portraits showing the solutions for each of these
systems are depicted in Figure 1. A linear dynamical sys-
tem defines the evolution of a linear hybrid automaton at
each location. A linear hybrid automaton model is depicted
in Figure 2. Observe this system consists of four modes,
q1, q2, q3 and q4, with associated invariants R1, R2, R3 and
R4, which correspond to the first, second, third and fourth
quadrants of the two dimensional plane, respectively. The
dynamics A1 and A2 are as given in Figure 6. Hence, the
system evolves in the first and third quadrants following a
solution of the dynamical system ẋ = A1x and in the other
two quadrants following one of ẋ = A2x. The switching con-
dition is along the common boundaries, and is specified by
the guard annotations on the edges. A sample execution of
the system is given in Figure 3.

A polyhedral hybrid automaton is shown in Figure 4, anal-
ogous to the linear one but with dynamics determined by
the differential inclusion ẋ ∈ Pi for each mode qi. A sample
execution of the polyhedral system is depicted in Figure 5.
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3. STABILITY
Stability is a fundamental property in control system de-

sign. We consider two classical notions of stability in con-
trol theory, namely, Lyapunov and asymptotic stability. An
equilibrium point is a state of the system such that an ex-
ecution starting from it remains there. Origin 0̄ will be an
equilibrium point in the systems we consider, and we de-
fine stability with respect to the origin. A system is said to
be Lyapunov stable if small perturbations in the initial state
lead to small deviations in the executions with respect to the
equilibrium point. Further, it is said to be asymptotically
stable if the executions starting in a small neighborhood of
the equilibrium point converge to the point. In the following
Br(0̄) refers to a ball of radius r around 0̄.

Definition. A hybrid system H is said to be Lyapunov
stable if for every ε > 0, ∃δ > 0 such that for every σ ∈
Exec(H) [(σ(0) ∈ Bδ(0̄))⇒ (∀t ∈ dom(σ), σ(t) ∈ Bε(0̄))].
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Figure 6: Sample Executions

Definition. A hybrid system H is said to be asymptotically
stable if it is Lyapunov stable and

∃γ > 0 ∀σ ∈ Exec(H) [(σ(0) ∈ Bγ(0̄))⇒ Conv(σ, 0̄)].

Conv(σ, 0̄) := ∀ε > 0 ∃T ≥ 0 ∀t ≥ T σ(t) ∈ Bε(0̄).

In fact, for the purpose of stability analysis,we can assume
that the invariants and guards of the linear hybrid system
are closed under positive scaling. A polyhedral set P is
closed under positive scaling if for every x ∈ P , αx ∈ P for
all α ≥ 0. Note that the Lyapunov and asymptotic stabil-
ity analysis with respect to origin depend on the behavior of
the system in a small neighborhood of the equilibrium point.
Hence, the stability of every hybrid system is equivalent to
the stability of a hybrid system constructed by removing
constraints which do not pass through 0̄ (or equivalently, re-
placing all the invariants and guards by their positive scaling
closure.)

Observe that the executions of linear systems depicted
in Figure 1 determine both systems to be Lyapunov stable.
The systems shown in Figure 6 correspond to asymptotically
stable systems, while if the executions were pointing out they
would be unstable.



4. HYBRIDIZATION FOR STABILITY ANAL-
YSIS OF LINEAR HYBRID AUTOMATA

In this section, we formally present the hybridization pro-
cedure for constructing a polyhedral hybrid automaton from
a linear hybrid automaton, and provide soundness and com-
pleteness results.

4.1 Hybridization construction
The basic construct in the hybridization procedure is the

abstraction of the linear vector field in a region by a polyhe-
dron. This is done by the function CPoly. Given F : Rn →
2Rn and P ⊆ Rn, let CPoly(F, P ) = ∪x∈PF (x). Next, we
present the formal definition of hybridizing a system H with
respect to a partition R.

A partition R of the state space Rn is a finite set of poly-
hedra {R1, . . . , Rk} such that Rn = ∪ki=1Ri and for every
pair of different indices i, j, Ri ∩ Rj has affine dimension
smaller than n. Two polyhedra P,Q ⊆ Rn are adjacent in
case of P ∩Q has affine dimension n− 1, and we denote as
Padj Q.

Definition.[Hybridization] Given an n-dimensional linear
hybrid system H = (Loc,Edges,Cont, Flow, Inv,Guard) and
a polyhedral partition R = {R1, . . . , Rk}, we define the
hybridization of H with respect to R, as PolyH(H,R) =

(L̂oc, Êdges,Cont, F̂low, Înv, Ĝuard), where:

• L̂oc = {(q,R) : q ∈ Loc, R ∈ R and R ⊆ Inv(q)}

• Êdges = {((qi, Ri), (qj , Rj)) ∈ L̂oc × L̂oc : qi = qj or
(qi, qj) ∈ Edges and Riadj Rj}

• F̂low((q,R))(x) = CPoly(Flow(q), R).

• Înv(q,R) = Inv(q) ∩R.

• Ĝuard((qi, Ri), (qj , Rj)) = Rn if qi = qj and
Guard((qi, qj)), otherwise.

Note that for every q ∈ Loc and R ∈ R, CPoly(Flow(q), R)
is a polyhedral set. Hence, the polyhedral differential inclu-
sion ẋ ∈ CPoly(Flow(q), R) over-approximates the dynami-
cal system ẋ ∈ Flow(q)(x) in the polyhedral region R. Then,
it follows that PolyH(H,R) is a polyhedral hybrid automa-
ton.

Remark. We will assume from now on that the partition
R used in the hybridization only consists of conic polyhedral
sets, that is, those that are positive scaling closed. Our
hybridization is similar to that in the literature [17, 6], where
rectangular/polyhedral abstractions are considered, except
that we consider a partition of the state-space specific to
stability analysis.

4.1.1 Illustration
We explain in detail the hybridization process for a par-

ticular 2-dimensional linear hybrid system example. The
dynamical behaviour of the example is determined by the
linear switched system explained in Section 2.

To perform hybridization, we choose a polyhedral parti-
tion of the continuous state-space. Consider the polyhedral
partition R = {R1, R2, R3, R4}, formed by the planar quad-
rants, where Ri corresponds to the i-th one. This choice

determines a polyhedral hybrid system with the same num-
ber of modes as in the linear automaton, with the same
associated invariants, and the same edges labelled with the
same guards. The polyhedral dynamics in the four modes
are given by ẋ ∈ P1, ẋ ∈ P2, ẋ ∈ P3 and ẋ ∈ P4, re-
spectively, where P1 = CPoly(A1, R1), P2 = CPoly(A2, R2),
P3 = CPoly(A1, R3) and P4 = CPoly(A2, R4). For instance,
in the first quadrant all the flow vectors of the linear hybrid
system are between (1, 0) and (0,−1), therefore P1 is deter-
mined by the constraints x > 0 and y < 0, as we observe in
Figure 5. The polyhedral hybrid system is shown in Figure
4. However, this polyhedral hybrid automaton is not stable.
To obtain a stable one, we need to use a finer partition.

4.2 Stability preservation theorem
Next, we show that our hybridization procedure is sound,

in that, the stability of the polyhedral hybrid system output
by the hybridization procedure implies the stability of the
linear hybrid system. This is formalized below.

Theorem 1. Given a linear hybrid automaton H and a
polyhedral partition R, the following hold:

1. PolyH(H,R) is Lyapunov stable implies H is Lyapunov
stable.

2. PolyH(H,R) is asymptotically stable implies H is asymp-
totically stable.

Proof. This follows from the fact that Exec(H) ⊆
Exec(PolyH(H,R)), which in turn follows from the fact that
the polyhedral differential inclusion ẋ ∈ CPoly(F,R) over-
approximates the dynamical system ẋ = F (x) in the poly-
hedral region R.

Remark. It has been observed in [13] that simulations do
not preserve stability and the stronger notion of uniformly
continuous simulations is required. Note that in Theorem
1, the simulation relation between the two systems is the
identity relation which trivially satisfies the additional con-
straints of uniform continuity imposed by [13].

4.3 Completeness results for hybridization
In this section, we identify a subclass of switched linear hy-

brid systems for which the hybridization procedure is com-
plete, that is, for every asymptotically stable system in this
class, by iteratively choosing finer and finer partitions for
the hybridization, we will arrive at an abstract polyhedral
hybrid system that is asymptotically stable.

Before identifying the subclass of systems referred above,
we provide a detailed proof for the class of linear dynamical
systems. We then sketch how this proof can be extended for
the class that we define. Let HA denote the linear hybrid
automaton (with one mode) corresponding to the dynamical
system ẋ = Ax.

Theorem 2. Let HA be a linear hybrid automaton corre-
sponding to the dynamical system ẋ = Ax which is asymptot-
ically stable. Then, there exists a polyhedral partition R such
that the polyhedral hybrid system PolyH(HA,R) is asymptot-
ically stable with respect to 0̄.

The hybridization techniques for safety analysis ensure
a bounded error in the executions of the original and ap-
proximate systems over a bounded time. They rely on the



fact that error between the concrete and the abstract vec-
tor fields is bounded. However, this is no more true in our
setting. More precisely, the Hausdorff distance between Ax
(the value of the concrete vector field) and P = {Ax |x ∈
R}, the abstract vector field in a region R (positively closed)
is infinity. Hence, our proof of completeness is bit more in-
volved. We construct an intermediate system which is equiv-
alent to the abstract system. In this new system, though we
cannot bound the distance between the vector fields of the
concrete system and that of the intermediate system at state
x by some ε, we can bound it by ε||x||.

Observe that the scaling in a region R is determined by
the vector field restricted to the state-space with norm 1.
Let CUPoly(A,R) = {Ax |x ∈ R, ||x|| = 1}.

Definition. We define the scaled hybridization of H with

respect to R, as SPolyH(H,R) = (L̂oc, Êdges,Cont, F̂low,

Înv, Ĝuard), where all the elements in the tuple are the same
as for the hybrid system PolyH(H,R) but for the vector field

function, which for every (q,R) ∈ L̂oc, F̂low((q,R))(x) =
CUPoly(Flow(q), R)||x||.

The following lemmas comprise the proof for Theorem 2.

Lemma 1. SPolyH(H,R) is asymptotically stable if and
only if PolyH(H,R) is asymptotically stable.

Lemma 2. Let A be an n× n matrix and let HA be the
hybrid system associated to the matrix. Let HA be asymptot-
ically stable with respect to 0̄. Then, there exists a partition
R such that the polyhedral system SPolyH(HA,R) is asymp-
totically stable with respect to 0̄.

Definition. Given a polyhedral set P and a scalar a, let
Pa = {xa : x ∈ P}. The norm of a polyhedral set P is
||P || = max{||p|| | p ∈ P}.

The Lemma 2 depends on the following two propositions.

Proposition 1. Consider a polyhedral partition R = {R1,
. . . , Rk} and a finite set of bounded polyhedral sets {P1, . . . , Pk}.
Consider two differential inclusions,

ẋ ∈ {Ax} (1)

ẋ ∈ F (x) (2)

where F (x) = Pi||x|| for x ∈ Ri and for every 0 6 i 6 k. Let
dH(Ax, F (x)) 6 ε||x|| for every x. Let x and y be solutions
of 1 and 2 respectively, such that x(0) = y(0). Then,

||x(t)− y(t)|| 6 ε||y(0)||
m− ||A|| (e

mt − e||A||t)

for every t > 0 with m = max06i6k ||Pi||.

Proof. Consider x and y be solutions of 1 and 2 respec-
tively, such that x(0) = y(0). Define the error function
z(t) = ||x(t) − y(t)|| for t ∈ [0,∞). For infinity norm we
know that d

dt
||f(t)|| 6 || d

dt
f(t)||. Then, ż ≤ ||ẋ−ẏ||, which is

equal, for some y′ ∈ F (y), to ||Ax−y′|| = ||Ax−Ay+Ay−y′||
6 ||Ax−Ay||+ ||Ay−y′||, and since ||Ay−y′|| 6 ε||y′||, We
obtain the differential system{

ż(t) 6 ||A||z(t) + ε||y′||
ẏ ∈ F (y)

Let us first solve the inclusion in the system. Consider y ∈
Ri. Then we have ẏ ∈ Pi||y||, therefore ||ẏ|| ∈ ||Pi||y|| || =
||Pi|| ||y||. Define m = max06i6k ||Pi||. Therefore, ||ẏ|| 6
m||y||. Denote ||y(t)|| = r(t). Since d

dt
||y|| 6 ||ẏ||, we get

the inequality ṙ(t) 6 mr(t). Since infinity norm is differ-
entiable everywhere except at the origin, and there is no
time such that we get zero norm, we can apply Grönwall’s
lemma, which states that the inequality solution is bounded
by the correspondent differential equation. We get the solu-
tion r(t) 6 r(0)emt. Plug the solution to the first equation
in the system, ż(t) 6 ||A||z(t)+εemtr(0) where z(t) is differ-
entiable everywhere but in the origin and by applying also
the Grönwall’s lemma and solving the differential equation,
we obtain

z(t) 6 e||A||tz(0) +
εr(0)

m− ||A|| (e
mt − e||A||t) (3)

Since z(0) = 0, the inequality is just

z(t) 6
εr(0)

m− ||A|| (e
mt − e||A||t) (4)

Proposition 2. Let A be an n × n matrix and HA be
the hybrid system associated to the matrix. Consider ε >
0. Then, there exists a partition R = {R1, . . . , Rk} such
that dH(Ax, Pi||x||) 6 ε||x|| for every x ∈ Ri where Pi =
CUPoly(A,Ri).

Proof. Ax is a continuous function and the state-space
with norm 1 is compact. Hence, Ax restricted to the state-
space of norm 1 is a uniformly continuous function. There-
fore, given any ε, there exists a δ, such that for every x, y
with ||x − y|| 6 δ, ||Ax − Ay|| 6 ε. We can choose a poly-
hedral partition such that each of the regions restricted to
norm 1 is contained in a δ ball. Consider a region Ri,
we want to prove that dH(Ax, Pi||x||) 6 ε||x||. We know
dH(Ax, Pi||x||) = ||Ax − Ay||x|| || for some y ∈ Ri such
that ||y|| = 1. Then, ||Ax − Ay||x|| || = ||Ax − Ay′|| where
y′ ∈ Ri and ||y′|| = ||x||, so we can rewrite as ||(A x

||x|| −
A y′

||y′|| )||x|| ||. Since || x||x|| −
y′

||y′|| || 6 δ by the partition

construction, we get ||A x
||x|| − A

y′

||y′|| || 6 ε and finally, by

substituting, dH(Ax, Pi||x||) 6 ε||x||.

Theorem 1 states that our hybridization based analysis
approach is sound in that if the polyhedral abstraction is
stable, then so is the linear hybrid system. Here, we show
that our analysis method is complete for linear dynamical
systems with respect to asymptotic stability, that is, given a
linear dynamical system which is aymptotically stable, one
can construct a polyhedral abstraction which is stable.

Proposition 3. Let ẋ = Ax be a dynamical system in
Rn which is asymptotically stable. Then, for every γ > 0
there exists a value Tγ > 0 such that for every solution x(t)
with ||x(0)|| = γ, ||x(t)|| 6 γ

2
holds for every t > Tγ .

Proof. Let ẋ = Ax be asymptotically stable. Then A
can be written as PJP−1, where P is a real invertible ma-
trix and J is the real Jordan matrix [8]. A solution x(t) of the

system can be expressed as eAtx(0) = ePAP
−1tx(0), which

is equal to P eJtP−1x(0) by definition of matrix exponen-
tial. Because of norm matrix properties, we get ||x(t)|| 6
||P || ||eJt|| ||P−1||γ. The asymptotic stability implies that



A is Hurtwitz, and therefore the matrix eJt is also Hurwitz,
which means that every term in it is of the form eλtp(t)
where λ < 0 and p(t) is a polynomial function. Then, ev-
ery term in P eJtP−1x(0) is equal to eλtp′(t) where p′(t) is
a different polynomial and the values will be dominated by
the exponentials. Hence, for every row, xi(t), there exists
T iγ > 0 such that ||xi(t)|| 6 γ

2
for every t > T iγ . So it is

enough to choose Tγ = max06i<n(T iγ).

Proof of Lemma 2.
Suppose HA to be asymptotically stable. Fix γ > 0. We

know by Proposition 3 that there exists Tγ > 0 such that
for every σ ∈ Exec(HA) with ||σ(0)|| = γ, ||σ(t)|| 6 γ

2

for every t > Tγ . Fix ε =
γ(m− ||A||)

4||σ′(0)||(emTγ − e||A||Tγ )
. By

Proposition 2 we know there exists a partition R such that
dH(Ax,CUPoly(A,R)) 6 ε||x||. Consider σ ∈ Exec(HA)
and σ′ ∈ Exec(SPolyH(HA,R)) with σ(0) = σ′(0). Then,
by Proposition 1 ||σ(t) − σ′(t)|| 6 γ

4
. Since we also know

that ||σ(Tγ)|| 6 γ
2

, we get σ′(Tγ) 6 3γ
4

. It is possible to it-
erate such construction for values of γ smaller and smaller,
obtaining σ′ ∈ SPolyH(HA,R) closer and closer to zero for
some time values.

Definition. A linear hybrid system H is Lipschitz con-
tinuous if there exists a constant L such that for every
x, y ∈ ContH with x ∈ Inv(q1) and y ∈ Inv(q2) the fol-
lowing holds ||Aq1x−Aq2y|| 6 L||x− y||. We say that H is
uniformly converging if for every γ > 0, there exists Tγ ≥ 0
such that for every execution σ of H, ||σ(0)|| = γ implies
||σ(t)|| ≤ γ/2 for all t ≥ Tγ .

Theorem 3. Let H be a linear hybrid system that is Lip-
schitz continuous and uniformly converging. Then, there ex-
ists a polyhedral partition R such that the polyhedral hybrid
system PolyH(H,R) is asymptotically stable with respect to
0̄.

Proof. Here we sketch the proof of the theorem, which is
similar to that of the proof of Theorem 2. Proposition 1 can
be extended to linear switched systems which are Lipschitz
continuous. The error between the solution of H and some
approximation whose vector field is at most ε far from H
can be analyzed as follows. ż ≤ ||ẋ − ẏ|| = ||Aix − y′|| =
||Aix − Ajy + Ajy − y′|| 6 ||Aix − Ajy|| + ||Ajy − y′|| for
some y′ ∈ Fj(y). Then, we obtain a new differential system{

ż(t) 6 Lz(t) + ε||y′||
ẏ ∈ Fj(y)

The rest of the proof is similar to that of Proposition 1.
Propostion 2 requires to choose a partition such that the
difference in the vector fields between H and the polyhedral
inclusion induced by it is bounded by ε. This can be done by
choosing a partition which ensures the ε bound for every Ai
in H. Propositon 3 is in fact captured using the uniformly
converging condition in the theorem.

5. HEURISTICS FOR NON UNIFORM PRED-
ICATE CONSTRUCTION

Next, we explore certain heuristics to construct the poly-
hedral partition for the hybridization procedure. A naive

algorithm is to uniformly partition the state-space and grad-
ually increase the granularity of the partitions. This ignores
the dynamics of the system in the selection of the parti-
tion. Instead, we propose a heuristic to refine the partition,
such that the size of the resulting polyhedral inclusions are
similar.

Here, we explain the heuristics for defining a non uni-
form predicate construction. Consider a polyhedral switched
system PolyH(H,R), obtained by hybridization of the lin-
ear switched system H with an initial set of predicates.
We want to partition the state space in order to obtain a
more accurate polyhedral hybrid system. For constructing
a finer partition, we choose a location, (q,R), in PolyH(H, R)
and the polyhedral inclusion associated to such location,
P = CPoly(Flow(q), R). The target is to split region R.
To split this region, we first compute the diameter of P ,
dP , which corresponds to the maximum of ||x − y|| while
x, y ∈ P and ||x|| = ||y|| = 1. The solution to the op-
timization problem returns the diameter value dP and the
two points xP , yP . We construct a vector vP starting at
xP and finishing at yP . This vector determines the direc-
tion in the dynamical polyhedron P where the longest error
on approximating the linear dynamics arises. To overcome
this problem, we construct a hyperplane which splits the
dynamical polyhedron and it is perpendicular to that direc-
tion. The hyperplane is the set {x ∈ Rn : vP · x = 0}.
Observe that this hyperplane is not partitioning the state
space but the polyhedral dynamics. Then, the hyperplane
is transformed into a hyperplane in region R which will re-
sult in the polyhedral dynamics splitting. This hyperplane
is the set {x ∈ R : vPAx = 0}, where A is the matrix for the
linear dynamical system defining the vector field of location
q in the initial linear hybrid system.

We need to split just regions that generate a coarse poly-
hedral inclusion dynamics. For choosing such regions we
compare the diameter of each dynamical polyhedra with a
diameter bound. This diameter bound is computed by con-
sidering every location (q,R) in PolyH(H, R) and the poly-
hedra CUPoly(Flow(q), R), and it is defined as

D = max
(q,R)∈L̂oc

dCUPoly(Flow(q),R)

The regions chosen are those with polyhedral inclusion dy-
namics whose polyhedral diameter is greater or equal to D
or to some percentage of D. The higher the percentage, the
less predicates will be added for partitioning the state space.

Example 1. We illustrate the hybridization process for a
2-dimensional linear hybrid system H. The dynamical be-
haviour of the system is determined by two linear dynamical
systems, ẋ = A1x and ẋ = A2x, defined by the following
matrices:

A1 =

(
0 1
−4 2

)
A2 =

(
0 1
−3 2

)

We evaluate the difference between uniform and non uni-
form predicate construction methods. In the case of the uni-
form method, 64 predicates are needed to obtain stability an-
swer for the polyhedral hybrid system PolyH(H), while with
the non uniform method, stability is verified by considering
40 predicates for the polyhedral hybrid system construction.
We observe that the non uniform method provides a less



(a) Uniform (b) Non uniform

Figure 7: Predicate construction

number of predicates for verifying stability. The fewer quan-
tity of predicates in comparison with the uniform predicate
construction is because the choice for new predicates in the
non uniform methods implies an homogeneous division of
the dynamical polyhedra.

Let us consider the linear dynamical system defined by
the matrix A1 and restrict it to the polyhedral region R =
{(x, y) ∈ R : x ≥ 0, y ≥ 0} which coincides with the first
quadrant. We observe in Figure 7 a sample execution in R
of the linear system ẋ = A1x, and the dynamical polyhedron
defined for such region and linear dynamics, denoted as P .
For the case of uniform predicate construction we observe
in Figure 7(a) the addition of the hyperplane {(x, y) ∈ R :
x − y = 0}, which results in a new partition with two re-
gions, R ∩ {(x, y) ∈ R : x − y <= 0} and R ∩ {(x, y) ∈ R :
x − y >= 0}. For the first region we get a new dynamical
polyhedron P1 with diameter 2 while in the second region the
new dynamical polyhedron P2 has diameter 0.05. In the case
of applying the heuristics explained above, we obtain the hy-
perplane {(x, y) ∈ R : 2x − y = 0} which partition R into
two new subregions in an analogous manner to the uniform
case. These subregions determine two new dynamical poly-
hedra, P1 and P2 with 1 as diameter value for both as shown
in Figure 7(b). Observe that the case of non uniform parti-
tion results in a more homogeneous distribution of the error
between linear and polyhedral dynamics.

6. EXPERIMENTAL RESULTS
In this section, we provide details regarding the imple-

mentation of the presented hybridization method, its inte-
gration into an abstraction based stability analysis approach
for polyhedral hybrid systems, experimental set up, exper-
imental evaluation and comparison with another stability
verification tool based on Lyapunov function proofs.

The hybridization procedure is implemented in Averist

[15]. Averist is a stability verification tool based on quan-
titative predicate abstraction. It has been implemented in
Python and uses Parma Polyhedra Library (PPL) to deal
with polyhedral operations and NetworkX Python package
to manage graphs and their analysis. It performs stabil-
ity analysis of polyhedral switched systems by constructing
weighted graph abstractions, and returns a counterexample,
a cycle with product of weights > 1, in case it cannot estab-
lish stability.

The hybridization technique has been implemented in Python
2.7 and it uses the Parma Polyhedral Library (PPL) [2] for
computing CPoly(A,R) and the NetworkX Python package
to represent the underlying graphs in linear and polyhedral
hybrid automata. The experiments have been performed on

a virtual machine with OS Ubuntu 14.04, processor equiva-
lent to 4 virtual CPUs and 4.68 GB of memory, installed on
Mac OS X 10.10 with processor 2.8 GHz Intel Core i5 and
8GB 1600 MHz DDR3 memory.

These experiments are performed, first, to evaluate the
scalability of Averist, in terms of state-space dimension,
number of modes in the input hybrid automaton and predi-
cates involved in hybridization, and second, to compare our
general approach with a stability verification tool based on
searching for Lyapunov functions.

6.1 Averists evaluation
We have constructed two kinds of input linear hybrid sys-

tems, those with arbitrary switching represented as AS i
and those with state based switching represented as SSi j.
The AS i examples are chosen from [16] (Example 2) and
the SSj i examples are constructed from AS i examples by
restricting the switchings to happen at the boundaries of a
partition with j regions. In particular, the set of executions
of SS8 i is a subset of the executions of SS4 i which is a
subset of the executions of AS i. The 4 and 8 refer to the
number of locations in the hybrid system.

The initial linear predicates used in partitioning the state-
space for hybridization are taken to be the linear expressions
extracted from the input system definition, the ones delim-
iting the invariants and guards. Averist runs iteratively
with increasing number of linear predicates. We have imple-
mented a function to choose the subsequent predicates, the
predicates split the state-space into uniform sized chunks.
For instance, for a two dimensional system, in addition to
the constraints in the hybrid system, after the first iteration
the predicates x = 0 and y = 0 are added, after the second
iteration x = y and x = −y are added and so on.

A summary of experimental results is presented in Table
1. Every experiment has been run for a maximum time of
25 minutes as the time out. The first 6 columns consist
of the Averist experiments. In addition to the dimension
(number of continuous variables) and the experiment name,
we report the number of iterations of the hybridization pro-
cedure that were run until stability was proven or the tool
timed out, the number of linear expressions and the regions
in the corresponding partition in the final hybridization, and
the total time taken to infer Lyapunov stability. The total
time includes the time taken by the underlying quantitative
predicate abstraction technique to analyse the polyhedral
hybrid system as well.

The experimental results in Table 1 demonstrate the fea-
sibility of our approach for stability analysis of linear hybrid
systems. Note that our tool was able to prove stability on
almost all the 2D, 3D and 4D examples that we considered.
The time for analysis increases reasonably slowly with the
increase in the number of modes, for instance, consider the
4D systems SS4 7 and SS8 7 with 4 and 8 modes and with
similar dynamics. However, the time increase with respect
to increase in dimensions is steeper. This is expected be-
cause of the large number of regions in the partition as the
dimension increases. We intend to explore compositional
analysis methods to deal with the curse of dimensionality.

Also, note that since the running time depends on the
number of regions, which in turn depends in an exponential
manner on the number of linear expressions used in the par-
titioning, it is crucial to develop methods which are clever
in the choice of the linear expressions. We will explore tech-



Averist Stabhyli
Dimension/name Iterations Expressions Region Time Degree LF found Time
2D AS 1 5 32 129 31 6 Y 8

SS4 1 1 2 9 < 1 8 − 452
SS8 1 1 4 17 < 1 6 − 443
SS16 1 1 8 33 1 4 − 177
AS 2 5 32 129 34 6 Y 9
SS4 2 1 2 9 < 1 8 − 418
SS8 2 1 4 17 < 1 6 − 451
AS 3 4 16 65 16 2 Y < 1
SS4 3 1 2 9 < 1 4 Y 7
SS8 3 1 4 17 1 6 − 417

3D AS 4 2 9 147 194 6 − 410
SS4 4 3 21 771 484 2 Y 75
SS8 4 3 21 771 470 2 Y 15
SS16 4 3 21 771 568 2 Y 138
AS 5 2 9 147 235 6 − 1254
SS4 5 3 21 771 418 2 Y 2
SS8 5 3 21 771 484 2 Y 18
AS 6 2 9 147 220 6 − 1237
SS4 6 3 21 771 463 2 Y 2
SS8 6 3 21 771 489 2 Y 17

4D AS 7 1 4 81 625 2 − 12
SS4 7 1 4 81 119 2 − 101
SS8 7 1 6 153 234 2 − 1071
SS16 7 1 10 297 533 2 − 339
AS 8 1 4 81 591 4 − 34
SS4 8 1 4 81 117 4 − 397
SS8 8 1 6 153 234 2 − 17
AS 9 1 − − out 4 Y 34
SS4 9 1 4 81 125 4 − 105
SS8 9 1 6 153 247 2 − 16

Table 1: Comparison of Averist and Stabhyli

niques which dynamically partition the state-space in a non-
uniform manner to circumvent this problem. Some ideas are
presented in Section 5.

6.2 Comparison with Stabhyli
Next, we compare our method in Averist with Stabhyli

[11], which is a tool for global stability verification based
on Lyapunov function search that can handle the class of
switched linear systems. Broadly, it searches iteratively with
increasing degree of polynomial templates until it finds a so-
lution. It only iterates over even degree polynomials, since
the Lyapunov functions are required to be non-negative ev-
erywhere. In addition, it has the option for finding either
common or multiple Lyapunov functions. We ran Stabhyli

on our example set with both common or piecewise Lya-
punov function options, in turn, and set a time out of 25
minutes as before. The experimental results of Stabhyli

are summarized in the last three columns of Table 1. The
second column from the end indicates whether the system
proved stability (Y) or that it timed out (-) with the com-
mon Lyapunov function option. The third column from the
end shows the maximum degree of the Lyapunov function
in the common Lyapunov function case that Stabhyli suc-
cessfully analyzed before the time out in the case of (-), or
the degree of the polynomial Lyapunov function returned in
the case of (Y). The last column shows the total time taken
for solving the templates up to the degree indicated in the

first column. We were not able to prove stability on any of
the examples with the multiple Lyapunov function option,
hence, we do not report the details.

First, note that Stabhyli fails to prove stability on several
examples, on which Averist succeeded. On AS 9, Stabhyli
succeeded, where as Averist timed out. While we do not
claim that the set of benchmarks here is representative, we
observed several numerical issues with Stabhyli with re-
spect to which we claim that our method and tool are well
behaved. For instance, in AS 1, Stabhyli returned with a
6th degree Lyapunov function. We ran Stabhyli again with
the same example by fixing the degree of the polynomial to
be 8, and it returned with an answer that stability could
not be proved. This is surprising, and we expect it to be
a result of numerical issues which cannot set the coefficient
of degree 8 term in the polynomial to 0 exactly. Note that
this implies that the iteration over the templates needs to
be done in a linear fashion. Next, while it found a common
Lyapunov function, it did not succeed in finding a multiple
Lyapunov function (note that the same Lyapunov function
in each mode is a multiple Lyapunov function). In addition,
on the systems SS4 1 and SS8 1, Stabhyli did not succeed
in proving stability which consist of fewer executions than
AS 1.

On the examples, where Stabhyli finds a Lyapunov func-
tion, it does so quickly. On all examples, except SS4 3,



Stabhyli performs better. However, the time required in
checking whether a template is a Lyapunov function, in-
creases much faster with the increase in the degree, as com-
pared to, for instance, with the increase in the number of
predicates for Averist. For instance, in the 4D example
AS 7, it took 12 seconds to check the polynomial of degree
2, but timed out for the polynomial with degree 4.

To summarize, we believe that the strength of our ap-
proach and our tool is that it is less prone to numerical
problems, since the tool mainly uses a linear optimization
solver at the backend with rational arithmetic. In addition,
our tool behaves in a monotonic manner with respect to
simpler systems. Finally, it returns counterexamples when
it fails to prove stability. We plan to utilize this to devise
smarter refinement algorithms in the future.

7. CONCLUSION
In this paper, we proposed a new hybridization approach

for stability verification of linear hybrid automata. Our ex-
perimental results show the practical feasibility of our ap-
proach and exhibit the merits in comparison to existing
approaches. Also, our approach returns a counterexample
which provides information on the possible cause of insta-
bility, that can be used to guide the choice of subsequent
partitions. There are several interesting future directions.
One direction is to perform an indepth analysis of the class
of systems for which the methods is complete, that is, will
eventually prove stability if the system is stable. The other
direction is to explore this approach for non-linear hybrid
systems. While theoretically, extending the approach to the
general class of hybrid systems is straightforward, the prac-
tical challenge is in finding the right class of partitions to
consider for hybridization.
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