
An Algorithmic Approach to Global Asymptotic Stability
Verification of Hybrid Systems

In this paper, we present an algorithmic approach to global
asymptotic stability (GAS) verification of hybrid systems.
Our broad approach consists of reducing the GAS verifica-
tion to the verification of a region stability (RS) analysis
problem and an asymptotic stability (AS) analysis problem.
We use a recently developed quantitative predicate abstrac-
tion technique for AS analysis and extract from it a stabil-
ity zone with respect to which we perform RS analysis. We
present a new algorithm for RS analysis based on abstrac-
tions. While we develop the theory for polyhedral hybrid
systems, our broad approach of decomposing GAS analysis
to RS and AS analysis can be applied to more general class
of systems including linear hybrid systems. As a proof of
concept, we apply the GAS verification algorithm to a lin-
ear hybrid system model of a cruise control for an automatic
gearbox, and provide a semi-automated proof of GAS.

1. INTRODUCTION
Formal verification of embedded and cyber-physical sys-

tems has gained prominence in the recent years owing to the
safety criticality of the application areas. Hybrid systems re-
fer to systems exhibiting mixed discrete-continuous behav-
iors, and thus, are an apt formalism for modeling embedded
software (that execute in discrete steps) interacting with the
physical world (that evolve continuously). In this paper, we
address the problem of verification of an important prop-
erty in the context of hybrid control systems, namely, global
asymptotic stability. It captures the property that a system
behavior starting at any state of the system will converge
to a desired state and can be maintained there under small
perturbations. For instance, one expects a cruise control
to drive the vehicle velocity to a set velocity and also to
maintain the velocity at the set velocity in the presence of
disturbances that arise due to uphills and downhills on the
road.

Stability analysis [8, 9] is a well-studied problem in con-
trol theory, especially for continuous dynamical systems.
Asymptotic stability is a classical notion that states that
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small perturbations in the equilibrium point (a desired state
in which the system remains under no perturbations), lead
to only small perturbations in the behaviors of the system;
and all executions starting in a small neighborhood of the
system converge to the equilibrium point. Asymptotic sta-
bility is a local property about a small neighborhood around
the equilibrium. In contrast, GAS requires convergence to
the equilibrium point starting from any initial state. Region
stability is a practical notion of stability that relaxes the
condition of convergence to the equilibrium point in GAS to
reachability to a small region around the equilibrium.

Asymptotic and global asymptotic stability analysis meth-
ods in control theory rely on exhibiting a function called the
Lyapunov function that ensures that the trajectories of the
system converge to the equilibrium [9, 8, 6]. Computational
methods to find Lyapunov functions rely on template based
methods that fix a candidate Lyapunov function template
such as a polynomial with coefficients as parameters, and
use constraint solving and optimization techniques to find
the parameters [13, 21, 11, 12]. For hybrid systems, this
approach has been extended with the notions of common
and multiple Lyapunov functions. The former considers a
single function that serves as a Lyapunov function for all
the modes of the system, while the latter considers a set of
functions, each of which serves as a Lyapunov function for
one or more modes, and in addition, satisfies certain condi-
tions related to the mode switchings [10]. Region stability
analysis using Lyapunov functions and similar notions such
as ranking functions have been considered [4, 5, 15, 16].

Some of the computational difficulties with template based
methods include the choice of the right templates [7], a steep
increase in the complexity of constraint solving with the
increase in the degree of template polynomials as well as
numerical issues that arise while solving the constraints/
optimization problems, as illustrated in [19]. Algorithmic
approaches based on abstractions that construct weighted
graphs for asymptotic stability analysis have gained inter-
est [17, 19]. One can draw an analogue between the ab-
stractions and the templates. The techniques in [17, 18, 19]
show that unlike template based methods abstraction based
methods return counterexamples that indicate a potential
reason for failure of the abstraction for the purpose of es-
tablishing stability, and these counterexamples can be used
to guide the refinement process. Further, these methods
consist of solving simpler feasibility/optimization problems
such as linear programming problems as opposed to LMI or
SOS optimization that is required by template based meth-
ods. Hence, they provide numerical robustness as illustrated



by the experiments in [19]. However, they suffer from the
curse of dimensionality and are currently restricted to the
class of linear hybrid systems, while template based methods
are applicable to nonlinear hybrid systems [13, 7].

In this paper, we build up on the algorithmic approaches
in [17, 18, 19], to obtain one for GAS verification. Our main
result consists of a decomposition theorem that reduces the
GAS verification problem into a AS verification problem and
a RS verification problem. More precisely, the GAS verifica-
tion of a polyhedral hybrid system H, is reduced to checking
(1) the asymptotic stability of a system H′ that captures the
dynamics ofH close to the origin, and (2) the region stability
of H with respect to a zone Z which ensures that the execu-
tion starting from Z remains within the center of H. Step
(1) is verified using a previously proposed quantitative pred-
icate abstraction (QPA) method [17]. The weighted graph
which exhibits the proof of AS of H′ is used to compute the
stability zone Z. A new algorithm for RS verification is pro-
vided. Except for the use of QPA for AS verification, all the
other algorithms in the paper are new including the compu-
tation of Z and the integration of RS and AS verification
procedures. As a proof of concept, we apply the GAS verifi-
cation algorithm to a linear hybrid system model of a cruise
control for a automatic gearbox to analyse the convergence
of the vehicle velocity to a set velocity. To summarize, the
main highlights of our method are:

• A novel algorithmic method for global asymptotic sta-
bility analysis that does not rely on Lyapunov function
synthesis;

• A graph based proof that provides insights into the
GAS, and counter-examples that provide insights into
the potential violations in the case that GAS is not
established.

2. PRELIMINARIES
Given a function F : A → B and C ⊆ A, let dom(F )

denote the domain of F and F �C denote the function with
domain C, which maps c ∈ C to F (c).

Convex polyhedral sets.
A point in the continuous space Rn is represented by x

which is of the form (x1, . . . , xn). A linear expression over
Rn is a function p : Rn → R where p(x) = ax + b with
a ∈ Rn and b ∈ R being constant values. A linear constraint
is an expression of the form p(x) ∼ 0 where ∼∈ {<,6,=}.
A convex polyhedral set is a convex set P of the form {x ∈
Rn : p1(x) ∼ 0, . . . , pk(x) ∼ 0}, where p1, . . . , pk are linear
expressions. A minimal set of linear constraints that define
a convex polyhedral set P is denoted as LE(P ). Given a

polyhedral set P , let P̊ denote the interior of P , P denote
the closure of P and ∂(P ) denote the boundary of P . A cone
generated by a polyhedral set P is defined as Cone(P) =
{αx ∈ Rn : x ∈ P and α ∈ R>0}. We will use Poly(X) to
denote the set of all convex polyhedral subsets of X, and
CPoly(X) to denote the set of compact convex polyhedral
sets.

Partition.
A polyhedral partition P of X ⊆ Rn is a finite set of closed

convex polyhedral sets, {P1, . . . , Pk}, such that X = ∪ki=1Pi
and P̊i ∩ P̊j = ∅, for 1 6 i < j 6 k.

A facet of an element P of such partition is a convex poly-
hedral set determined by the intersection of the set defined
by some linear constraint in LE(P ) and ∂(P ). The set of all
facets of an element P is denoted as Facets(P ).

Sequences.
A sequence over a set A is a function s : I → A, where I

is either {1, · · · , n} for some natural number n or I is N.

Graphs and weighted graphs.
A graph G is a pair (V,E), where V is a finite set of vertices

and E ⊆ V × V is a finite set of edges. A path of a graph
is a finite or infinite sequence of vertices π = v0v1 . . . such
that (vi, vi+1) is an edge for each i < len(π), where len(π)
is the number of nodes in path π. A cycle is a finite path
where the first and the last vertices are the same; and it is
simple if all the vertices are different except for the first and
the last.

A weighted graph G = (V,E,W) where (V,E) is a graph
and W : E → R≥0 ∪ {+∞} is a weighting function on the
edges. The weight of a path π is Πi<len(π)W(vi, vi+1).

3. POLYHEDRAL SWITCHED SYSTEMS
A well known formalism for modelling systems combin-

ing discrete and continuous behaviors is that of hybrid au-
tomata [1]. A hybrid automaton consists of a finite state
automaton to model the discrete dynamics, and differen-
tial equations/inclusions to model the continuous dynam-
ics. Here, we consider an important subclass of hybrid sys-
tems called polyhedral switched systems (PSS) that consist
of polyhedral inclusions to model the continuous dynamics.
These are convenient models for abstractions of complex hy-
brid systems including those with linear and non-linear con-
tinuous dynamics [20, 19].

Definition 1. An n-dimensional PSS is a tuple H =
(Loc, Edges,X, Flow, Inv,Guard), where:

• Loc is a finite set of locations;

• Edges ⊆ Loc× Loc is a finite set of edges;

• X = Rn is the continuous state space;

• Flow : Loc→ CPoly(X) is the flow function;

• Inv : Loc→ Poly(X) is the invariant function; and

• Guard : Edges→ Poly(X) is the guard function.

Figure 1a, shows a system that evolves in the 2-dimensional
space, that is divided into rectangular polyhedral sets la-
belled by q1, . . . , q10. In a region qi, the system evolves by
following the vector Fi depicted inside the region. The sys-
tem evolution changes the direction when it hits the bound-
ary of the region. A polyhedral switched system capturing
the behavior is provided in Figure 2. A regions qi in Fig-
ure 1a correspond to a location qi, whose invariant Inv(qi) is
the two dimensional region it represents, and the flow func-
tion Flow(qi) = {Fi} maps each location with its polyhedral
dynamics (represented here by a single vector). There is an
edge between two locations if the corresponding regions are
adjacent and the flow associated with them are such that
they allows the evolution from one region to the other. In



this example, we see that the interior of the invariants associ-
ated with the locations do not overlap. However, in general,
the definition of PSS allows the (interiors of) the invariants
to overlap.

An execution of a switched system starts in a mode q ∈
Loc and a continuous state x ∈ X, and consists of a sequence
of continuous and discrete evolutions. A continuous evolu-
tion corresponds to a trajectory inside Inv(q) and is such
that its derivative belongs to the set Flow(q) at all times. A
discrete evolution consists of a location switch along an edge
from some q1 to q2, such that the continuous state (which
remains unchanged during the switch) satisfies the guard.
Formally, the semantics of a PSS H is given by the set of
executions exhibited by the system.

Definition 2. An execution σ of a PSS of dimension
n, H = (Loc,Edges,X,Flow, Inv,Guard), is a triple (ι, η, γ)
such that:

• ι is a finite or infinite sequence of intervals, such that,
for each i ∈ dom(ι), ι(i) = [ti, ti+1], t0 = 0 and ti ≤
ti+1 and I(ι) = ∪iι(i);

• η : I(ι) → X such that for each ι(i), η�ι(i) is a differ-
entiable function;

• γ : dom(ι)→ Loc such that:

– for all i ∈ I, for all t ∈ ι(i), η(t) ∈ Inv(γ(i)) and
η̇(t) ∈ Flow(γ(i));

– for all pairs i, i + 1 ∈ I, (γ(i), γ(i + 1)) ∈ Edges
and η(ti) ∈ Guard((γ(i), γ(i+ 1))).

A sample execution of the system in Figure 2 is shown in
Figure 1a by the blue dotted trajectory. Note that dom(η)
may even be a finite interval of the form [0, t). In this case,
the interval dom(ι) is infinite, and the intervals [ti, ti+1] do
not cover [0,∞).

An execution σ = (ι, η, γ) of H is said to be complete if
I(ι) is [0,∞); otherwise, it is called finite. The set of all
executions of H will be denoted by Exec(H), and the set of
all complete executions by CExec(H).

An execution σ′ = (ι′, η′, γ′) is said to extend σ = (ι, η, γ)
if dom(ι) is a strict subset of dom(ι′), dom(η) is a strict
subset of dom(η′), for all i ∈ dom(ι), ι(i) = ι′(i) and γ(i) =
γ′(i), and for all t ∈ dom(η), η(t) = η′(t). An execution
σ is maximal if it cannot be extended. Note that complete
executions are maximal.

We define the scaling of an execution by a positive real
number.

Definition 3. Given an execution σ = (ι, η, γ) of H and
a real number α > 0, we define ασ to be the entity (ι′, η′, γ′),
where:

• dom(ι′) = dom(ι) and if ι(i) = [t, t′], then ι′(i) =
[αt, αt′];

• η′(t) = αη(t/α); and

• γ′ = γ.

Note that ασ may not in general be an execution, since,
it may not satisfy the invariant and guard conditions in
the definition of an execution. Note, however, that it sat-
isfies the flow conditions, since, d

dt
η′(t) = d

dt
[αη(t/α)] =

α d
dt

[η(t/α)] = α( d
dt
η)(t/α) 1

α
= ( d

dt
η)(t/α) ∈ Flow(γ(i)),

where t/α ∈ [ti, ti+1]. Then t ∈ [αti, αti+1] and d
dt
η′(t) ∈

Flow(γ(i)).

(a) Sample execution (b) Stability zone

Figure 1: Polyhedral switched system

Figure 2: Hybrid automaton

4. STABILITY NOTIONS
Global asymptotic stability is a desired property in con-

trol systems. It assures that all the executions of the system
converge to a desired equilibrium state and any perturba-
tions to this state do not drive the system too far. Our
main objective in this paper is to analyse global asymptotic
stability, however, we will reduce the problem to the verifica-
tion of other weaker notions of stability. Here, we introduce
all these notions.

First, we define a notion of local stability that ensures
that small perturbation to an equilibrium state results in
only small deviations in the behaviors of the system. We
will assume that the equilibrium point is the origin, 0̄, with-
out loss of generality. Let Bε(0̄) be an open ball around
0̄ of radius ε, that is, Bε(0̄) = {x : ||x|| < ε}, where ||x||
refers to a norm. (Here, we will assume infinity norm, unless
otherwise stated).

Definition 4. A PSS H is said to be Lyapunov stable
(LS), if for every ε > 0, there exists a δ > 0 such that for
every execution σ = (ι, η, γ) ∈ Exec(H) with η(0) ∈ Bδ(0̄),
η(t) ∈ Bε(0̄) for every t ∈ I(ι).

First, we remark that Lyapunov stability is a property
about a small neighborhood around the origin. Suppose
that we show that we can find a δ satisfying the conditions
in Lyapunov stability for every ε in the interval [0, ε′] for a
small enough ε′, then we can find a δ for any ε. For ε > ε′, we
choose a δ that ensures that the trajectories remain within



ε′, which will imply that they remain within ε. Hence, we
need to focus on a very small neighborhood of the origin to
deduce Lyapunov stability.

Definition 5. An execution σ = (ι, η, γ) ∈ Exec(H) is
said to be convergent to 0̄ if for every ε > 0 there exists a
value T ≥ 0 such that for every t ≥ T , η(t) ∈ Bε(0̄).

Definition 6. A PSS H is said to be asymptotically sta-
ble (AS) if it is Lyapunov stable and there exists a value
ζ > 0 such that every execution σ = (ι, η, γ) ∈ CExec(H)
with η(0) ∈ Bζ(0̄) is convergent to 0̄.

We illustrate Lyapunov and asymptotic stability by con-
sidering the PSS shown in Figure 1a. First, let us focus on
the regionR given by the invariants of q7, q8, q9 and q10. The
dynamics are given by F7 = (−1,−3), F8 = (−1, 2), F9 =
(3,−1) and F10 = (1, 1). Let 2M be the length/width of R.
Consider an execution which starts at distance d < M/2 on
the positive x axis, that is, at (d, 0). It will reach the posi-
tive y axis at (0, 2d), then the negative x axis at (−2d/3, 0),
the negative y axis at (0,−2d/9) and finally return to the
negative x axis at (2d/9, 0). Hence, the execution gets closer
by a factor of 2/9 with respect to where it started, and in
the meantime never goes beyond a factor of 2 away from
the origin. In particular, it never leaves the region R. (A
similar observation can be made about the executions start-
ing on the other axes). Hence, in Figure 1a, if we start in
the region R/2, which is a box similar to R centered at
the origin, but whose length and width are half that of R,
then the executions will remain within R and eventually get
closer to the origin. Hence, given any ε′ such that Bε′(0̄)
is contained in R, we can choose δ = ε′/2 and ensure that
all executions starting in Bε′(0̄) will remain within Bδ(0̄).
Therefore, the system is Lyapunov stable. Further, since,
the executions get closer by a factor of 2/9 in between two
successive traversal through the positive x axis, we also ob-
tain that they converge, and hence, the system is asymptot-
ically stable.

Next we define global asymptotic stability which unlike
asymptotic stability requires convergence to the origin start-
ing from any state.

Definition 7. A PSS H is said to be globally asymptot-
ically stable (GAS) with respect to 0̄ if it is Lyapunov stable
and every execution σ = (ι, η, γ) ∈ CExec(H) is convergent
to 0̄.

To show that the system in Figure 1a is GAS, we need to
show that all the executions of the system will converge to
the origin. Note that it does not suffice to show that all the
executions that start outside R, enter R. This is because, in
concluding asymptotic stability we only showed that the ex-
ecutions starting from a small neighborhood, namely, R/2,
around the origin converge to the origin. In fact, the exe-
cutions that start closer to the boundary of R may behave
very differently from those starting closer to the origin, in
that, the former executions may leave the region R. For
instance, an execution starting at (M, 0) will not reach the
R on the positive y axis. However, if we show that all exe-
cutions reach R/2, then we know that they also converge to
the origin. This will be the intuition behind our algorithm
for GAS verification. Here, we formalize the notion that
captures the fact that all executions reach a region.

Definition 8. A PSS H is said to be region stable (RS)
with respect to a set R ⊆ X if for every maximal execution
σ = (ι, η, γ) ∈ Exec(H) there exists a value T ≥ 0 such that
η(T ) ∈ R.

Often, region stability not only requires that the execu-
tions reach R, but also requires the executions to remain
within R always after some time [16]. Note that we are con-
sidering a weaker notion than the standard region stability
because it suffices for our purpose.

In Figure 1a, it can be shown that all executions that
start outside the region R given by q7, q8, q9 and q10 will
eventually enter R, and hence, the system is region stable
with respect to R. Let F1 = (−1,−5), F4 = (2,−1), F5 =
(1, 0), F6 = (1, 1), F3 = (−1, 1) and F2 = (−1, 0). Note that
any execution that starts at (−M,−N), where N > M , will
follow F5, F6, F3, F2 and reach (−M,N). From (−M,N),
on following F1 and F4, the points (−M,−N/10) is reached.
Hence, any execution which starts in q1, q2, q4 and q5 will
eventually enter q9, and executions that start in F6 and F3

will either enter q8 or reach q2, and in the latter case reach
q9.

5. GAS VERIFICATION
In this section, we present an algorithm for global asymp-

totic stability verification. Our main result is a decompo-
sition theorem that states that global asymptotic stability
verification can be reduced to an asymptotic stability veri-
fication problem and a region stability verification problem.

As pointed out before, we cannot conclude the GAS of
the system in Figure 1a, by showing that it is asymptoti-
cally stable, and it is region stable with respect to the re-
gion R. This is because asymptotic stability only ensures
convergence of executions starting close to the origin, and
the executions that enter the region R from outside may
not reach the points close to the origin, and hence, again
leave the region. For instance, in Figure 1a, if we start at
(3M/2, 0), we reach (M,M/2) by following F3, and further,
reach (3M/4,M) by following F8, then potentially switch to
q2 and reach q1 outside of R.

However, if we are able to construct a zone Z within
R from which all the executions are guaranteed to remain
within R, and have previously established asymptotic sta-
bility, then we can conclude that the executions starting
from Z also converge to the origin. Here, we use downward
closedness of the executions of the polyhedral switched sys-
tems. The intuition is that every execution starting at point
z in Z is similar to an execution that starts at z/α, for
any α ≥ 1. Note that it is crucial that the execution from
z remains within Z. We call the zone Z a stability zone.
Global asymptotic stability can then be deduced by show-
ing region stability with respect to Z. Theorem 1 captures
this intuition. Below we formalize the concepts required in
stating the theorem. Let us fix a polyhedral switched sys-
tem H = (Loc,Edges, X,Flow, Inv,Guard) for the rest of the
section.

A centre zone consists of a set of states of the system adja-
cent to the origin which contain downward closed subsets of
invariants and guards. A set S ⊆ Loc×X is downward closed
if for every (q, x) ∈ S, (q, αx) ∈ S for every 0 < α < 1.

Definition 9. A centre zone of H is a downward closed



Algorithm 1 Global asymptotic stability verification

Require: H
Ensure: GAS
1: AS,G := AS-verification(H)
2: if AS then
3: R := Centre(H)
4: Z := Stability-zone(G,R)
5: return RS-verification(H,Z)
6: else
7: return AS

set R such that

R ⊆ {(q, x) ∈ Loc×X : x ∈ Inv(q), 0̄ ∈ Inv(q)}

and for every (q, x), (q′, x′) ∈ R with (q, q′) ∈ Edges, Guard(q, q′)
is downward closed.

Note that if 0̄ ∈ Inv(q), then Inv(q) is necessarily a down-
ward closed set. In Figure 1a, the regionR given by q7, q8, q9
and q10 is a centre zone. In the sequel, we use the symbol
R to always refer to the centre zone.

Definition 10. Given a center zone R, a set Z ⊆ R
is called a stability zone of H w.r.t R if for every σ ∈
CExec(H), σ(t) ∈ R for every t ≥ 0.

Theorem 1. Let H be a PSS, R be a center zone of H
and Z be a corresponding stability zone of H. If H is asymp-
totically stable with respect to 0̄ and H is region stable with
respect to Z, then H is globally asymptotically stable with
respect to 0̄.

Proof. Since H is asymptotically stable, to show that H
is GAS, we need to show that every complete execution of
H converges to the origin. However, since, we have that all
complete executions are maximal, by region stability with
respect to Z, they reach Z. Hence, it remains to show that
all complete executions that start from Z converge to the
origin. From asymptotic stability of H, we know that there
is some δ > 0, such that all executions that start in Bδ(0̄)
converge to the origin. Consider an execution σ that starts
in Z. There is some 0 < α < 1 such that ασ starts in Bδ(0̄).
We note that ασ is an execution of H, since, it satisfies
the corresponding invariants and guards, which follows from
the fact that the invariants and guards restricted to R are
downward closed sets.

The technique to analyse GAS of H with respect to the
origin is described in Algorithm 1. Given a PSS H the
GAS verification process returns either a ‘yes’, ‘no’ or ‘non-
established’ answer. A ‘yes’ answer implies GAS of the sys-
temH, a ‘no’ answer implies instability and a ‘non-established’
answer means that the system H could not be deduced to be
either GAS or otherwise, and hence, may or may not be sta-
ble. This verification process consists of the following main
steps.

First, the asymptotic stability of H is analysed by calling
the function AS-verification(H). It returns a ‘yes’, ‘no’ or
‘non-established’ answer. A ‘yes’ answer means that AS was
deduced, and in this case a weighted graph G that serves
as the proof of AS is returned. A ‘no’ answer states that
H is not asymptotically stable and ‘non-established’ answer
implies that AS or otherwise could not be deduced for the

system H. These two last answers are accompanied by an
empty graph G. In the case that the asymptotic stability
of the system H is deduced, the algorithm proceeds to con-
struct the centre zone R, a stability zone Z and to verify
the region stability of H with respect to the stability zone
Z. A ‘no’ or ‘non-established’ answer to AS verification of
H results in the same answer for GAS of H, since global
asymptotic stability requires asymptotic stability.

The centre zone of H is computed by the function Cen-
tre(H) based on Definition 9. Our stability zone computa-
tion algorithm takes as input the centre zone R as well as
the graph G returned from the asymptotic stability analysis.

Region stability verification is performed by the function
RS-verification(H,Z) over the system H by considering the
stability zone Z. Again it returns either ‘yes’, ‘no’ or ‘non-
established’. If region stability of H is established, then H
is concluded to be GAS in accordance with Theorem 1. If
the output to region stability analysis is either ‘no’ or ‘non-
established’, then in general we cannot conclude that GAS
cannot hold. Firstly, we do not have a converse of Theo-
rem 1, and secondly, the region stability could be violated
by the existence of maximal finite executions that do not
reach the zone, but which can be safely ignored for GAS
deduction. Next, we explain the different procedures in de-
tail.

6. AS VERIFICATION
In this section, we describe the asymptotic stability ver-

ification method for polyhedral switched systems based on
abstractions [17]. It is important to understand this con-
struction, since the implementation of our integration algo-
rithm (Theorem 1) relies crucially on the foundations of this
construction.

Observe that since asymptotic stability is a local property,
it suffices to restrict the system to a small neighborhood
around the origin for the purpose of asymptotic stability
analysis. Hence, we define a PSS extracted from H that
uses the dynamics in a small neighborhood for the whole
statespace.

Definition 11. Given a PSS H, the extracted PSS from
H is an hybrid automaton H e = (Loce,Edges e,X,Flow e, Inv e,
Guard e) such that

• Loce = {q ∈ Loc : R∩ (q × Inv(q)) 6= ∅},

• Edges e = {(q1, q2) ∈ Edges : q1, q2 ∈ Loce},

• Flow e = Flow�Loce ,

• Inv e : Loce → Poly(X) with Inv e(q) = Cone(Inv(q)),

• Guard e = Guard�Edges e .

Proposition 1. Given a PSS H and the extracted PSS
H e from H, H is asymptotically stable if and only if H e is
asymptotically stable.

Proposition 1 states that it is enough to analyse AS of the
extracted PSS H e. The full process for AS analysis of sys-
tem H is described in Algorithm 2. First, the extracted PSS
fromH based on Definition 11 is constructed by the function
Extract(H). It requires the computation of Cone(P) for a



polyhedral set P . It is computed as follows:

Cone(P) =


⋂

pi(x)∼0∈LE(P )

pi(0̄)=0

{x ∈ Rn : pi(x) ∼ 0} if 0̄ ∈ ∂(P )

Rn if 0̄ ∈ P̊

Essentially, Cone(P) is represented by the constraints in
LE(P ) that contain 0̄ in their closure. Note that every P
corresponds to an invariant whose closure contains the origin
by Definition 11.

Next, we need to analyse the asymptotic stability of PSS
H′. The broad approach is to construct an abstraction (a
simplification) such that certain analysis on the abstract sys-
tem yields stability of H′. However, standard finite state ab-
stractions do not preserve stability and hence, quantitative
abstractions that construct finite weighted graphs have been
proposed in [17]. The abstraction procedure is based on a
polyhedral partiton P. The nodes in the weighted abstract
graph G correspond to the pairs (q, f), where q ∈ LocH is
a location of the hybrid automaton and f ∈ Facets(P) cor-
responds to the facets of the polyhedral partition. An edge
between two nodes, (q1, f1) and (q2, f2), represents the exis-
tence of an execution starting from some state (q1,x1) where
x1 ∈ f1 that reaches some state (q2,x2) with x2 ∈ f2. The
weight associated with an edge is an upper bound on the
scaling values for all the executions starting from (q1, f1)
and finishing at (q2, f2), that is, it is the maximum ratio
||x2||
||x1||

over all pairs (x1,x2), such that there is an execution

from (q1,x1) to (q2,x2), where x1 ∈ f1 and x2 ∈ f2 . The
system is deduced to be asymptotically stable, if the follow-
ing two properties hold of the weight graph G abstracting
the PSS H e:

A1 W(e) < +∞ for every edge e in G.

A2 Every simple cycle π of G satisfies W(π) < 1.

Condition A2 that the executions that cross infinitely many
facets converge to the origin, since, the scalings associated
with such executions is provided by the corresponding paths
in the graph. Condition A1 ensures that the executions do
not diverge while remaining within a single region of the
partition.

In particular, the product of the weights on a path provide
an upper bound on the ratio of the norm of the end to that of
the starting point of all executions that follow the sequence
of facets specified by the path (see [17] for further details).

Hence, the algorithm proceeds with the generation of the
partition using the function Generate-partition(H′). The
function either automatically generates the partition from
the PSS H′ or seeks the user input in computing the par-
tition. The user input can be taken in the form of a set
of linear expressions that are then used to construct the
partition. A useful set of linear expressions to add either
automatically or manually are those that define the invari-
ants and the guards in H′. The PSS H′ and the state space
partition P are the input to the function Abstraction(H′,P),
which outputs the weighted graph abstraction G. The func-
tion AS-satisfaction(G) verifies that the Conditions A1 and
A2 hold. The function AS-satisfaction(G) returns AS of H′
if both A1 and A2 are satisfied. If A1 is violated, the algo-
rithm will output instability, and if A1 is satisfied but A2 is
not satisfied, the output will be a ‘do not know’ answer.

Algorithm 2 Asymptotic stability verification

Require: H
Ensure: AS
1: H′ := Extract(H)
2: P := Generate-partition(H′)
3: G := Abstraction(H′,P)
4: return AS-satisfaction(G)

(a) Extracted PSS (b) Weighted graph

Figure 3: Quantitative predicate abstraction

Figure 3 shows the quantitative predicate abstraction over
the extracted PSS from the one in Figure 1a. It is a sim-
plified version, just to give a flavour of the construction
procedure. Observe that every execution starting from f4
reaching f1 by following the vector associated with q8 has
as maximum scaling 2/1, that is, 2. The other weights are
computed in an analoguous manner.

7. STABILITY ZONE
In this section we introduce the technique to construct a

stability zone when given a weighted graph G abstracting the
system H′, and a center zone R. Let R be a ball of radius
M for some M (note that when we use the infinity norm, a
ball gives us a rectangular set). The detailed algorithm is
given in Algorithm 3, in which the stability zone is defined
as a scaled version of the centre zone R.

Algorithm 3 Stability zone construction

Require: G,R
Ensure: Z
1: s := Maximum-scaling(G,R)
2: s′ := 2 · s
3: return 1

s′R

First, the maximum weight of a path in G is computed
with the function Maximum-scaling(G,R), which returns
max{1,max{W(π) : π is a path in G}}. This value repre-
sents an upper bound on the variation between the distances
to the origin of a pair of states belonging to the same exe-
cution of the system H′ whose abstraction is represented by
G. Denote this bound as s and observe that an execution in
H′ starting at a distance d from 0̄ can only reach as far as
sd from 0̄. The stability zone Z is taken to be 1

s′R for some
s′ > s. Algorithm 3 considers s′ to be 2s. Observe that in
Figure 1 the stability zone Z coincides with a scaled version
of R.

8. RS VERIFICATION
In this section, we introduce our abstraction based algo-

rithm for region stability analysis. Given a PSS H and a



Algorithm 4 Region stability verification

Require: H,Z
Ensure: RS
1: P := Generate-partition(H)
2: P ′ := Partition(P,Z)
3: G1 := Abstraction(H,P ′)
4: G2 := Delete-inner-nodes(G1)
5: G3 := Delete-non-reachable-nodes(G2)
6: if edge in G3 with W(edge) =∞ then
7: return false
8: C := Cycles(G3)
9: if C not empty then

10: return non-established
11: N2 := Not-outgoing-edges(G3)
12: N3 := Nodes(G3,Facets(Z))
13: if node in N2 and not in N3 then
14: return non-established
15: return true

stability zone Z, region stability of H with respect to Z
is verified. An algorithmic procedure for RS verification is
shown in Algorithm 4. It consists of the following steps:

Initially, a state partition P is generated as explained in
the previous section, by the function Generate-partition(H).
This partition P is refined into a partition Partition(P,Z)
using the stability zone Z. If P = {P1, . . . , Pk}, then P ′=
Partition(P,Z) is defined as {P1\Z, . . . , Pk\Z, P1∩Z, . . . , Pk∩
Z}. The new partition ensures that the zone Z is a union
of certain regions of the partition, and hence, the boundary
of Z can be captured by the facets of the partition. Let us
call these facets FZ .

The PSS H and the state space partition P ′ are input to
Abstraction(H,P ′), which constructs a weighted graph G1
by applying the abstraction over the system H explained in
Section 6. This is slightly modified to capture those exe-
cutions which remain within a region (may not necessarily
diverge), such executions are captured using infinite weight
edges as well. In order to establish region stability, we need
to show that all executions that start outside the zone Z will
eventually reach its boundary. Hence, we can ignore the sub-
graph that corresponds to the interior of Z. This is achieved
by the function Delete-inner-nodes(G1,Z) that deletes all
nodes that correspond to the interior of Z and the edges
out of them, and outputs G2. Then we remove all nodes
that are not reachable from the initial nodes which capture
all the points from which we want to reach Z. Delete-non-
reachable-nodes(G2,N1) removes all non-reachable nodes re-
sulting in the graph G3. From the modified graph construc-
tion, this also detects any executions that remain in a region
and do not move to the next facet. Next, we ensure that
there are no executions that diverge while remaining in a
single region, this is ensured by checking that there are no
edges with infinite weight in G3. Note that a cycle can rep-
resent an infinite execution that follows the cycle infinitely
many times and hence, does not reach Z. The function Cy-
cles(G3) returns the simple cycles in the graph; if it is empty,
we proceed with the analysis. Finally, we need to ensure that
none of the executions get stuck (terminate) at any of facets.
The function Not-outgoing-edges(G) computes all the nodes
which have outgoing edges. The only nodes that are allowed
not to be in this set are those corresponding to ZF .

9. EXTENSION TO OTHER DYNAMICS
In this paper, we focused on the analysis of global asymp-

totic stability of polyhedral switched systems. Theorem 1
provides a decomposition theorem for GAS verification in
terms of asymptotic stability and region stability verifica-
tion. It uses certain properties about the polyhedral in-
clusion dynamics, namely, that the solutions are scaling in-
variant in the sense that if σ is a solution of a polyhedral
inclusion dynamics specified by the polyhedron P , then ασ
is a solution as well. A similar property can be established
for linear dynamics, however, here, in the definition of ασ
we do not need to scale the time. More precisely, if x(t) is
a solution of ẋ = Ax, then y(t) given by αx(t) is also its so-
lution. Hence, the decomposition theorem can be extended
to linear hybrid systems. However, such properties do not
hold for general non-linear dynamics.

An alternate approach to deal with the general class of hy-
brid systems is to use hybridization to reduce them to poly-
hedral hybrid systems [20, 2, 3]. Hybridization constructs a
partition of the statespace into a finite number of regions and
over-approximates a given dynamics by a simpler one. Hy-
bridization results in an over-approximate system and hence,
it suffices to establish the GAS of the over-approximate sys-
tem to deduce the same for the given system. We use the
hybridization approach in the sequel to analyse a linear hy-
brid system modeling an automatic gearbox; we construct a
polyhedral switched system that over-approximates the lin-
ear hybrid system and analyse the PSS for GAS.

10. IMPLEMENTATION
The purpose of this section is to show the details of the

implementation for the GAS verification procedure, by enu-
merating the different functions, the software used, the im-
plemented algorithms and the manually performed instruc-
tions. An overall flow of the process is shown in Figure 4.
The input to the process is an hybrid automaton H, which is
analysed to deduce global asymptotic stability with respect
to the origin. The output is a yes (True) or no (False) or un-
known answer to the stability analysis. The input automa-
ton can be a PSS or a linear hybrid automaton(LHA). In the
case that the input H is a LHA, a polyhedral switched sys-
tem H′ is constructed by applying a hybridization technique
over the linear switched systems, which is described in [19].
This hybridization is implemented in the tool Averist and
requires the LHA H and a set of predicates for partitioning
the state-space. Those predicates can be generated automat-
ically by the tool or provided by the user. The hybridization
construction ensures that if the system H′ is GAS, then H
is GAS as well. Then the PSS is analysed for asymptotic
stability by constructing the abstract weighted graph G and
model-checking it. This is again performed by Averist. In
the case of ‘yes’ answer an abstract weighted graph G is
returned. This weighted graph is the input to the stabil-
ity zone construction. The stability zone construction com-
prises of three different computations — maximum weight
computation over all the paths in the graph G, the centre re-
gion construction and finally the stability zone construction.
The maximum weight computation in G is implemented in
Python 2.7. It transform the maximum product weight com-
putation into a minimum sum weight computation by con-
sidering the −log10 of all the weights in the graph, which
is then solved by Dijkstra’s algorithm included in the Net-



Figure 4: GAS flow diagram

workX Python package. The centre region construction at
this point is performed manually. The values for the linear
expressions delimiting the stability zone are computed auto-
matically in Python 2.7, but the obtained linear expressions
are added manually to perform the region stability verifica-
tion.

This construction of the abstract graph in stability zone
verification is done by calling Averist. The termination
analysis is fully automated and uses different algorithms in-
cluded in the NetworkX Python package for the analysis
with graphs.

11. AN AUTOMATIC GEARBOX
In this section we present an automatic gearbox example

and analyse global asymptotic stability. The gearbox exam-
ple is a linear hybrid automaton. We construct a polyhedral
hybrid automaton and then apply our GAS verification al-
gorithm on that. We illustrate the overall process through
the automatic gearbox model presented in [14].

11.1 Model
An automatic gearbox is a device for controlling the gear

changes in a vehicle. It consists of four different positions
and at each position the dynamics is governed by a linear
system. The dynamics describe the evolution of two vari-
ables, v and TI , where v is the difference between the desired
velocity vd and the current velocity vc and TI corresponds
to the integrator torque state ∆TI . Every switching is per-
formed when some constraint over the velocity is satisfied.
The target is to achieve a desired velocity vd, for which we
need to verify global asymptotic stability of the system with
respect to v = 0 and TI = 0. The value TI is set to 0 every
time the driver inputs a new desired velocity.

The linear switched system modelling the system is shown
in Figure 5, where the state is defined by x = (v,TI)

> and

Figure 5: Model of the gearbox

the closed-loop dynamics are determined at each gear by the
matrix

Aq =

(
−pqkq/M −pq/M
kq/T 0

)
with q referring to each of the modes q1, q2, q3 and q4. The
invariant intervals are I1 = [vd − 1

p1
ωhigh,∞), I2 = [vd −

1
p2
ωlow, vd − 1

p2
ωhigh], I3 = [vd − 1

p3
ωlow, vd − 1

p3
ωhigh] and

I4 = (−∞, vd − 1
p4
ωlow]. The values for each parameter in

the linear switched system definition appear in Table 1.

Table 1: Parameter values

M = 1500 T = 40
ωlow = 500 ωhigh = 230
p1 = 50 p2 = 32 p3 = 20 p4 = 14
k1 = 15/4 k2 = 375/64 k3 = 75/8 k4 = 375/28

Figure 6 shows some representative sample executions of
the automatic gearbox for vd = 30. The horizontal axis
represents the velocity difference v and the vertical axis rep-
resents the integrator torque TI . Since the value TI is set
to 0 every time the driver inputs a new desired velocity, ev-
ery execution starts at the horizontal axis. The initial state
depends on the current velocity of the vehicle. The origin
is the state such that vd = vc, that is, the state where the
target velocity is achieved. An execution starting from the
negative side of the axis, that is v < 0, means that the ve-
hicle needs to slow down, because the current velocity is
higher than vd. The gear is in the 4th position, which cor-
responds to mode q4. Observe that the execution evolves
continuously in location q4 until reaching the origin. In case
of starting from a positive value of v, the current velocity
is lower than vd and the gear position will depend on this
value. We depicted two different executions, one starting
from location q1 and another one starting from location q2.
The execution starting from q1 switches three times. The
current velocity increases continuously in q1 until reaching
the value 1

p1
ωhigh (involved in the guard constraint from q1

to q2 in Figure 5), represented by the rightmost solid red
line. Then, it switches from location q1 to location q2. The
switching implies a dynamics change but no jump on the
state. The execution evolves by following the new dynamics
until reaching a new value 1

p2
ωhigh for the current velocity

and it switches from location q2 to location q3. The next
switching is from location q3 to q4, where the execution con-
verges to the origin. An analogous behavior is observed in
the case of the execution starting from location q2.

11.2 Analysis
Let us consider the gear box hybrid automaton in Figure 5

where we set the desired velocity vd to be 30. Let the corre-
sponding linear switched system be Hgb. Next, we explain



Figure 6: Partition and sample executions

the different GAS verification steps performed for the linear
switched system Hgb.

Step 1.- A new system description of Hgb in which all the
constants are integers is performed. This is necessary since
the different tools we are using require such property. Every
polyhedral set in PPL needs to be defined by linear expres-
sions with integer parameters. Therefore, all the constant
values in Hgb are expressed as rational numbers and after
multiplied by 1344000, which is the least common multiple
of all the denominator values.

Step 2.- A polyhedral switched system H1 is constructed
by applying a hybridization technique over the linear switched
system Hgb. The hybridization technique returns in addi-
tion to H1, the polyhedral state space partition used for
construction. Let us denote the partition as P. It is the
one shown in Figure 6, where the state space is divided by
the linear constraints which describe the invariants of the
original gearbox, the linear constraint TI = 0 which defines
the initial states and the linear equation 375v + 28TI = 0
which equalizes to zero the velocity coordinate of the flow
vectors defining executions close to the origin.

Step 3.- From the PSS H1 we extract a PSS H2 which
consists of only one location, where the invariant is the full
planar continuous space and the flow is defined by the poly-
hedral approximation of the linear dynamics in the q4 mode
of the original system. Then asymptotic stability proof re-
duces to that of a single mode system.

Step 4.- Asymptotic stability of H2 is analysed by using
the tool Averist. The hybrid system H2 and the state space
partition P are the inputs to the software, which returns
an answer and a weighted abstract graph G. We obtain a
positive answer about asymptotic stability. The abstraction
process results in the weighted graph shown in Figure 7,
where the weights appear truncated for simplicity.

Since the asymptotic stability proof consists of a proof for
a single mode system, the asymptotic stability could have
been verified by eigenvalue analysis over the linear dynamics
in q4, so over a linear version of the extracted H2 shown in
the left side of Figure 7, but we require extra information
for the stability zone construction which is provided by the
abstract weighted graph G, shown on the right in Figure 7

Step 4.- The stability zone Z is computed. The center
zone is q4× ((−∞, 18240000]×R) that is shown in Figure 6.
The extracted system that is used in the asymptotic sta-
bility analysis and subsequently in the computation of Z,

Figure 7: Asymptotic stability verification

is depicted on the left in Figure 7. The abstract weighted
graph G is shown on the right in Figure 7. Observe that
in Figure 7 the maximum value of any path in the graph
is in fact the value of the edge with weight 2.678. We de-
note this weight as s. Then, the stability zone defined as in
Algorithm 3 corresponds to α((−∞, 18240000] × R) where
α ' 0.1867. We are going to be more restrictive and instead
of considering such stability region, we construct a smaller
one, contained in the previous one. This new region is a ball
centered on the origin with radius 1250000 (this is a not au-
tomatic choice), which is less than α · 18240000 = 3405408.
Let us denote this ball as Z. The predicates defining the
ball Z are added manually in the implementation.

Step 5.- A weighted graph is automatically constructed
to verify region stability. A new partition P ′ is automati-
cally constructed by intersecting the polyhedral elements in
P with Z. Then, the new state space partition P ′ is input
to perform a predicate abstraction over the H1 as explained
in Section 6. A weighted graph G′ is returned. Note that
we do not use the weight of the graph G′ except to deduce
that all the executions move to the next facet. If there exists
an infinite weight, then H1 is not region stable with respect
to Z. The nodes in G′ corresponding to the interior of the
ball Z are automatically removed from the graph G′, since
we just need to check that every path reaches some of the
nodes referring to the facets of Z. Recall that we restrict
ourselves, in the system H, to executions with initial value
of TI = 0. Therefore we consider the nodes (q, f) in G′ such
that f∩{TI = 0} 6= ∅ as initial nodes, which are selected au-
tomatically. All the non reachable nodes are automatically
removed from the initial nodes in G′, since they are not nec-
essary for our analysis and the simpler the graph becomes
the less the toperational time required.

Finally, the graph G′ is analyzed for termination. First, a
search for cycles in G′ is performed and it returns negative.
Finally, the nodes in G′ with no outgoing edges is computed,
and it is verified that these correspond only to the nodes
representing Facets(Z). Hence, the implementation outputs
that H is region stable with respect to Z, and therefore,
GAS is stated for the automatic gearbox instance we are
considering.

12. CONCLUSION
In this paper, we present an algorithmic approach to global

asymptotic stability verificatoin that relies on a decomposi-
tion of the global stability into a local asymptotic stability
verification problem and a region stability problem. We ap-
ply our algorithm to a case study involving a cruise con-



trol interacting with an automatic gearbox. In the future,
we will develop computational methods for applying these
techniques to the class of linear and non-linear switched sys-
tems.
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