
An algorithmic approach to stability verification of polyhedral switched
systems

Pavithra Prabhakar1 and Miriam Garcı́a Soto2

Abstract— We present an algorithmic approach for analyzing
Lyapunov and asymptotic stability of polyhedral switched
systems. A polyhedral switched system is a hybrid system
in which the continuous dynamics is specified by polyhedral
differential inclusions, the invariants and guards are specified
by polyhedral sets and the switching between the modes do
not involve reset of variables. The analysis consists of first
constructing a finite weighted graph from the switched system
and a finite partition of the state space, which represents a
conservative approximation of the switched system. Then, the
weighted graph is analyzed for certain structural properties,
satisfaction of which implies stability. However, in the event
that the weighted graph does not satisfy the properties, one
cannot, in general, conclude that the system is not stable due
to the conservativeness of the graph. Nevertheless, when the
structural properties do not hold in the graph, a counter-
example indicating a potential reason for the failure is returned.
Further, a more precise approximation of the switched system
can be constructed by considering a finer partition of the state-
space in the construction of the finite weighted graph. We
present experimental results on analyzing stability of switched
systems using the above method.

I. INTRODUCTION

In this paper, we focus on the problem of automatic sta-
bility verification of polyhedral switched systems. Switched
systems [1] are a special class of hybrid systems [2] - systems
exhibiting mixed discrete continuous behaviors - in which
the continuous state of the system does not change during
a mode switch. Switched systems are a natural model in
supervisory control, wherein the plant consists of a finite
number of operational modes, and the supervisor continu-
ously observes the state of the system and takes decisions
regarding the mode switches. Stability has been extensively
investigated in the context of switched systems, and several
sufficient conditions on the system and the switching behav-
ior which ensure stability have been proposed (see [1], [3]
and references therein).

One of the widely used approaches to stability verification
of switched system is based on the notions of common and
multiple Lyapunov functions [4], [5], [6]. In the former, a
common function which acts as a Lyapunov function for
every mode is sought, and in the latter, a set of Lyapunov
functions one for each mode is sought such that together
they satisfy some consistency conditions on the switch-
ing. Automated verification of stability based on Lyapunov
function can be characterized as deductive verification in

1Pavithra Prabhakar is with the Faculty of IMDEA Software Institute,
Madrid, Spain. Email: pavithra.prabhakar@imdea.org

2Miriam Garcı́a Soto is a PhD student with the IMDEA Software Institute
and ETSIINF, Universidad Politécnica de Madrid, Madrid, Spain Email:
miriam.garcia@imdea.org

the formal methods terminology. It encompasses a search
for a Lyapunov function based on a template, such as a
polynomial with coefficients as parameters, which serves as
a candidate function. The requirements of Lyapunov function
are encoded as a sum-of-squares programming problem over
the template, which can be efficient solved using tools such
as SOSTOOLS [7], [8], [9]. One of the major limiting factors
of this approach is the ingenuity required in providing the
right templates; and automatically learning the templates
is a challenge which has not been adequately addressed.
Moreover, if a template fails to satisfy the conditions of
Lyapunov function, then it does not provide insights into
the potential reasons for instability or towards the choice of
a better template. To overcome these limitations, we propose
an algorithmic approach.

Our approach consists of constructing a finite weighted
graph which represents a conservative approximation of the
switched systems, and inferring stability by analyzing certain
properties of the graph. We focus on the class of polyhedral
switched systems (PSS) and present a detailed algorithm
for analyzing both Lyapunov and asymptotic stability. These
are systems in which the invariants for the modes and the
guards on the switching are convex polyhedral sets; further,
the dynamics in each mode is specified as a polyhedral
differential inclusion ẋ ∈ P , where P is a compact convex
polyhedral set.

The algorithm takes as input a PSS H and a finite partition
of the state-space into convex polyhedral sets P , and outputs
a finite weighted graph G(H,P). The vertices of the graph
correspond to pairs consisting of a mode of the system and
an element of the partition. An edge between two mode-
element pairs indicates the existence of an execution starting
from the first mode and a point on the first element to the
second mode and a point on the second element such that
it remains in a single element at all the intermediate time
instances. And the weight on the edge corresponds to the
maximum scaling - ratio of the final state to the initial state
- over all such executions. Hence, corresponding to every
execution of the system, there exists a path in the graph
which tracks the scalings associated with various time points
in the execution.

We present efficiently verifiable conditions on the graph,
such that the satisfaction of the conditions implies Lyapunov
and asymptotic stability. For instance, if the graph has
no edges with weight +∞ and no cycles in the graph
with the product of weights on the edges greater than 1,
then the system is Lyapunov stable. However, if the graph
does not satisfy the properties, then, in general, one cannot

conclude that the system is not Lyapunov stable, due to
the conservativeness of the graph construction. However, an
interesting feature of our analysis is a potential reason for
instability in the form of a counter-example. For instance,
the graph returns a cycle with the product of weights on the
edges greater than 1 indicating the possibility of a diverging
execution obtained by traversing the cycle infinitely many
times. Another interesting feature is the ability to construct
a less conservative abstraction, by starting with a finer
partition, which can in turn be obtained by analyzing the
counter-example.

Construction of the finite weighted graph involves com-
puting a non-trivial reachability predicate which captures all
pairs of states of the system for which there is an execution
from the first state to second while remaining within a
single element of the partition. Existence of an edge then
corresponds to satisfiability of the predicate and the weight
corresponds to solving an optimization problem over the
predicate. We show that we can construct a formula which is
a boolean combination of linear constraints which is equiv-
alent to the reachability predicate and hence compute the
weight by solving a bunch of linear programming problems.
The construction of the formula is involved owing to the fact
that the number of mode switches that can occur during an
execution within an element of the partition is unbounded
due to the presence of cycles in the underlying switching
graph. We reduce the analysis to that of an acyclic graph
using the notion of strongly connected components, and
hence, bound the number of switches for the purpose of
analysis.

The algorithm has been implemented in a tool called
AVERIST (Algorithmic VERIfier for STability). We illustrate
the algorithmic approach on an example using the tool,
including counter-examples and refinement. Currently, the
choice of the appropriate predicates to add for the refinement
is carried out through manual examination of the counter-
example. Future work will focus on automating this process
through a counter-example guided abstraction refinement
approach [10].

Preliminary ideas of the algorithm appear in [11] for
piecewise constant derivative system - systems with constant
dynamics, non-overlapping invariants and guards, and in
[12] for two-dimensional rectangular switched systems. In
contrast to the former, we consider a much larger class of
systems, and to the latter, we extend the algorithm to polyhe-
dral dynamics, higher dimensions and provide experimental
results. The algorithm presented can be extended to richer
dynamics by providing constructions for the reachability
predicates over the new dynamics.

II. PRELIMINARIES

Let R, R≥0, and N denote the set of reals, non-negative
reals and natural numbers, respectively. Given a function F ,
we use Dom(F) to denote the domain of F . Given a set
A ⊆ Dom(F), we denote by F�A, the restriction of F to the
domain A.

a) Intervals, time domain and interval domain: An
interval is a closed convex subset of R. Given an interval
I , first(I) denotes the greatest lower bound of I and last(I)
denotes the least upper bound of I . A time domain is an
interval I such that first(I) = 0. An interval domain is a
finite or infinite sequence of intervals ι = I0I1 · · · such that
first(I0) = 0, last(Ii) = first(Ii+1) for all i, and if Dom(ι)
is infinite, then for every n ∈ N, there exists m ∈ N such
that n ∈ Im. We denote by [[ι]] the interval ∪i∈Dom(ι)ι(i).

b) Continuous state-space: We use |x| to denote the
infinity norm of x ∈ Rn and x·y to denote the dot product of
x, y ∈ Rn. Given ε ∈ R≥0, we use Bε(x) to denote an open
ball around x of radius ε, that is, Bε(x) = {y | |x− y| < ε}.

c) Convex polyhedral sets: Let PolySets(n) denote the
set of all convex polyhedral sets contained in Rn, and
CPolySets(n) denote the set of closed sets in PolySets(n).
A convex polyhedral set p is elementary if p has an empty
intersection with the boundary of the closure of p. We will
use [[C]] to denote the convex polyhedral set defined by a set
of linear constraints C. Given a set p ⊆ Rn, Plane(p, n) is
the intersection of all hyper-planes of dimension n, denoted
Hyper(n), which contain p. Plane(p, n) = {x ∈ Rn | ∀h ∈
Hyper(n), (p ⊆ h⇒ x ∈ h)}.

A partition P of S ⊆ Rn into convex polyhedral sets is a
finite set of convex polyhedral sets {P1, · · · , Pk} such that
∪ki=1Pi = S and for each i 6= j, Pi∩Pj = ∅. An elementary
partition is a partition in which all the convex polyhedral
sets are elementary; the sets are referred to as elements.

III. POLYHEDRAL SWITCHED SYSTEMS

A switched system [1] models supervisory control in
which the supervisor observes the state of the system and
switches between a finite number of operational modes of the
system. In each mode, the continuous state evolves according
to a pre-assigned continuous dynamics and satisfies certain
invariant conditions; mode switch occurs when certain guards
are satisfied, and in particular, the continuous state remains
the same during the switch. We focus on the class of switched
systems in which the continuous dynamics is specified using
polyhedral differential inclusions, and the invariants and
guards are specified using convex polyhedral sets.

Definition. A polyhedral switched system (PSS) is a tuple
H = (Loc,Edges,Cont, Flow, Inv,Guard), where:
• Loc is a finite set of control modes or locations;
• Edges ⊆ Loc× Loc is a finite set of edges;
• Cont = Rn, for some n, is the continuous state-space;
• Flow : Loc→ CPolySets(n) is the flow function;
• Inv : Loc→ PolySets(n) is the invariant function; and
• Guard : Edges→ PolySets(n) is the guard function.

We call n, the dimension of H.
The switched system starts in a location q and a continuous

state x. In a mode q, the continuous state evolves inside
Inv(q) such that the differential of the evolution at anytime
lies within Flow(q). The mode can switch from q1 to q2 if
(q1, q2) is an edge of the system and the continuous state
at the switching satisfies the guard associated with the edge.

Switched systems differ from a hybrid system in that the
continuous state does not change in a switched system during
a mode switch.

A. Semantics

Next, we present the semantics of a polyhedral switched
system as a set of executions of the system.

Definition. An execution σ of a PSS H =
(Loc,Edges,Cont,Flow, Inv,Guard) of dimension n is
a triple (ι, η, γ), such that:
• ι is an interval domain;
• η : [[ι]]→ Rn such that for each i ∈ Dom(ι), η�ι(i) is a

differentiable function;
• γ : Dom(ι)→ Loc such that:

– for all i ∈ Dom(ι), for all t ∈ ι(i), η(t) ∈ Inv(γ(i))
and η̇(t) ∈ Flow(γ(i));

– for all 0 ≤ i < |Dom(ι)|, (γ(i), γ(i+ 1)) ∈ Edges
and η(last(ι(i))) ∈ Guard((γ(i), γ(i+ 1))).

We denote the set of all executions of H by Exec(H).

Definition. An execution σ = (ι, η, γ) of H is said to be
complete if Dom(η) = [0,∞); otherwise, it is called finite.

Definition. An execution σ = (ι, η, γ) is said to be
piecewise-linear if η is piecewise linear. We denote the set
of all piecewise-linear executions of H by PWExec(H).

IV. STABILITY: LYAPUNOV AND ASYMPTOTIC

We define Lyapunov and asymptotic stability. We will
assume without loss of generality that the origin 0̄, is the
equilibrium point.

Definition. A PSS H is said to be Lyapunov stable with
respect to 0̄, if for every real ε > 0, there exists a real δ > 0
such that for every execution σ = (ι, η, γ) ∈ Exec(H) with
η(0) ∈ Bδ(0̄), η(t) ∈ Bε(0̄) for every t ∈ Dom(η).

Given an execution σ, it is said to converge to x, denoted
Conv(σ, x), if for every real ε > 0, there exists a T ∈
Dom(η), such that η(t) ∈ Bε(x) for every t ≥ T .

Definition. A PSS H is said to be asymptotically stable with
respect to 0̄, if it is Lyapunov stable with respect to 0̄ and
there exists a δ > 0 such that for every complete execution
σ = (ι, η, γ) ∈ Σ, η(0) ∈ Bδ(0̄) implies Conv(σ, 0̄).

We make the following observations the first two of which
extend similar observations in [12], [11]:
• Firstly, we notice that in the definition of Lyapunov

stability, we only need to consider ε ∈ [0, r] for
some positive real number r. Hence, Lyapunov and
asymptotic stability depend only on the behavior of H
in a small neighborhood around the origin.

• For the purpose of stability analysis, the only con-
straints on the invariants and guards of interest are
homogeneous linear constraints (constraints of the form
a ·x ∼ 0, ∼∈ {<,≤}). We assume from now on that H

is in a normal form, that is, the invariants and guards of
PSS H are defined by homogeneous linear constraints.

• In the definition of Lyapunov and asymptotic stability,
we can replace Exec(H) by PWExec(H), that is, we
only need to consider piecewise linear executions of H.
This follows from the fact that given any execution σ ∈
Exec(H), there exists an execution σ′ ∈ PWExec(H)
where the time spent in each of the pieces is bounded by
T and the states at the end-points of the pieces coincide
with the states at the corresponding times in σ. The
above fact is a consequence of the property that every
trajectory with finite time domain [0, T] and derivative
in a convex polyhedral set P at all time points, can
be replaced by a linear trajectory with the same time
domain [0, T], same values for states at the end-points,
and a constant derivate in P . Hence, from now on we
take the semantics of H to be PWExec(H).

V. STABILITY VERIFICATION PROCEDURE

In this section, we present an algorithmic approach for
verifying stability of polyhedral switched systems. This is
an extension of the algorithms in [11] for piecewise constant
derivative systems and in [12] for two dimensional rectan-
gular switched systems. The verification procedure consists
of two parts:

1) Extracting a finite weighted graph from the polyhedral
switched system using an elementary partition of the
state-space.

2) Analyzing the graph for deducing stability.
We discuss the two parts in detail in the following. However,
we will defer the computational aspects to the next section.

A. Formal definition of the graph

The graph construction takes as input an elementary
partition of the state-space and a polyhedral switched system,
and outputs a finite weighted graph. The graph captures the
sequence of elements the executions of the system traverse
using the notion of an almost-inside element execution.

Definition. Let H be a polyhedral switched system and P
an elementary partition of its state-space. Given an element
p of P , a p-execution is an execution σ such that η(t) ∈ p
for every 0 < t < last(Dom(η)). An element execution is an
execution which is a p-execution for some element p of P .

The weights in the graph correspond to scalings of execu-
tions which measure the relative distance of the end-points
of the executions to the origin. Given a finite execution σ,
its scaling, denoted Scaling(σ) is given by:

Scaling(σ) =
|η(last(Dom(η)))|

|η(0)|
.

The vertices of the graph correspond to location-element
pairs; edges between two location-element pairs correspond
to the presence of an element execution from the first
location-element pair to the second, and weights on edges
correspond to an upper-bound on the scaling of the execu-
tions corresponding to the edge.

Let us fix a polyhedral switched system H =
(Loc,Edges,Cont,Flow, Inv,Guard) in normal form, and an
element partition P of the state-space. We will assume
that every element p of the partition P is such that for
each invariant or guard r, p is either contained in r or is
disjoint from r. Given q1, q2 ∈ Loc and p1, p2 ∈ P , let
AI(σ, (q1, p1), (q2, p2)) denote the fact that σ is an element
execution from a state in (q1, p1) to a state in (q2, p2).

The weighted graph G(H,P) = (V,E,W) is defined as
follows.

1) The set of vertices V is given by Loc× P;
2) The set of edges E ⊆ V × V is given by
{((q1, p1), (q2, p2)) | ∃σ,AI(σ, (q1, p1), (q2, p2))};

3) The weight function W is given
by W (((q1, p1), (q2, p2))) =
sup{Scaling(σ) | ∃σ,AI(σ, (q1, p1), (q2, p2))}.

B. Stability Criteria

The weighted graph G(H,P) = (V,E,W) is analysed for
the satisfaction of the following properties:
P1 For every edge e ∈ E, W (e) ∈ R≥0.
P2 For every simple cycle (cycles with no repeating ver-

tices) of G(H,P), the weight of the cycle (product of
the weights associated with its edges) is less than or
equal to 1.

P3 Every simple cycle of G(H,P) has weight less than 1.
Intuitive, Condition [P1] implies that there might exist an
execution which diverges from the origin in an element,
Condition [P2] implies that there might exist executions
starting arbitrarily close to the origin which switch between
the elements infinitely often and diverge, and Condition [P3]
ensure that there might exist executions starting arbitrarily
close to the origin which switch between the elements
infinitely often and do not converge to the origin. In addition,
we need the following property, which captures convergence
within an element.
P4 For every element p ∈ P , there exists no complete

execution σ such that η(t) ∈ p, for all t ∈ [0,∞) and
Conv(σ, 0̄) does not hold.

The following theorems characterize the criteria for Lya-
punov stability and asymptotic stability in terms of the above
properties.

Theorem 1: (Lyapunov) If Conditions [P1] and [P2] hold
for G(H,P), then H is Lyapunov stable.

Theorem 2: (Asymptotic) If Conditions [P1], [P3] and
[P4] hold for G(H,P), then H is asymptotically stable.

VI. COMPUTATIONAL ASPECTS

A. Preliminaries

Let us fix a polyhedral switched system H =
(Loc,Edges,Cont,Flow, Inv,Guard) of dimension n. The
underlying graph of a hybrid system H, denoted UG(H),
is the pair of the set of locations and the set of edges
(Loc,Edges).

Given a set p ⊆ Rn, define H ∩ p to be the PSS
(Locp,Edgesp,Contp,Flowp, Invp,Guardp), where:
• Locp = {q ∈ Loc | p ⊆ Inv(q)},
• Edgesp = {(q1, q2) ∈ (Locp × Locp) ∩ Edges | p ⊆

Guard((q1, q2))},
• Flowp(q) = Flow(q) ∩ Plane(p, n) for each q ∈ Locp,
• Invp(q) = p for each q ∈ Locp, and
• Guardp(e) = p, for each e ∈ Edgesp.
Proposition 1: σ is a p-execution of H if and only if σ

is an execution of H ∩ p.
Proof: If σ is an execution of H ∩ p, then it is

an execution of H which always remains within p except
possibly at end times. Hence, it is a p-execution of H.

Suppose σ is a p-execution of H. Then it always remains
within p except possibly at end times. We need to show that
the derivative at all times belongs to Plane(p, n). We observe
that each of the hyper-planes containing p are defined by
homogenous linear constraints, since, p itself is defined by
homogeneous linear constraints. Suppose that the derivative
of σ does not belong to Plane(p, n) at some point t, then σ
necessarily goes out of Plane(p, n) at t for sometime. Since
p ⊆ Plane(p, n), this implies that σ is not a p-execution.
Hence, the derivative belongs to Plane(p, n).

Let us fix an element p ∈ P . Consider a path π =
q1, q2, . . . , qk in UG(H∩p). Given elements p1 and p2 which
are subsets of the boundary of p, the following formula
represents points x ∈ p1 and y ∈ p2, such that there exists
a p-execution from x reaching y which follows π, that is,
spends some time t1 in q1, then t2 in q2, etc. The zis
represent the continuous state just before exiting location qi.

ψπ(x, y) ≡ ∃t1, . . . , tk, z0, z1, . . . , zk : x ∈ p1 ∧ y ∈ p2∧
(1)

z0 = x∧zk = y∧
k∧
i=1

zi+1 − zi
ti

∈ Flowp(qi)∧
k−1∧
i=1

zi ∈ Invp(qi)

We note that zi+1−zi
ti

∈ Flow(qi) can be expressed as a
conjunction of linear constraints by substituting zi+1−zi

ti
in

the linear constraints defining Flowp(qi) and multiplying
thoughout by ti. For instance, if a · x ∼ c is a constraint of
Flow(qi), then the corresponding constraints on zi, zi+1, ti
is a · (zi+1 − zi) ∼ cti.

Next, we present a result about a strongly connected PSS.
If there is a path from every vertex of UG(H) to every other
vertex, then we say that H is strongly connected. Next, we
state a property of strongly connected PSS.

Lemma 1: Suppose H ∩ p is a strongly connected PSS
with locations {q1, . . . , qk}. Let qx, qy be locations of H∩ p
and x, y ∈ p. There is an execution from (qx, x) to (qy, y)
in H ∩ p if and only if ψ(x, y) is satisfiable, where:

ψ̂(x, y) ≡ ∃t1, . . . , tk, z0, z1, . . . , zk : x ∈ p ∧ y ∈ p∧ (2)

z0 = x ∧ zk = y ∧
k∧
i=1

zi+1 − zi
ti

∈ Flowp(vi)

Note that unlike in Equation 1, in Equation 2, we do not
check for satisfaction of invariants at the intermediate points

Fig. 1. Scale-and-repeat technique

zi. Also, the formula is independent of qx and qy . Below we
sketch a proof of the lemma.

(Only if) Suppose σ is an execution of H∩p from (qx, x)
to (qy, y). Let ti be the total time spent in location qi in
σ. Let xi be the sum of the distances traveled while in qi.
Set z0 = x, zi =

∑i
j=1 xi. These values satisfy Equation 2.

The condition corresponding to flow is satisfied due to the
convexity of the sets Flowp(qi), that is, if different flows in
Flowp(qi) were followed during different visits to qi, then
the same distance can be travel in the same time with a single
flow in Flowp(qi).

(If) Suppose there exists values for zi, ti such that ψ̂(x, y)
is satisfied. Let us construct a potential execution which starts
at z0 follows the flow z1−z0

t1
in q1 for time t1, then follows

z2−z1
t2

in q2 for time t2, and so on. An example of such
a potential execution is shown in Figure 1. This potential
execution might violate two conditions of an execution of
H ∩ p: (1) there might not be an edge from qi to qi+1,
also the initial and finial locations may not be qx and qy ,
respectively, and (2) the invariant p might not be satisfied
at the intermediate points. We can fix (1) by replacing the
edge from qi to qi+1 by an execution corresponding to
instantaneous jumps along a path from qi to qi+1, which
we know exist due to the strong connectedness of H ∩ p.
To fix (2), we use a scale and repeat technique as illustrated
on the right in Figure 1. First, we choose an ε > 0, such
that Bε(xy)∩Plane(p, n) is contained in p, where xy is the
line joining xy. Such an ε can always be found since p is
elementary and hence x and y are not on it boundary. Next,
we scale down the execution by a factor of α, wherein we
spend time αti in each location. α is chosen such that the
resulting execution is within an ε-tube around the line joining
x and y. Then multiple such executions are stitched together
by adding instantaneous jumps if required between the last
location of one copy and the first location of the next copy.

B. Weighted Graph Construction

In this section, we sketch the algorithm for determin-
ing if there exists an edge between nodes (q1, p1) and
(q2, p2), and compute the weight in case the edge ex-
ists. Our broad approach is to define an SMT formula
ϕ(q1,p1),(q2,p2),p(x, y) such that the formula evaluates to true

for values of x ∈ p1 and y ∈ p2 such that there is a
p-execution from (q1, x) to (q2, y). Hence, the existence
of an edge between (q1, p2) and (q2, p2) is equivalent to
the satisfiability of the formula

∨
p∈P ϕ(q1,p1),(q1,p2),p(x, y).

And the weight is equivalent to sup |y|/|x| such that (x, y)
satisfy

∨
p∈P ϕ(q1,p1),(q1,p2),p(x, y). The above optimization

problem can be converted to 4|P|n2 linear programming
problems using the same transformation as in [11].

To define ϕ(q1,p1),(q1,p2),p(x, y), let us analyse a p-
execution σ from (q1, p1) to (q2, p2). It can be split into
a sequence of 5 subexecutions σ1, σ2, σ3, σ4, σ5, where σ1
represents the instantaneous mode changes on p1, σ2 is a
linear p-execution from p1 to p with no mode change, σ3
is a p-execution from p to p (with possibly several mode
changes), σ4 is a linear p-execution from p to p2 with no
mode change, and σ5 represents the instantaneous mode
changes on p2. The crux of the formula is in constructing a
formula capturing the end-points of executions of the form
σ3, in which there is no a priori bound on the number of
switching.

To compute the relational reachability predicate for ex-
ecutions of type σ3, first, we decompose UG(H ∩ p) into
maximal strongly connected components {C1, . . . , Cm}. The
quotient graph of UG(H ∩ p) with vertices {C1, . . . , Cm}
is acyclic. Since the number of paths in the quotient graph
are finite, it suffices to compute the reachability predicate for
each path in this acyclic graph. Further, it suffices to compute
the reachability predicate for a single component, since, they
can be composed to obtain the predicate for the whole path.
The reachability predicate for a single component can by
computed using Lemma 1.

C. Verifying Conditions [P1-P4]

Given the graph G(H,P), conditions [P1-P3] can be
efficiently verified with time complexity O(|V ||E|), where
|V | and |E| are the number of vertices and edges in G(H,P),
respectively. Verifying Condition [P1] consists of iterating
over the edges and checking if the values of the weights
is < +∞. Conditions [P2] and [P3] can be check by a
modification of Bellman-Ford algorithm to detect negative
cycles (the addition operation is replaced by multiplication).

Next, we present a verifiable condition which is equivalent
to Condition [P4].

Note that any complete execution which remains within
p will eventually enter a strongly connected component of
H ∩ p and stay there. It will not converge if 0̄ is in the
convex hull of the flows associated with the locations in that
component or there exists a vector in the convex hull which
points into p from the origin (and hence diverges). Hence,
Condition [P4] is equivalent to checking:
P4’ For each C ∈ SCC(H ∩ p), 0̄ 6∈ CHull(

⋃
q∈C Flow(q))

and CHull(
⋃
q∈C Flow(q)) ∩ p = ∅.

VII. IMPLEMENTATION

The stability verification procedure has been implement
in Python 2.7.3 in a tool called AVERIST (Algorithmic
VERIfier for STability). It uses the Z3 SMT solver [13]

Fig. 2. Switched System Example

Fig. 3. Illustration of Abstraction-Refinement

to check satisfiability of the ϕ formulas to determine the
existence of edges in the graph G(H,P). It uses GLPK, the
GNU linear programming kit, for solving the linear optimiza-
tion problems over ϕ to compute the weights on the edges.
The NetworkX Python package is used for graph algorithms
required in computing the formula and in analysing of graphs
for stability criteria.

We illustrate the algorithm on an example which has been
verified using AVERIST. The switched system is shown in
Figure 2 and pictorial illustration of the system when the
value of the variable z = 1 is shown in Figure 3. The system
does not blow up while remaining in any single cell, and as
we will see from the proof of stability given by the tool,
the system does not have any infinite executions. Hence, the
scaling associated with any execution is bounded and the
system is both Lyapunov and asymptotically stable.

Part of the graph constructed by the algorithm is shown
in Figure 3. It has a cycle with weight > 1. The same is
returned by the tool. However, observe that the path e1 to e2
to e3 is infeasible even if both the edges e1 to e2 and e2 to
e3 are feasible. We add the constraint x + y = 0 shown by
the dotted line in Figure 3 to the partition to create a finer
partition. This breaks the cycle and AVERIST returns that
the system is stable.

VIII. CONCLUSIONS

We presented an algorithmic approach to stability veri-
fication of polyhedral switched systems based on a finite
weighted graph construction. An interesting feature of our
technique is that it returns a counter-example in the event
that the graph fails to infer stability. One future direction
will focus on the use of the counter-example to automatically
construct a finer abstraction [10]. Another direction will
focus on the extension of the approach to linear dynamics, for
which computing the reachability predicate for determining
the edges and the weights is more complicated.

IX. ACKNOWLEDGEMENT

The research leading to the results in the paper has
received funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under REA grant agreement n
631622. The first author holds a venia docendi from UPM.

REFERENCES

[1] D. Liberzon, Switching in Systems and Control. Boston : Birkhäuser,
2003.

[2] T. A. Henzinger, “The Theory of Hybrid Automata,” in Logic in
Computer Science, 1996, pp. 278–292.

[3] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: A survey of recent results,” IEEE Trans. Automat.
Contr., vol. 54, no. 2, pp. 308–322, 2009.

[4] J. C. Geromel and P. Colaneri, “Stability and stabilization of
continuous-time switched linear systems,” SIAM J. Control Optim.,
vol. 45, no. 5, pp. 1915–1930, Dec. 2006.

[5] J. P. Hespanha, “Uniform stability of switched linear systems: exten-
sions of lasalle’s invariance principle.” IEEE Trans. Automat. Contr.,
vol. 49, no. 4, pp. 470–482, 2004.

[6] P. Mason, U. V. Boscain, and Y. Chitour, “Common polynomial
lyapunov functions for linear switched systems.” SIAM J. Control and
Optimization, vol. 45, no. 1, pp. 226–245, 2006.

[7] P. A. Parrilo, Structure Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, Pasadena, CA, 2000.

[8] A. Papachristodoulou and S. Prajna, “On the construction of Lyapunov
functions using the sum of squares decomposition,” in Conference on
Decision and Control, 2002.

[9] E. Möhlmann and O. E. Theel, “Stabhyli: a tool for automatic
stability verification of non-linear hybrid systems,” in Hybrid Systems:
Computation and Control. ACM, 2013, pp. 107–112.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement,” in Conference on Computer Aided
Verification, 2000, pp. 154–169.

[11] P. Prabhakar and M. G. Soto, “Abstraction based model-checking
of stability of hybrid systems,” in Conference on Computer Aided
Verification, 2013, pp. 280–295.

[12] P. Prabhakar and M. Viswanathan, “On the decidability of stability of
hybrid systems,” Hybrid Systems: Computation and Control, 2013.

[13] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, vol. 4963. Springer, 2008, pp.
337–340.

