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Abstract— This paper presents a method to synthesize a
sequence of control inputs for a discrete-time piecewise linear
system equipped with a cost function, such that the controlled
system behavior satisfies a finite-word linear-time temporal
objective with minimal cost. An abstract finite state weighted
transition system is constructed, such that the cost of the
optimal control on the abstract system provides an upper bound
on the cost of the optimal control for the original system.
Specifically, the abstract system is constructed from finite
partitions of the state and input spaces by solving optimization
problems, and a sequence of suboptimal controllers is obtained
by considering a sequence of uniformly refined partitions.
Furthermore, the costs achieved by the sequence of suboptimal
controllers converge to the optimal cost for the piecewise linear
system. The abstraction refinement algorithm is implemented in
the tool OptCAR. The feasibility of this approach is illustrated
on an example, by constructing automatically, sub-optimal
controllers with improving optimal costs.

I. INTRODUCTION

Formal synthesis is a paradigm for automatic controller
design which are correct-by-construction, reducing the ver-
ification overhead. A mathematical model of a system to
be controlled and formal specifications of properties that
are expected of the controlled system are given as inputs
to compute a controller that ensures the system’s controlled
behavior satisfies the properties. Since the work of Church
[1] in automated synthesis, multiple directions are pursued
including synthesizing finite state systems with respect to
temporal logic objectives [2], [3] and controlling discrete
event systems [4]. Early works in hybrid control systems
focused on identifying subclasses of systems for which con-
troller synthesis is decidable including timed automata [5],
rectangular hybrid automata [6] and o-minimal automata [7],
[8]. However, these systems have limited continuous and
discrete dynamics, and the synthesis problem becomes un-
decidable for a relatively simple class of hybrid systems [9].

Abstraction based controller synthesis was introduced as a
promising direction [10] for systems with complex dynamics.
An abstract model, often a finite state system, is constructed
from a given system, such that an abstract model’s controller
can be refined into a controller for the given system. The
abstract model’s controller is constructed using automata
theory, and then, implemented in the given system. This
method has been applied in controller synthesis of switched
systems [11], [12], and robotic path planning [13], [14].

Often, in addition to designing a correct controller, an
application may require optimality condition. For instance, a
robot should reach a desired state with minimum battery.
Several previous works have explored optimal controller
synthesis using formal approaches [15]–[18].

In this paper, we investigate an abstraction refinement
approach to synthesize optimal controller with regular prop-
erties that allow for specifications such as reaching a target
region or traversing a sequence of regions. Regular proper-
ties is specified as a (possibly) infinite set of finite traces
interpreted as the allowed behaviors of the system, and
generated by a finite state automaton. The foundation of our
abstraction refinement procedure and its correctness rely on
defining appropriate preorders on the class of hybrid systems
which preserve the optimal cost. This paper shows that the
preordering defined satisfies the fact that if a system H2 is
higher up in the ordering than a system H1, then the cost of
the optimal controller for H1 is at most that of H2.

In our approach, first, an “abstraction” — a simplified
finite state system — is constructed from partitions of the
state and input spaces, and the edges of the system are
annotated with weights which over-approximate the costs
in the original system. Then, a two player game on the
finite state system is solved to obtain a controller for the
abstraction, and subsequently, a controller for the original
dynamical system. This approach iteratively consider finer
partitions of the state and input spaces, corresponding to
grids of size C/2

i for some constant C and i = 0, 1, 2, . . ..
In fact, for discrete-time piecewise linear systems, if the cost
function is continuous and the optimal control for the original
system satisfies a simple assumption, the cost of the sequence
of controllers constructed converges to the optimal cost.

The main contribution of this paper is the optimality
guarantee on the controllers synthesized, which is lacking
in most previous works on optimal controller synthesis
using formal approaches [15]–[19]. Our approach is more
general than classical finite horizon optimal control problems
[20], [21] because the time horizon is not fixed a priori.
Furthermore, our method allows for a larger class of cost
functions in comparison to previous works [15], [17], [23],
and it does not place any prior restriction on the structure
of the controllers [18], [22]. Hence, control engineers can
synthesize controllers with more flexible structure and cost.

The method introduced in this paper applies to the general
class of discrete-time hybrid systems. However, the opti-
mizations that computes the weights depend on the cost
function and the dynamics. A prototype tool OptCAR that
implements the abstraction refinement algorithm is presented,
and it is used to synthesize a (finite) sequence of controllers
for a linear piecewise system with reachability objective.

The rest of this paper is organized as follows: Mathe-
matical notations and definitions are presented in Section
II. Weighted transition system and its relevant concepts



are defined in Section III, and the preorders for optimal
control are explained in Section IV. Section V develops the
abstraction and refinement of a weighted transition system.
The optimal control problem formulation for piecewise linear
systems, the refinement procedure (OptCAR) and the cost
analysis are presented in Section VI. Section VII describes
the value iteration scheme to compute an optimal strategy
for a finite transition system. Implementation of OptCAR is
presented in Section VIII. Lastly, Section IX summarizes the
paper and states future directions of this work. Due to space
constraints, either the proofs are omitted or only sketches of
proofs are provided. However, full proofs can be found in
the extended version of this paper [24].

II. NOTATIONS

The real numbers, non-negative real numbers, integers and
non-negative integers are represented as R, R+, Z and Z+,
respectively. The set of integers {0, . . . , k} is written as [k]

and a sequence x0, . . . , xk

, is denoted as {x
i

}
i2[k].

If M 2 Rn⇥m is a matrix, ||M ||1 = max

i

P
m

j=1 |Mij

|.
If z = (z0, . . . , zk) 2 Rk+1 is a vector, ||z||1 =

max

t

{|z
t

|}
t2[k].

An ✏-ball around x is defined as B
✏

(x) = {x0 2 Rn |
||x� x

0||1  ✏}. Let S ✓ Rk be a k-dimensional subset.
The function Grid splits S into rectangular sets with ✏ width.
That is, Grid(S, ✏) =
(
S

0

?????9d1, . . . , dk 2 Z, S0
= S

\ kY

i=1

(d

i

✏, (d

i

+ 1)✏]

)
.

Given a function, f : A ! B, for any A ✓ A, f(A) =

{f(a)|a 2 A}. The domain of a function f is denoted as
dom(f). Given an equivalence relation R ✓ A ⇥ A and an
element a, [a]

R

= {b | (a, b) 2 R} denotes the equivalence
class of R containing a.

III. WEIGHTED TRANSITION SYSTEMS

This section defines a semantic model for discrete time
hybrid systems with cost (i.e., weighted transition systems)
and formalizes the optimal control problem.

Definition 1. A weighted transition system is defined as T =

(S,S init
,U ,P,�,L,W), where:

• S is a set of states;
• S init ✓ S is a set of initial states;
• U is a set of control inputs;
• P is a set of propositions;
• � ✓ S ⇥ U ⇥ S is a transition relation;
• L : S ! P is a state labeling function, and
• W : S ⇥ U ⇥ S ! R+ is the transition cost function.

In the sequel, a weighted transition system is referred as a
transition system. For any s 2 S , define the set Enabled(s) =
{u 2 U | 9s0 2 S s.t. (s, u, s

0
) 2 �} to represent all inputs

that do not transitions the state s out of the predefined set S .
A transition system is finite if S and U are finite. A finite state
automaton (denoted (T , P

f

)) is a finite transition system T
along with a proposition P

f

2 P which represents the final

states. For the rest of the section, fix the transition system
T = (S,S init

,U ,P,�, L,W).
a) Paths and traces: A path of the transition system

T is a sequence of states and inputs, ⇣ = s0u0s1u1s2 . . .,
where s0 2 S init, s

i

2 S , u
i

2 U , and (s

i

, u

i

, s

i+1) 2 �. The
set of all finite paths of T is denoted Paths(T ). A trace of a
transition system is the sequence of state labels of a path. The
trace of ⇣, denoted Tr(⇣), is the sequence L(s0)L(s1) . . ..

b) Properties: A property describes the desired be-
haviors of the system. This paper focuses on linear time
properties over finite behaviors of systems. Formally, a
property ⇧ over a set of propositions P is a set of finite
sequences ⇡ = p0p1 . . . pk, where each p

i

2 P .
A property is regular if it consists of the traces of a finite

state automaton (T , P

f

), the set of all traces of paths of T
which start in an initial state and end in a state labelled by
P

f

. This paper considers regular property that is specified by
a finite state automaton (T , P

f

). The properties expressed by
popular logics such as finite words linear-time temporal logic
(LTL) are regular, but their translations into finite transition
system representations can lead to an exponential blow up in
the number of states with respect to the formula size [25].

c) Strategies: A strategy specifies the control inputs to
a transition system. Specifically, a strategy � for the transi-
tion system T is a partial function � : Paths(T ) ! U such
that for a path ⇣ = s0u0s1 . . . ui�1si, �(⇣) 2 Enabled(s

i

).
A path ⇣ = s0u0s1u1s2 . . . is said to conform to a strategy
�, if for all i, �(s0u0 . . . si) = u

i

.
A finite path ⇣ = s0u0 . . . sk maximally conforms to

a strategy �, if ⇣ conforms to � and there is no exten-
sion ⇣

0
= s0u0 . . . skuk

s

k+1 of ⇣ which conforms to �.
Let Pathsm

�

(T , s0) denotes the maximally conforming finite
paths of T with respect to � starting at a state s0. Let Str(T )

denote the set of all strategies which have no infinite paths
conforming to them. Note that the length of the paths which
conforms to a strategy in Str(T ) could still be unbounded.

To synthesize a strategy for T from s0 2 S init such that all
maximal executions conforming to it reach a state in S

f

✓ S ,
label the states in S

f

with a unique proposition. Then, let
the property ⇧ be the set of all traces for paths which start
in S init and end in S

f

, and do not visit S
f

in the middle.

Definition 2. A strategy � for the transition system T
and an initial state s0 2 S is winning with respect to
property ⇧ over the propositions P , if � 2 Str(T ) and
Tr(Pathsm

�

(T , s0)) ✓ ⇧.

d) Cost of strategies: The cost of a path is the sum
of the weights on the individual edges. Given a path ⇣ =

s0u0s1 . . ., define:

W(⇣) =

X

j

W(s

j

, u

j

, s

j+1).

Consequently, the following proposition holds.

Proposition 1. Given ⇣ = s0u0s1 . . . sk and ⇣

0
= s

0
0u

0
0

s

0
1 . . . s

0
k

, if W(s

j

, u

j

, s

j+1)  W(s

0
j

, u

0
j

, s

0
j+1) for all j,

then W(⇣)  W(⇣

0
).



This monotonicity property seems trivial, but plays an
important role in later analysis. In fact, results in this paper
carry over for several other cost functions such as average
weight and maximum weight. Over infinite paths, average
cost, maximum cost or discounted sum are more natural.
The analysis only relies on the fact that the cost of a path
is monotonic with respect to the cost on the transitions. For
simplicity, we fix one of the definitions.

The cost of a strategy � of the transition system T with
respect to an initial state s0 is defined as

W(T ,�, s0) = sup{W(⇣) | ⇣ 2 Pathsm
�

(T , s0)}.
Accordingly, given a property ⇧ over P , the optimal cost of
winning T from an initial state s0 with respect to a property
⇧ is defined as W(T , s0,⇧) =

inf{W(T ,�, s0) |� 2 Str(T ), Tr(Pathsm
�

(T , s0)) ✓ ⇧}.
The cost is taken to be infinity if the minimization is over
an empty set. Denote an optimal strategy that achieves the
optimal cost as �(T , s0,⇧). Note that the optimal strategy
may not be unique or exist.

e) Optimal control problem: Given the transition sys-
tem T , an initial state s0 and a property ⇧, the optimal
control problem is to compute an optimal winning strategy
from s0 with respect to ⇧, if it exists, and the optimal cost
of winning.

IV. PREORDERS FOR OPTIMAL CONTROL

In this section, a preorder on the class of transition systems
is defined such that it preserves the optimal cost of winning.
In other words, the optimal cost of winning in a system
higher up in the ordering is an upper bound on the optimal
cost of winning in a system below it. For this, the definition
of alternating simulations [26] is extended to include costs.

Definition 3. Given two transition systems T
i

= (S
i

,S init
i

,

U
i

,P,�

i

,L
i

,W
i

), for i = 1, 2, a simulation from T1 to
T2 is a pair of relations (↵,�), where ↵ ✓ S1 ⇥ S2 and
� ✓ S1 ⇥ U1 ⇥ S2 ⇥ U2, such that:

1) 8 (s1, s2) 2 ↵, L1(s1) = L2(s2).
2) 8 s1 2 Sinit

1 , 9 s2 2 Sinit

2 such that (s1, s2) 2 ↵;
3) 8 (s1, s2) 2 ↵ and u2 2 Enabled(s2), 9 u1 2

Enabled(s1) such that:
a) (s1, u1, s2, u2) 2 �

b) 8 (s1, u1, s
0
1) 2 �1, 9 (s2, u2, s

0
2) 2 �2

such that (s

0
1, s

0
2) 2 ↵ and W1(s1, u1, s

0
1) 

W2(s2, u2, s
0
2).

Let T1 �(↵,�) T2 denote that (↵,�) is a simulation from
T1 to T2. If there exists some (↵,�) such that T1 �(↵,�) T2,
then T2 simulates T1, and it is denoted as T1 � T2.

Theorem 2. � is a preorder on the class of transition
systems over a set of propositions P .

Proof. Define (↵,�) to be identity relations on the state and
input spaces, then T �(↵,�) T , and � is reflexive. Next,
show that � is transitive. Let T1 �(↵1,�1) T2 and T2 �(↵2,�2)

T3. Define ↵ such that (s1, s3) 2 ↵ if (s1, s2) 2 ↵1 and
(s2, s3) 2 ↵2 for some s2, and � such that (s1, u1, s3, u3) 2
� if (s1, u1, s2, u2) 2 �1 and (s2, u2, s3, u3) 2 �2 for some
(s2, u2). Then, T1 �(↵,�) T3.

The next result shows that � is an ordering on the
transition systems which “preserves” optimal control.

Theorem 3. Given two transition systems T
i

= (S
i

,S init
i

,

U
i

,P,�

i

,L
i

,W
i

) for i = 1, 2, let ⇧ be a property over
a set of propositions P , T1 �(↵,�) T2 and (s0, s

0
0) 2 ↵ for

s0 2 S init
1 and s

0
0 2 S init

2 . If a winning strategy �2 for T2 from
s

0
0 with respect to ⇧ exists, then a winning strategy �1 for T1

from s0 with respect to ⇧ exists such that W1(T1,�1, s0) 
W2(T2,�2, s

0
0). Hence, W1(T1, s0,⇧)  W2(T2, s00,⇧).

Proof. Let �2 be a strategy for T2 and s

0
0. In addition, define

a partial mapping G : Paths(T1) ! Paths(T2) such that the
domain of G is the set of all paths from s0 that conform to �1,
and for any path ⇣1 in the domain of G, L1(⇣1) = L2(G(⇣1)),
and W1(⇣1)  W2(G(⇣1)). This construction ensures that if
�2 is winning from s

0
0 with respect to ⇧, then so is �1 from

s0 and W1(T1,�1, s0)  W2(T2,�2, s
0
0). We also ensure that

if G(⇣1) = ⇣2, then (s

k

, s

0
k

) 2 ↵, where s

k

and s

0
k

are the
end states of ⇣1 and ⇣2, respectively. Further, for any ⇣1 in
the domain of G, ⇣1 is a maximal path conforming to �1 if
and only if ⇣2 is a maximal path conforming to ⇣2.

Next, define �1 and G by induction on the length of words
in their domain. Set G(s0) = s

0
0. Suppose �1 for paths of

length k � 1 and G for paths of length k, are defined such
that the invariant holds. Let ⇣1 = s0u0s1 . . . sk conform to
�1. Then, G(⇣1) is defined. Let G(⇣1) = s

0
0u

0
0s

0
1 . . . s

0
k

and
(s

k

, s

0
k

) 2 ↵. If G(⇣1) is a maximal path conforming to �2,
then �1(⇣1) is not defined (i.e., ⇣1 is not in the domain of �1).
Otherwise �2(G(⇣1)) = u

0
k

. Then, from the second condition
of simulation, there exists u

k

such that (s
k

, u

k

, s

0
k

, u

0
k

) 2 �.
Choose �1(⇣1) = u

k

. For any ⇣2 = s0u0s1 . . . sk+1, define
G(⇣2) = s

0
0u

0
0s

0
1 . . . s

0
s+1 such that (s

k+1, s
0
k+1) 2 ↵ and

W1(sk, uk

, s

k+1)  W(s

0
k

, u

0
k

, s

0
k+1). It can be verified that

the construction satisfies the inductive invariant.

V. ABSTRACTION/REFINEMENT

In this section, a method for constructing finite state sys-
tems which simulate a given transition system is presented.
The state and input spaces are divided into finite number
of parts, and they are used as symbolic states and inputs,
respectively, in the abstract transition system. Henceforth,
fix a transition system T = (S,S init

,U ,P,�,L, W).

A. Abstraction

An abstraction function constructs an abstract transition
system Abs(T ,⌘

S

,⌘
U

) given the transition system T , and
two equivalence relations ⌘

S

and ⌘
U

on the state-space S
and the input-space U , respectively. An equivalence relation
⌘

S

on S respects L, if for all (s1, s2) 2 ⌘
S

, L(s1) = L(s2).
Furthermore, an equivalence relation ⌘

S

on S respects S init,
if for all (s1, s2) 2 ⌘

S

where s1 2 S init, s2 2 S init.



Definition 4. Let ⌘
S

✓ S ⇥ S and ⌘
U

✓ U ⇥ U
be two equivalence relations of finite index such that ⌘

S

respects the labeling function L and the initial states S init.
Abs(T ,⌘

S

,⌘
U

) = (S 0
,S init0

,U 0
,P,�

0
,L0

, W 0
), where:

• S 0
= {[s]⌘

S

| s 2 S} is the equivalence classes of ⌘
S

.
• S init0

= {[s]⌘
S

| s 2 S init} ✓ S 0 .
• U 0

= {[u]⌘
U

|u 2 U} is the equivalence classes of ⌘
U

.
• �

0
= {(S1, U, S2) | 9s 2 S1, s

0 2 S2, u 2
U, s.t. (s, u, s

0
) 2 �}.

• For S 2 S 0, L0
(S) = L(s) for any s 2 S.

• For (S1, U, S2) 2 �

0, W 0
(S1, U, S2) = sup{W(s1, u,

s2) | s1 2 S1, s2 2 S2, u 2 U, (s1, u, s2) 2 �}.
Call T the concrete system and Abs(T ,⌘

S

,⌘
U

) the
abstract system. The next proposition states that the abstract
system simulates the concrete system.

Proposition 4. T � Abs(T ,⌘
S

,⌘
U

).

Proof. Define ↵ = {(s, [s]⌘
S

) | s 2 S}, and � =

{(s, u, [s]⌘
S

, [u]⌘
U

) | s 2 S and u 2 U}.

B. Refinement
We can construct a sequence of abstract systems which

are closer to the original system than their predecessors in
the sequence, by choosing finer equivalence relations on the
state and input spaces.

Definition 5. Let T1 and T3 be transition systems such that
T1 � T3. A transition system T2 is said to be a refinement
of T3 with respect to T1, if T1 � T2 � T3.

Proposition 5. Let ⌘
S

,⌘0
S

✓ S ⇥ S and ⌘
U

,⌘0
U

✓ U ⇥ U
be equivalence relations of finite index such that ⌘0

S

✓ ⌘
S

and ⌘0
U

✓ ⌘
U

. Then, Abs(T ,⌘0
S

,⌘0
U

) is a refinement of
Abs(T ,⌘

S

,⌘
U

) with respect to T .

Proof. First, T � Abs(T ,⌘0
S

,⌘0
U

) follows from Proposi-
tion 4. Define ↵ = {([s]⌘

S

0
, [s]⌘

S

) | s 2 S} and � =

{([s]⌘
S

0
, [u]⌘0

U

, [s]⌘
S

, [u]⌘
U

) | s 2 S and u 2 U}. Then,
properties in Definition 3 are satisfied for Abs(T , ⌘0

S

,

⌘0
U

) �(↵,�) Abs(T , ⌘
S

,⌘
U

), and thus, T � Abs(T , ⌘0
S

,

⌘0
U

) � Abs(T , ⌘
S

,⌘
U

).

VI. OPTIMAL CONTROL OF PIECEWISE LINEAR
SYSTEMS

This section considers an optimal control problem for
discrete-time piecewise linear systems. The abstraction re-
finement approach is applied to construct a series of con-
trollers with improving suboptimal costs that converge to the
optimal cost under a simple condition on the optimal control.

A. Problem Formulation
A discrete-time piecewise linear system is a tuple

(X ,X init
,U ,P, {(A

i

, B

i

, P

i

)}
i2[m], L,J ), where the state-

space X ✓ Rn and the input-space U ✓ Rp are compact
sets, X init ✓ X is the set of initial states, P is a finite
set of propositions, A

i

2 Rn⇥n

, B

i

2 Rn⇥p and P

i

is a
polyhedral set, such that {P

i

}
i2m

is a polyhedral partition
of X , L : X ! P a labeling function and J : X ⇥U ! R+

is a continuous cost function. Note that A
i

and B

i

can be
the same for different i. Given an initial state x0 2 X init

and a sequence of control inputs u = {u
t

}
t2[k], where

u

t

2 U , �(x0,u) = {x
t

}
t2[k+1] is the sequence of states

visited under the control u, where x

t+1 = A

t

x

t

+B

t

u

t

, and
(A

t

, B

t

) = (A

i

, B

i

) if x

t

2 P

i

. The cost of the sequence
�(x0,u), J (�(x0,u)), is given by

P
t2[k] J (x

t+1, ut

).

Problem 1 (Optimal control problem).
Given an n-dimensional discrete-time piecewise linear sys-
tem D = (X ,X init

,U ,P, {(A
i

, B

i

, P

i

)}
i2[m],L,J ), a state

x

⇤
0 2 X init and a regular property ⇧ over P , find a sequence

of control inputs u⇤ for which L(�(x⇤
0,u

⇤
)) 2 ⇧ and

J (�(x

⇤
0,u

⇤
)) is minimized.

Remark 1. Although the property ⇧ is over finite sequences,
it could potentially contain finite sequences of unbounded
length. Thus, Problem 1 is not the same as a classical
finite horizon problem, because the optimal control sequence
length is not fixed a priori.

B. Solution
A discrete-time piecewise linear system D = (X ,X init

,U ,
P, {(A

i

, B

i

, P

i

)}
i2[m],L, J ) can be represented as a

weighted transition system, TD = (X ,X init
,U ,P,�,L, W)

where � = {(x
t

, u

t

, x

t+1) 2 X ⇥ U ⇥ X |x
t+1 =

A

t

x

t

+ B

t

u

t

, where (A

t

, B

t

) = (A

i

, B

i

) if x
t

2 P

i

}, and
W(x

t

, u

t

, x

t+1) = J (x

t+1, ut

) for all t 2 [k]. Consequently,
Problem 1 is equivalent to the following problem:

Problem 2 (Optimal strategy problem).
Given TD = (X ,X init

,U ,P,�, L,W), a state x

⇤
0 2 X init

and a regular property ⇧ over P , find an optimal winning
strategy �(TD, x⇤

0,⇧) for which the optimal cost of winning
TD with respect to ⇧, W(TD, x⇤

0,⇧), is achieved.

In general, solving Problem 2 is difficult; hence, we focus
on synthesizing suboptimal strategies using Algorithm 1. It
first partitions the state space into grids of a particular size,
and constructs an abstract system for TD. Then, it computes
the optimal cost J and the abstract system’s strategy through
a two-player game. A suboptimal strategy for TD can then
be extracted from the abstract system’s strategy with the cost
upper bounded by J . If J does not satisfy the predefined cost
requirement, refine the state space partitions using smaller
grids, and repeat the whole process to reduce J . As a result,
this algorithm outputs a sequence of suboptimal strategies,
whose costs converge to that of the optimal cost.

More precisely, in each iteration, Algorithm 1 first con-
structs a finite state abstraction ˆT of D using the function
ConsAbs(D, ✏). ConsAbs(D, ✏) outputs Abs(TD,⌘✏

X

,⌘✏

U

),
where ⌘✏

X

and ⌘✏

U

are equivalence relations whose equiva-
lences classes are the elements of Grid(X , ✏) and Grid(U , ✏),
respectively. The initial abstract state x̂0 := [x

⇤
0]⌘✏

X

. Next,
SolveFiniteGame( ˆT , x̂0,⇧) computes the optimal cost of
winning J = W(

ˆT , x̂0,⇧) with respect to ⇧ in ˆT and
the corresponding strategy �̂ = �(

ˆT , x̂0,⇧) for ˆT through
a two-player game (see Algorithm 2 of Section VII for
more details). Finally, Extract(�̂, ˆT ,D) outputs a suboptimal



Algorithm 1 OptCAR (Abstraction Refinement Procedure)
Require: System D, Property ⇧ as a finite state automaton,

initial state x

⇤
0, rational number 0 < ✏0

Set ✏ := ✏0

while true do
ˆT , x̂0 := ConsAbs(D, ✏)

J, �̂ := SolveFiniteGame( ˆT , x̂0,⇧)

�D := Extract(�̂, ˆT ,D)

Output �D and J

✏ :=

✏

2
end while

strategy �D whose cost is bounded by the optimal cost
J for the abstract system. The existence of �D given �̂

is guaranteed by Theorem 3. Essentially, �D provides the
sequence of inputs u

⇤ as required by Problem 1.
To illustrate the relationship between �D and �̂, let

u

⇤
0, u

⇤
1, . . . , u

⇤
t�1 be the inputs which have been computed,

and let s⇤0, s⇤1, . . . , s⇤t be the sequence of state generated by
the inputs. The t-th control input u⇤

t

is obtained by finding
the minimum cost transition (s

⇤
t

, u

⇤
t

, s

⇤
t+1), where u

⇤
t

2 U ,
s

⇤
t+1 2 S

0, U = �̂([s

⇤
0]⌘✏

X

[u

⇤
0]⌘✏

U

. . . [s

⇤
t

]⌘✏

X

), and S

0 is the
union of all S00 such that ([s⇤

t

]⌘✏

X

, U, S

00
) is a transition of

ˆT . When the cost function is linear and the equivalence
classes are polyhedral sets, u

⇤
t

is computed by solving a
linear program.

Initially, when the partitioning is coarse, a winning strat-
egy �̂ might not exist even if the underlying system D has
an optimal solution. However, if one continues to refine
the grid, a winning strategy will exist if D has an optimal
solution, and its cost of winning will converge to the optimal
cost. See Section VI-C for the proof. The algorithm can be
terminated at a specific iteration based on applications and
computational resources.

Algorithm 1 can in fact be instantiated to any class of
hybrid systems. However, the computational complexity of
the optimization problems that will need to be solved in
the construction of the abstract system and the extraction
of a winning strategy will depend on the class of dynamics
and the type of the cost function. For a piecewise linear
system with linear cost function, the maximization during
the abstraction procedure is a linear program, because the
partitions of ⌘

X

and ⌘
U

are polyhedral sets (grid elements).

C. Analysis of Algorithm 1
Next, the output of Algorithm 1 is shown to converge to

the optimal cost. Before that, we state an assumption we
make on the solution of Problem 1.

Assumption 1. A solution u⇤ exists for Problem 1 such
that in the sequence �(x

⇤
0,u

⇤
) = {x⇤

t

}
t2[k+1], for every

t 2 [k + 1], there exists ✏

t

> 0 such that B
✏

t

(x

⇤
t

) ✓ P

i

,
where P

i

is the polyhedral set in D containing x

⇤
t

. Define
✏

T

= min

t2[k+1] ✏t.

This assumption ensures that there exists a control input
sequence such that none of the states reached by it lie on

the boundary of a region P

i

. Notice that the boundaries
of the partitions form a set of measure zero. Hence, if an
optimal solution exists, the solution is very likely to satisfy
Assumption 1. Let us denote the elements in the iteration of
Algorithm 1 corresponding to a particular ✏ as ˆT

✏

for ˆT , x̂✏

0

for x̂0, J
✏

for J , �̂
✏

for �̂ and �

✏

for �D, respectively.
Henceforth, let u⇤

= {u⇤
t

}
t2[k] be an optimal control input

sequence and ⇣

⇤
= �(x

⇤
0,u

⇤
) = {x⇤

t

}
t2[k+1] be an optimal

trajectory for Problem 1 which satisfies Assumption 1. Later,
the proof of Theorem 6 requires a special kind of strategy
which chooses a unique transition on the control input from
any path that conforms to the strategy.

Definition 6. A chain strategy for a transition system T and
an initial state s0 is a strategy � 2 Str(T ) such that there
is one path in Pathsm

�

(T , s0).

Theorem 6. Under Assumption 1, the sequence of sub-
optimal costs {J

✏0/2i}i2Z+ output by Algorithm 1 converge
to the optimal cost Jopt = W(TD, x0,⇧). Furthermore,
for each sub-optimal cost J

✏0/2i , there exists a suboptimal
winning strategy �

✏0/2i with cost of winning J

✏0/2i .

Proof. A sketch of the proof is provided.
First, let ✏

T

> ✏

x

> 0 and ✏

u

> 0. For any trajectory
whose initial state and inputs have a bounded deviation from
that of the optimal trajectory, the error between any of those
trajectories is bounded. Let x0 2 B

✏

x

(x

⇤
0) and u

t

2 B
✏

u

(u

⇤
t

)

8t 2 [k], where u = {u
t

}
t2[k] and ⇣ = �(x0,u) =

{x
t

}
t2[k+1]. Then, for all t 2 [k],

����
x

t+1 � x

⇤
t+1

����
1 

c1✏x + c2✏u where c1 � 0 and c2 � 0 are constants that
depends only on A

i

, B

i

, and t. In addition, given the cost
function in Problem 2, |W(⇣)�W(⇣

⇤
)|  c3✏x+c4✏u where

c2 � 0 and c4 � 0 are constants that does not depend
on ✏

x

and ✏

u

. In other words, because the cost function is
continuous, the suboptimal cost is bounded and decreases to
zero if ✏

x

and ✏

u

decreases to zero.
Next, given a specific cost sub-optimality, a chain strategy

that satisfies a certain cost error bound exists. More specifi-
cally, a neighborhood N

x

t

is constructed around each x

⇤
t

and
N

u

t

around u

⇤
t

such that all the transitions from N

x

t

on N

u

t

will end in N

x

t+1. This construction exists by Assumption
1 and that the system is linear (continuous). Under this
construction, all executions from N

x

0 will be in N

x

t

after
t steps. This chain of neighborhoods gives a chain strategy.
See Figure 1 for an illustration of the chain strategy. To

Goal

Start

x

0
1

x

0
0

x

0
3

x

⇤
0 x

⇤
1 x

⇤
2

Fig. 1. An illustration of chain strategy and refinement. The domain is
separated into two areas (gray and white) where two different dynamics
apply. The red dots are the optimal path.



ensure that the cost of the strategy is within � > 0 of the
optimal cost, choose the N

x

t

and N

u

t

to be contained in some
✏

T

> ✏

x

> 0 and ✏

u

> 0 balls such that c3✏x + c4✏u  �.
These two observations ensure that |W(⇣)�W(⇣

⇤
)|  � for

any path ⇣ starting in an ✏

x

ball around x

⇤
0.

In addition, choose the N

x

j

and N

u

j

in such a way that they
correspond to an element of an ✏0/2

i grid for some i (not
necessarily the same i for all neighborhoods). Define ⌘

X

and
⌘

U

such that the N

x

j

and N

u

j

are all equivalence classes of
X and U , respectively. Note that we need to ensure that for
any i, j, Nx

j

is the same as Nx

i

or the two are disjoint, and, a
similar condition for Nu

j

holds. This condition can be easily
ensured during the construction by picking small enough ✏.

Now, assume that every N

x

t

corresponds to an element of
Grid(X , ✏0/2

i

t

) for some i

t

, and similarly, Nu

t

corresponds
to an element of Grid(U , ✏0/2jt) for some j

t

. Let i be the
maximum of the i

t

s and j

t

s. Note that Grid(X , ✏0/2
i

) refines
N

x

t

and similarly, Grid(U , ✏0/2i) refines N

u

t

. In Figure 1,
the squares around x

⇤
t

with bold borders are N

x

t

, and the
dashed squares which are contained in them correspond
to the refined partition. One can define a strategy �

✏

(not
necessarily a chain anymore) for T

✏

which correspond to
following the neighborhoods N

x

t

. Hence, all the paths in T
✏

which conform to �

✏

will be contained in the neighborhoods
N

x

t

. Therefore, the cost of �
✏

is bounded by that of � which
is at most � away from the optimal cost, and the optimal
cost of T

✏

is at most � away from that of TD.
Observe that J

✏0/2i  J

✏0/2j for all i > j. Further-
more, for any � > 0, there exists ✏ = ✏0/2

i, such
that |W(T

✏

, x

✏

0,⇧) � W(TD, x⇤
0,⇧)|  �. Note J

✏

=

W(T
✏

, x

✏

0,⇧) and Jopt = W(TD, x⇤
0,⇧) is the optimal cost.

Hence, |J
✏

� Jopt|  �, and J

✏0/2i converges to Jopt as i

goes to infinity. Lastly, for each sub-optimal cost J

✏0/2i ,
there exists a suboptimal winning strategy �

✏0/2i with cost
of winning J

✏0/2i .

At this point, we have shown that the strategy given
by OptCAR incurs a suboptimal cost that converges to
the optimal cost of D. The strategies used in the proof
of Theorem 6 have the property that the length of the
maximal paths which conform to the strategy are finite and
have a bound (in fact, they are all of the same length).
Further, the trace of all the paths is the same. However,
during implementation, Algorithm 1 may return a sequence
of suboptimal strategies �

✏0/2i that results in paths with
different lengths. Nonetheless, the cost of each path results
from �

✏0/2i is bounded by the cost J
✏0/2i .

In addition, the strategy considered in the proof of Theo-
rem 6 gives a sequence of inputs which satisfy the property
⇧ from any point in an open neighborhood around the given
initial state x

⇤
0. An open neighborhood exists around each

of the control inputs such that the resulting paths satisfy
⇧. Hence, Algorithm 1 in fact returns a controller that is
robust against input uncertainties under the assumption that
the original system has such optimal control.

VII. OPTIMAL CONTROL OF FINITE TRANSITION
SYSTEMS

This section presents a value iteration scheme for comput-
ing the optimal cost and optimal strategy for finite transition
systems. Observe that the strategies of the abstract system
that are used in the proof of Theorem 6 have a linear
structure, that is, there are no paths in the abstract system of
length greater than the number of states in the system that
conform with the strategy. We call such a strategy a layered
strategy. Hence, in this section we present an algorithm for
computing an optimal strategy for a finite state transition
system that is layered. The algorithm is given in Algorithm
2 which is a modified Bellman-Ford algorithm [27].

The function ReduceReach reduces the problem of
computing the layered strategy for a property ⇧ to
that of reachability. It consists of taking a product of
the input transition system T

S

and the transition sys-
tem T

P

of the property. The final states S

f

corre-
spond to those of T

P

is labelled by P

f

. Define T
S

=

(S
S

,S init
S

,U
S

,P,�

S

,L
S

,W
S

). Represent the property by
the automaton T

P

= (S
P

,S init
P

,U
P

,P,�

P

,L
P

,W
P

) and
the final states of T

P

by a proposition P

f

2 P . Note that
the set of propositions P is the same for both T

S

and
T
P

. The sets U
P

and W
P

are irrelevant to the problem.
The transition system returned by ReduceReach is T =

(S,S init
,U ,P,�,L,W), where S = {(s1, s2) 2 S

S

⇥
S
P

| L
S

(s1) = L
P

(s2)}[{sd} (here s

d

is a dead state), U =

U
S

, � = �1 [ �2, where �1 = {((s1, s2), u, (s01, s02)) 2
S ⇥ U ⇥ (S\{s

d

}) | (s1, u, s01) 2 �

S

, (s2, a, s
0
2) 2 �

P

for some a} and �2 consists of edges ((s1, s2), u, sd) 2
S ⇥ U ⇥ {s

d

} such that there exists (s1, u, s
0
1) 2 �

S

for some s

0
1 and there does not exist a and s

0
2 such that

(s2, a, s
0
2) 2 �

P

and L
S

(s

0
1) = L

P

(s

0
2). The set of final

states S

f

of T with respect with reachability is solved as
S

f

= {(s1, s2) 2 (S\{s
d

})⇥ (S\{s
d

}) | L
P

(s2) = P

f

}.

Algorithm 2 SolveFiniteGame (Two-Player Games)
Require: Finite state transition system T

S

, Property ⇧ spec-
ified as (T

P

, P

f

)

T , S

f

:= ReduceReach(T
S

, T
P

, P

f

)

Set for every s 2 S � S

f

, C(s) := 0 if s 2 S

f

and 1
otherwise
for i = 1, . . . , |S| do

for s 2 S do

Ci

(s) := min

u2U
max

(s,u,s0)2�
(W(s, u, s

0
) + Ci�1

(s

0
))

�

i

(s) := argmin

u2U
max

(s,u,s0)2�
(W(s, u, s

0
) + Ci�1

(s

0
))

end for
end for
if C|S|

(s0) < 1 then
Output the strategy �

|S| and the cost C |S|
(s0)

end if



The algorithm initially assigns a cost of 0 to the states
in S

f

and 1 otherwise. The cost Ci in the i-iteration
captures the optimal cost of reaching S

f

by a strategy in
which all paths that conform to it have length at most i,
and �

i stores a corresponding strategy. Hence, C|S| provides
a layered strategy if C|S|

(s0) < 1. The algorithm can be
improved wherein it terminates earlier than completing the
|S| iterations, if the costs C do not change between iterations.

VIII. IMPLEMENTATION

Algorithm 1 and 2 are implemented in the tool OptCAR
in Python 2.7. A Python package, NetworkX, is used to
represent the graph structures that arise in solving Algorithm
2, and the Parma Polyhedra Library [28] is used to represent
the polyhedral sets that arise in the gridding and to solve the
linear program problem that arises in the weight computa-
tion. OptCAR is tested on a two-tank system from [29] on a
MacBook Pro 8.2, 4 core Intel Core i7 processor with speed
2200 Hz, and 8GB RAM.

Fig. 2. A schematic of a two-tank system.

The water can flow in between the two tanks through a
pipe that connects them (see Figure 2). The pipe is located at
level 0.2. Tank 1 (left) has an inflow of water that is managed
by a controller, and tank 2 (right) has an outflow of water that
is fixed. The controller’s goal is to fill up tank 2 to level 0.4
from an initially low water level 0.1 using as small amount
of water as possible from the source above tank 1. Formally,
the dynamics of this piecewise linear system is

x

t+1 = Ax

t

+Bu

t

A =

⇢
A1 x 2 [0, 0.2]

2

A2 otherwise B =


342.6753

0

�
,

A1 =


1 0

0 0.9635

�
A2 =


0.8281 0.1719

0.1719 0.7196

�
,

x

t

= (x

1
t

, x

2
t

) 2 [0, 0.7]

2, and u

t

2 [0, 0.0005]. The water
level in tank 1 at time t is x

1
t

, and the water level in tank 2
at time t is x

2
t

.
The cost function is chosen to be J (�(x0, u)) =P
t2[k] ||ut

||1 to represent minimal water inflow, and the goal
is to drive the system from partition, [0, 0.7] ⇥ [0, 0.1], to
partition [0, 0.7] ⇥ [0.4, 0.7]. The algorithm is implemented
on two uniform grids on the states - 28 ⇥ 16 and 56 ⇥ 32,
and two non-uniform grids - 23 ⇥ 13 and 32 ⇥ 19. The
input, u, is partitioned into 10 uniform intervals. In order to

(a) State trajectory

(b) Control input

Fig. 3. Simulated result of OptCAR on the two-tank system.

reduce computation time, the goal region is combined as one
partition for all cases. In addition, for a non-uniform grid,
the sizes for the rest of the partitions are not necessary the
same. Partitions whereby the states are more likely to take big
steps are combined with its neighbors because the states most
likely will not end up at the neighboring partitions. Another
example of non-uniform grids in the same vein would be
to have finer grids near the goal and coarser grids away
from the goal. Such modification is feasible if the controller
designer has prior information about the system from his/her
past experiences. It saves computation time, and also allows
for finer grids at places that matter to get a better result.

Strategies obtained from OptCAR are compared in Table
I. Figure 3(a) and 3(b) shows the state and control input
trajectory for the four cases. This example shows that choos-
ing a suitable partition can reduce the computation time
dramatically while still achieving comparable performance
as the performance of a naive uniform grid. Future work
includes designing a scheme to partition the domain that can
reduce computation time.

IX. CONCLUSION

In this paper, we consider the problem of synthesizing
optimal control strategies for discrete-time piecewise linear
system with respect to regular properties. We present an
abstraction-refinement approach for constructing arbitrarily



TABLE I
PERFORMANCE OF OPTCAR FOR DIFFERENT CASES. THE FIRST TWO COLUMNS ARE CASES WHEN UNIFORM GRID IS USED. THE LAST TWO

COLUMNS ARE CASES WHEN NON-UNIFORM GRID IS USED.

Grid 28⇥ 16 56⇥ 32 23⇥ 13 32⇥ 19
Computation time (seconds) 1538 17127 1187 5421
Optimal cost 0.0034 0.0032 0.0035 0.0032
Optimal step 12 13 12 14
Final point (0.642,0.402) (0.573,0.401) (0.625,0.405) (0.552,0.412)

precise approximations of the optimal cost and the cor-
responding strategies. The abstraction based approach can
be applied to the general class of hybrid systems and for
properties over infinite traces, however, the challenge is
in computing edges and weights, especially, for non-linear
dynamics and in continuous time. Future work will focus
on more complex dynamics and continuous-time hybrid
systems. To reduce computation time, a more intelligent grid-
ding scheme in the refinement step will be developed. Lastly,
the neighborhoods of states and inputs in the abstract system
naturally model measurement errors and input uncertainties
of the concrete system. Hence, a potential future application
of this technique is in synthesizing robust optimal control
for a hybrid system.
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