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ABSTRACT
Pre-orders between processes, like simulation, have played
a central role in the verification and analysis of discrete-
state systems. Logical characterization of such pre-orders
have allowed one to verify the correctness of a system by
analyzing an abstraction of the system. In this paper, we
investigate whether this approach can be feasibly applied to
reason about stability properties of a system.
Stability is an important property of systems that have a

continuous component in their state space; it stipulates that
when a system is started somewhere close to its ideal start-
ing state, its behavior is close to its ideal, desired behavior.
In [6], it was shown that stability with respect to equilibrium
states is not preserved by bisimulation and hence additional
continuity constraints were imposed on the bisimulation re-
lation to ensure preservation of Lyapunov stability. We first
show that stability of trajectories is not invariant even un-
der the notion of bisimulation with continuity conditions
introduced in [6]. We then present the notion of uniformly
continuous simulations — namely, simulation with some ad-
ditional uniform continuity conditions on the relation— that
can be used to reason about stability of trajectories. Finally,
we show that uniformly continuous simulations are widely
prevalent, by recasting many classical results on proving sta-
bility of dynamical and hybrid systems as establishing the
existence of a simple, obviously stable system that simu-
lates the desired system through uniformly continuous sim-
ulations.
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1. INTRODUCTION
Bisimulation [23] is the canonical congruence that is used

to understand when two systems are intended to be equiva-
lent. It is taken to be the finest behavioral congruence that
one would like to impose, and correctness specifications are
often invariant under bisimulation, i.e., if two systems are
bisimilar then either both satisfy the specification or nei-
ther one does. Given the efficiency of computing bisimula-
tion quotients, bisimulation is often the basis of minimizing
transition systems [22]. Variants of bisimulation, such as
simulation are often used to abstract a system, and con-
struct a simpler system that ignores some of the details of
the system that maybe irrelevant to the satisfaction of the
specification. Simulation and abstraction form the basis of
verifying infinite state systems [5, 1].

Stability is the most common fundamental requirement
imposed on dynamical and hybrid systems. Hybrid sys-
tems [17] are those whose system states evolve continuously
with real-time modelling physical processes, while making
occasional discrete mode changes, to reflect steps taken by a
discrete, digital controller, or operating environment. Such
models arise particularly naturally when describing embed-
ded and cyber-physical systems. In such systems, stability
is not just a design goal, but is often the principal require-
ment, so much so that unstable systems are deemed “unus-
able”. Intuitively, stability requires that when a system is
started somewhere close to its ideal starting state, its sub-
sequent behavior is close to its ideally desired behavior. For
example, it would not be acceptable for the performance of a
robot to crucially depend on its initial position being known
to infinite accuracy; more precisely, given any ideal start-
ing orientation there should be some (open) neighborhood
of this orientation for which all trajectories that start in
this neighborhood remain close, and furthermore, it should
be possible to ensure that the trajectories are as close as
desired by making the neighborhood sufficiently small.

However, stability is not bisimulation invariant. This was
first observed by Cuijpers in [6]. The stability requirement



suggests that continuity requirements must be imposed on
the witnessing bisimulation (or simulation) relation. Cui-
jpers considered the problem of Lyapunov stability of an
equilibrium state x∗, which informally requires that if the
system is started close to x∗ then it stays close to x∗ at all
times. He showed that if a system T1 with equilibrium point
x∗ is simulated by T2 with equilibrium point y∗ by a relation
R that relates x∗ and y∗, is upper semi-continuous, and R−1

is lower semi-continuous [18], and if T2 is Lyapunov stable
near y∗ then T1 is Lyapunov stable near x∗.
Cuijpers’ result, unfortunately, does not extend when one

considers stronger notions of stability, like asymptotic sta-
bility, or the (Lyapunov or asymptotic) stability of trajec-
tories 1. To see this, consider a standard dynamical sys-
tem2 D1 that has two state variables x, y taking values in
R, with the set of initial states being {(0, y) | y ∈ R≥0}.
The execution map of D1 is the function f((x, y), t) which
prescribes the state at time t provided the state at time 0
was (x, y); specifically, here f((0, y), t) = (t, y). Observe
that such a system is stable with respect to the trajectory
τ = [t 7→ (t, 0)]t∈R≥0

, as executions that start close to (0, 0)
remain close to τ at all times. Let us consider another
dynamical system D2 that has the same state space, and
same initial states, but whose execution map is g((0, y), t) =
(t, y(1 + t)). Observe that this system is not stable with re-
spect to its trajectory τ , because no matter how close an ini-
tial condition (0, y0) is to the origin, the resulting execution
g((0, y0), t) will diverge from τ . On the other hand, the rela-
tion R = {((x1, y1), (x2, y2)) | x2 = x1 and y2 = y1(1 + x1)}
is a bisimulation between the systems D1 and D2. Observe
that R is bi-continuous and hence R is the kind of bisimu-
lation considered by Cuijpers.
In this paper, we identify congruences and pre-orders that

allow one to reason about stability of trajectories. Our main
observation is that in this case, uniform continuity condi-
tions must be imposed on simulation and bisimulation re-
lations. Thus, we introduce the notions of uniformly con-
tinuous bisimulation and uniformly continuous simulation
and show that stability (Lyapunov or asymptotic) of tra-
jectories is invariant under the new notion of bisimulation.
Moreover we show that uniformly continuous simulations
yield the right notion of abstraction for stability — if D1 is
uniformly simulated by D2 and D2 is stable then D1 is also
stable — yielding a mechanism for reasoning about stability.
Having established that uniformly continuous simulations

and bisimulations define the right semantics for stability, we
ask whether they arise naturally in practice. To substanti-
ate the usefulness claim of the new relations, we investigate
a number of classical results in control theory and hybrid
systems, and show that the new pre-orders are widely preva-
lent and form the basis of stability proofs. The Hartman-
Grobman theorem [14, 15, 16] is an important result that
says that the behavior of any dynamical system near a hy-
perbolic equilibrium point is topologically the same as the
behavior of a linear system near the same equilibrium point.
We observe that, in fact, the Hartman-Grobman theorem es-
tablishes that there is a uniformly continuous bisimulation
between the dynamical system and its linearization.

1Stability near an equilibrium point is the special case of
stability of a trajectory, as the only trajectory from the equi-
librium point stays at the equilibrium point.
2A standard dynamical system, in this paper, refers to a
hybrid system without any discrete transitions.

Next we look at various results for establishing stability of
dynamical and hybrid systems. The most common method
for establishing stability of dynamical systems is that of Lya-
punov theory [20], which requires finding a (Lyapunov) func-
tion from the state space of the dynamical system to R that
is positive definite, and decreases along every behavior of
the dynamical system. We observe that a Lyapunov func-
tion constructs a dynamical system whose stability is sim-
ple to prove. Moreover, the properties of a Lyapunov func-
tion ensure that the system constructed by the Lyapunov
function uniformly continuously simulates original dynam-
ical system. Thus, the proof of Lyapunov’s theorem can
be seen as constructing a simpler system which uniformly
continuously simulates the original system and proving the
stability of this simpler system. We also consider a tech-
nique for establishing the stability of a hybrid system using
multiple Lyapunov functions. Once again we demonstrate
that the result can be recast as saying that the existence
of multiple Lyapunov functions of certain kind imply that
the dynamical system can be abstracted (via uniformly con-
tinuous simulations) into a system for which stability can
be proved easily, and therefore conclude the stability of the
original hybrid system.

Related Work.
Pre-orders and bisimulations have been widely used in the

analysis of hybrid systems. Bisimulation relations have been
widely used in safety verification of hybrid systems, and are
the main technical tool in proving decidability of several
subclasses of hybrid systems including timed and o-minimal
systems [2, 21, 4]. The notion of approximate simulations
and bisimulations have been introduced and used for simpli-
fying the continuous dynamics and reducing the state space
of standard dynamical and hybrid systems [10, 11, 12, 24]
for safety verification.

Pre-orders and bisimulations to reason about stability were
first considered by Cuijpers [6]. The notion of bi-continuous
bisimulation was introduced as the semantic basis for rea-
soning about the Lyapunov stability of a single or set of
equilibrium points. However, as argued in the introduction
and in Section 4.1, this notion is not sufficient to reason
about stronger stability notions like asymptotic stability or
the stability of trajectories. We introduce uniformity condi-
tions to reason about such stronger notions.

Finally, modal and temporal logics [8, 7, 9] have been
extended with topological operators to reason about robust-
ness of controllers. However, they are expressively inade-
quate to reason about the notions of stability considered
here.

2. PRELIMINARIES

Notation.
Let R and R≥0 denote the set of reals and non-negative

reals, respectively. Let R∞ denote the set R≥0∪{∞}, where
∞ denotes the largest element of R∞, that is, x < ∞ for all
x ∈ R≥0. Also, for all x ∈ R∞, x +∞ = ∞. Let N denote
the set of all natural numbers {0, 1, 2, · · · }, and let [n] denote
the first n natural numbers, that is, [n] = {0, 1, 2, · · · , n−1}.
Let Int denote the set of all closed intervals of the form [0, T ],
where T ∈ R≥0, and the infinite interval [0,∞).



Functions and Relations.
Given a function F , let Dom(F ) denote the domain of

F . Given a function F : A → B and a set A′ ⊆ A, F (A′)
denotes the set {F (a) | a ∈ A′}. Given a binary relation
R ⊆ A× B, R−1 denotes the set {(x, y) | (y, x) ∈ R}. For a
binary relation R, we will interchangeably use “(x, y) ∈ R”
and “R(x, y)” to denote that (x, y) ∈ R.

Sequences.
A sequence σ is a function whose domain is either [n]

for some n ∈ N or the set of natural numbers N. Length
of a sequence σ, denoted |σ|, is n if Dom(σ) = [n] or ∞
otherwise. Given a sequence σ : N → R and an element r
of R∞ we use

∑∞

i=0 σ(i) = r to denote the standard limit

condition limN→∞

∑N

i=0 σ(i) = r.

Extended Metric Space.
An extended metric space is a pair (M,d) where M is a

set and d : M × M → R∞ is a distance function such that
for all m1, m2 and m3,

1. (Identity of indiscernibles) d(m1,m2) = 0 if and only
if m1 = m2.

2. (Symmetry) d(m1,m2) = d(m2,m1).

3. (Triangle inequality) d(m1,m3) ≤ d(m1,m2)+d(m2,m3).

When the metric on M is clear we will simply refer to M as
a metric space.
Let us fix an extended metric space (M,d) for the rest

of this section. We define an open ball of radius ǫ around
a point x to be the set of all points which are within a
distance ǫ from x. Formally, an open ball is a set of the
form Bǫ(x) = {y ∈ M | d(x, y) < ǫ}. An open set is a
subset of M which is a union of open balls. Given a set
X ⊆ M , a neighborhood of X is an open set in M which
contains X. Given a subset X of M , an ǫ-neighborhood of
X is the set Bǫ(X) =

⋃
x∈X Bǫ(x). A subset X of M is

compact if for every collection of open sets {Uα}α∈A such
that X ⊆

⋃
α∈A Uα, there is a finite subset J of A such that

X ⊆
⋃

i∈J Ui.

Set Valued Functions.
We consider set valued functions and define continuity of

these functions. We choose not to treat set valued functions
as single valued functions whose co-domain is a power set,
since as argued in [18], it leads to strong notions of continu-
ity, which are not satisfied by many functions. A set valued
function F : A ❀ B is a function which maps every ele-
ment of A to a set of elements in B. Given a set A′ ⊆ A,
F (A′) will denote the set

⋃
a∈A′ F (a). Given a binary re-

lation R ⊆ A × B, we use R also to denote the set valued
function R : A ❀ B given by R(x) = {y | (x, y) ∈ R}. Fur-
ther, F−1 : B ❀ A will denote the set valued function which
maps b ∈ B to the set {a ∈ A | b ∈ F (a)}.

Continuity of Set Valued Functions.
Let F : A ❀ B be a set valued function, where A and B

are extended metric spaces. We define upper semi-continuity
of F which is a generalization of the “δ, ǫ - definition” of
continuity for single valued functions [18]. The function F :
A ❀ B is said to be upper semi-continuous at a ∈ Dom(F )

if and only if

∀ǫ > 0, ∃δ > 0 such thatF (Bδ(a)) ⊆ Bǫ(F (a)).

If F is upper semi-continuous at every a ∈ Dom(F ) we sim-
ply say that F is upper semi-continuous. Next we define a
“uniform” version of the above definition, where, analogous
to the case of single valued functions, corresponding to an ǫ,
there exists a δ which works for every point in the domain.

Definition 1. A function F : A ❀ B is said to be uni-
formly continuous if and only if

∀ǫ > 0, ∃δ > 0 such that ∀a ∈ Dom(A), F (Bδ(a)) ⊆ Bǫ(F (a)).

We refer to uniform upper semi-continuity as just uniform
continuity, because it turns out that the two notions of up-
per and lower semi-continuity coincide with the addition of
uniformity condition, i.e., uniform upper semi-continuity is
equivalent to uniform lower semi-continuity.

Next, we state some properties about upper semi-continuous
and uniformly continuous functions.

Proposition 1. Let F : A ❀ B be a set-valued upper
semi-continuous function. Then:

• F−1 is also an upper semi-continuous function.

• If A is compact, then F is also uniformly continuous.

3. HYBRID SYSTEMS
In this section, we present certain definitions related to

hybrid systems. Hybrid systems are systems with mixed
discrete-continuous behaviors, which are widely prevalent
in various application domains including automotive, aero-
nautics, manufacturing and so on. There are many models
for such systems, including the popular model of a hybrid
automaton [17], which captures the discrete dynamics as a
finite state automaton and the continuous dynamics as dif-
ferential equations. In this exposition, we will not concern
ourselves with any particular representation of these sys-
tems, but will use a generic semantic model with trajecto-
ries modeling continuous evolution and transitions modeling
discrete transitions.

3.1 Hybrid Transition Systems
We begin by defining the two components of a hybrid

transition system, namely, trajectories and transitions.
Given a set S, a trajectory over S is a function τ : D → S,

where D ∈ Int is an interval. Let Traj(S) denote the set of
all trajectories over S. A transition over a set S is a pair
α = (s1, s2) ∈ S × S. Let Trans(S) denote the set of all
transitions over S.

Definition 2. A hybrid transition system (HTS) H is a
tuple (S,Σ,∆), where S is a set of states, Σ ⊆ Trans(S) is
a set of transitions and ∆ ⊆ Traj(S) is a set of trajectories.

Notation We will denote the elements of a HTS using ap-
propriate annotations, for example, the elements of Hi are
(Si,Σi,∆i), the elements of H′ are (S′,Σ′,∆′) and so on.

Next, we define an execution of a hybrid transition system.
We will need the notions of first and last elements of tran-
sitions and trajectories. For a trajectory τ , First(τ) = τ(0),
and Last(τ) is defined only if Dom(τ) is a finite interval,



and Last(τ) = τ(T ) where Dom(τ) = [0, T ]. For a tran-
sition α = (s1, s2), First(α) = s1 and Last(α) = s2. An
execution is a finite or infinite sequence of trajectories and
transitions which have matching end-points.

Definition 3. An execution of H is a sequence σ : D →
Σ ∪∆, where D = [n] for some n ∈ N or D = N, such that
for each 0 ≤ i < |σ| − 1, Last(σ(i)) = First(σ(i + 1)). Let
Exec(H) denote the set of all executions of H.

In particular, this implies that all trajectories in an exe-
cution, except possibly the last, have finite domain.
In order to define distance between executions, we in-

terpret an execution as a set which we call the graph of
the execution. A graph of an execution consists of triples
(t, i, x) such that x is a state that is reached after time t has
elapsed along the execution, and i is the number of discrete
transitions that have taken place before time t. Let us first
define a function Size : Traj(S) ∪ Trans(S) → R≥0 which
assigns a size to the trajectories and transitions. For τ ∈
Traj(S), Size(τ) = T if Dom(τ) = [0, T ] and Size(τ) = ∞ if
Dom(τ) = [0,∞). For α ∈ Trans(S), Size(α) = 0.

Definition 4. For an execution σ and j ∈ Dom(σ), let

Tj =
∑j−1

k=0 Size(σ(k)) and Kj = |{k | k < j, σ(k) is a
transition}|. The graph of an execution σ, denoted, Gph(σ),
is the set of all triples (i, t, x) such that there exists j ∈
Dom(σ) satisfying the following:

• t ∈ [Tj , Tj + Size(σ(j))]].

• If σ(j) is a trajectory, then i = Kj and x = σ(j)(t−Tj).

• If σ(j) is a transition, then either i = Kj and x =
First(σ), or i = Kj + 1 and x = Last(σ).

Given a set of executions T , we denote by First(T ) the
set of starting points of executions in T , that is, First(T ) =
{First(σ(0)) |σ ∈ T }. We will denote the set of states ap-
pearing in an execution σ as States(σ). For a transition
α, States(α) = {First(α),Last(α)}, for a trajectory τ ∈ ∆,
States(τ) = {τ(t) | t ∈ Dom(τ)}, and for an execution σ,
States(σ) =

⋃
i∈Dom(σ) States(σ(i)).

Let H = (S,Σ,∆) be a hybrid transition system and
g : S ❀ S′ be a set valued function whose domain is the
state space of H. We extend g to be a set valued function
from Traj(S) to Traj(S′) and from Trans(S) to Trans(S′)
as follows. Given a trajectory τ ∈ Traj(S), g(τ) is the set
of trajectories τ ′ such that domain Dom(τ ′) = Dom(τ) and
τ ′(t) ∈ g(τ(t)) for all t ∈ Dom(τ). Similarly, for a transition
α = (s1, s2) ∈ Trans(S), g(α) = {(s′1, s

′
2) | s

′
1 ∈ g(s1), s

′
2 ∈

g(s2)}. Also, for an execution σ of H, g(σ) is the set of all
σ′ such that Dom(σ′) = Dom(σ) and for each i ∈ Dom(σ),
σ′(i) ∈ g(σ(i)). If g is a single valued function, then we use
g(τ), g(α) and g(σ) to denote the unique element mapped
by g. We define g(H) to be the HTS obtained by applying
g component-wise, that is, g(H) = (g(S), g(Σ), g(∆)).

Metric Hybrid Transition Systems.
A metric hybrid transition system is a hybrid transition

system whose set of states is equipped with a metric. A met-
ric hybrid transition system (MHS) is a pair (H, d) where
H = (S,Σ,∆) is a hybrid transition system, and (S, d) is an
extended metric space. The metric d on the state space can

be lifted to executions, which will then be used to define sta-
bility. Before defining this extension, recall that given an ex-
tended metric space (M,d), the Hausdorff distance between
A,B ⊆ M , also denoted d(A,B), is given by the maximum
of

{sup
p∈A

inf
q∈B

d(p, q), sup
p∈B

inf
q∈A

d(p, q)}.

Definition 5. Let (H, d) be a metric transition system with
H = (S,Σ,∆). For (t1, i1, x1), (t2, i2, x2) ∈ R≥0 ×N× S, let

d((t1, i1, x1), (t2, i2, x2)) = max{|t1 − t2|, |i1 − i2|, d(x1, x2)}.

The distance between executions σ1, σ2 ∈ Exec(H), denoted
as d(σ1, σ2), is defined as d(Gph(σ1),Gph(σ2)).

The above definition of distance between two hybrid execu-
tions is borrowed from [13].

Two executions are said to converge, if the distance be-
tween the two decreases as we consider smaller and smaller
suffixes. Given a subset G of R≥0 × N × S and a T ∈ R≥0,
let us denote by G|T the set {(t, i, x) ∈ G | t ≥ T}.

Definition 6. Two executions σ1 and σ2 are said to con-
verge if for every real ǫ > 0, there exists a time T ∈ R≥0

such that d(Gph(σ1)|T ,Gph(σ2)|T ) < ǫ.

We will use the predicate Conv(σ1, σ2) to denote the fact
that σ1 and σ2 converge.

3.2 Simulations and Bisimulations
We define the notion of simulation and bisimulation be-

tween hybrid transition systems along the lines of [19].

Definition 7. Given two hybrid transition systems H1 =
(S1, Σ1, ∆1) and H2 = (S2,Σ2,∆2), a binary relation R ⊆
S1 × S2 is said to be a simulation relation from H1 to H2,
denoted H1 �R H2, if for every (s1, s2) ∈ R, the following
conditions hold:

• for every state s′1 such that (s1, s
′
1) ∈ Σ1, there exists

a state s′2 such that (s2, s
′
2) ∈ Σ2 and (s′1, s

′
2) ∈ R; and

• for every trajectory τ1 ∈ ∆1 such that First(τ1) = s1,
there exists a trajectory τ2 ∈ ∆2 such that First(τ2) =
s2, and τ2 ∈ R(τ1).

Intuitively, if there exists a simulation relation from H1

to H2, then H2 has more behaviors than H1. H2 is also
referred to as an abstraction of H1. Simulations preserve
various discrete time properties, such as, safety properties,
in that, if H1 �R H2 and H2 satisfies the property, then we
can conclude that H1 satisfies the property as well.

Definition 8. A binary relation R ⊆ S1 × S2 is a bisim-
ulation relation between H1 and H2, if R is a simulation
relation from H1 to H2 and R−1 is a simulation relation
from H2 to H1.

We will use H1 ∼R H2 to denote the fact that R is a bisim-
ulation relation between H1 and H2. So a bisimulation re-
lation preserves properties in both directions, in that, H1

satisfies a bisimulation invariant property iff H2 satisfies it.

3.3 Stability of Hybrid Transition Systems
In this section, we introduce various properties related to

the stability of systems (a good introductory book is [20]).
Intuitively, stability is a property that requires that a system
when started close to the ideal starting state, behaves in a
manner that is close to its ideal, desired behavior.



Lyapunov Stability.
We first define the notion of Lyapunov stability. Given a

HTS H and a set of executions T ⊆ Exec(H), we say that H
is Lyapunov stable (LS) with respect to T , if for every ǫ > 0
in R≥0, there exists a δ > 0 in R≥0 such that the following
condition holds:

∀σ ∈ Exec(H), d(First(σ(0)),First(T )) < δ =⇒

∃ρ ∈ T , d(σ, ρ) < ǫ. (1)

The above statement says that for every execution σ of the
system H which starts with in a distance δ of some execution
ρ′ in T , there exists an execution ρ in T which is with in
distance ǫ from σ.

Asymptotic Stability.
Next we define a stronger notion of stability called asymp-

totic stability which in addition to Lyapunov stability re-
quires that the executions starting close also converge as
time goes to infinity. A HTS H is said to be asymptotically
stable (AS) with respect to a set of execution T ⊆ Exec(H),
if it is Lyapunov stable and there exists a δ > 0 in R≥0 such
that

∀σ ∈ Exec(H), d(First(σ(0)),First(T )) < δ =⇒

∃ρ ∈ T ,Conv(σ, ρ). (2)

So a system H is asymptotically stable with respect to a set
of its executions T if H is Lyapunov stable with respect to
T and every execution starting within a distance of δ from
the starting point of some execution in T converges to some
execution in T .

Remark 1. The notions of stability with respect to an
equilibrium point are a special case of the notion of stability
with respect to trajectories, as an equilibrium point has the
property that the only trajectory from the equilibrium point
is one that stays there.

4. UNIFORMLY CONTINUOUS RELATIONS
AND STABILITY PRESERVATION

The main focus of this paper is to examine the right pre-
orders required to reason about stability properties. In the
discrete setting, most interesting properties are known to be
invariant under the classical notion of bisimulation. How-
ever, as shown in [6], stability is not invariant under bisim-
ulation. That is, even with respect to a set of points (the
trajectories in T essentially correspond to the trivial evo-
lution of the equilibrium points), there are systems which
are bisimilar, but such that only one of them is stable. Cui-
jpers [6] introduces bisimulations with additional continuity
conditions and shows that they preserve stability with re-
spect to a set of equilibrium points. More precisely, Cui-
jpers’ result is as follows. Recall, a set of points X is stable
if for every open neighborhood U of X, there exists a neigh-
borhood V of X such that all trajectories starting from V
remain with in U . It is shown that if R is a simulation with
certain continuity conditions on R and R−1, then stability
with respect to a set of points is preserved (See Theorem 2
of [6]). We observe that the notion of continuous bisimu-
lation introduced in [6] does not suffice when one considers

stability of trajectories. In fact, it does not even suffice to
reason about asymptotic stability with respect to a set of
points. Next, we discuss these observations; some of the
details have been postponed to Appendix A.

4.1 Insufficiency of Continuity

Lyapunov Stability of Trajectories.
Let us consider the dynamical systems D1 and D2 from

the introduction. Note that system D1 is Lyapunov stable
with respect to the trajectory [t 7→ (t, 0)]t∈R≥0

, and the sys-
tem D2 is not Lyapunov stable with respect to the same
trajectory. However, the relation R between the states of
D1 and D2 is a bisimulation relation. Moreover, R is bi-
continuous, that is, both R and R−1 (when interpreted as
single valued functions) are continuous. This shows that
bisimulation even with additional continuity restrictions, which
subsume the continuity restrictions in [6], does not suffice to
preserve Lyapunov stability.

Asymptotic Stability of Trajectories.
Next let us consider a dynamical system D3 which is sim-

ilar to D2 except that g((0, y), t) = ye−t. Note that D3 is
asymptotically stable. Then the relation R′ between D1 and
D3 given by {((x1, y1), (x2, y2)) | x1 = x2 and y2 = y1e

−x1}
is a bi-continuous bisimulation between D1 and D3, how-
ever, D3 is asymptotically stable, where as D1 is not. So the
continuity conditions in [6] on bisimulation relations, do not
suffice to reason about asymptotic stability of trajectories.
In fact, they do not suffice even to reason about asymptotic
stability with respect to a set of points (see Appendix A for
more details).

4.2 Uniformly Continuous Simulations and
Bisimulations

In this section, we introduce the notion of uniformly con-
tinuous simulations which add certain uniformity conditions
on the relation, and show that they suffice to preserve both
Lyapunov and asymptotic stability of trajectories.

Definition 9. A uniformly continuous simulation from a
HTS H1 to a HTS H2 is a binary relation R ⊆ S1×S2 such
that R is a simulation from H1 to H2, and R and R−1 are
uniformly continuous functions.

The main result of this section is that uniformly continu-
ous simulations serve as the right foundation for abstractions
when verifying stability properties. That is, we will show
that if H1 is uniformly continuously simulated by H2 and
H2 is stable with respect to T2 then H1 will be stable with
respect to T1. However, for such an observation to hold, the
simulation relation between H1 and H2 should also relate
the executions T1 and T2. So before proving the main result
of this section, we first formally define how the simulation
relation should relate the sets T1 and T2.

Definition 10. Given HTSs H1 and H2, and sets of execu-
tions T1 ⊆ Exec(H1) and T2 ⊆ Exec(H2), a binary relation
R ⊆ S1 × S2 is said to be semi-complete with respect to T1

and T2 if the following hold:

• R(First(T1)) = First(T2).

• For every ρ2 ∈ T2, there is an execution in ρ1 ∈ T1

such that ρ2 ∈ R(ρ1).



• For every x ∈ States(T2), R
−1(x) is a singleton.

• There exists δ > 0 such that for all x ∈ Bδ(First(T1)),
there exists a y such that R(x, y).

R is complete with respect to T1 and T2 if R and R−1 are
semi-complete with respect to T1 and T2.

The next theorem states that uniformly continuous simu-
lations preserve Lyapunov and asymptotic stability.

Theorem 1 (Stability Preservation Theorem).
Let H1 and H2 be two hybrid transition systems and T1 ⊆
Exec(H1) and T2 ⊆ Exec(H2) be two sets of execution. Let
R ⊆ S1 × S2 be a uniformly continuous simulation from H1

to H2, and let R be semi-complete with respect to T1 and T2.
Then the following hold:

1. If H2 is Lyapunov stable with respect to T2 then H1 is
Lyapunov stable with respect to T1.

2. If H2 is asymptotically stable with respect to T2 then
H1 is asymptotically stable with respect to T1.

Proof. (Lyapunov stability preservation) LetH2 be Lya-
punov stable with respect to T2. We will show that H1 is
Lyapunov stable with respect to T1. Let us fix an ǫ > 0. We
need to show that there exists a δ > 0 such that Equation
(1) holds. The uniform continuity of R−1 gives us an ele-
ment of R≥0 corresponding to the ǫ above. Let us call it ǫ′.
We can assume that ǫ′ < ǫ. Lyapunov stability of T2 gives
us an element of R≥0 corresponding to the ǫ′. Let us call
it δ′. Finally, uniform continuity of R gives us an element
of R≥0 corresponding to δ′, which we call δ. Let us assume
without loss of generality that δ satisfies the last condition
in the definition of semi-completeness of R with respect to
T1 and T2.
Let σ1 ∈ Exec(H1) be such d(First(σ1(0)),First(T1)) < δ.

We need to show that there exists a ρ1 ∈ T1 such that
d(σ1, ρ1) < ǫ. d(First(σ1(0)),First(T1)) < δ implies that for
every s ∈ R(First(σ1(0))), there exists s′ in R(First(T1))
such that d(s, s′) < δ′ (uniform continuity of R). Con-
sider a σ2 in Exec(H2) which simulates σ1, that is, σ2 ∈
R(σ1). Then since First(σ2) is in R(First(σ1(0))) (defini-
tion of simulation), there exists s′ ∈ R(First(T1)) such that
d(s, s′) < δ′, that is, d(First(σ2), First(T2)) < δ′ (since
due to semi-completeness R(First(T1)) = First(T2)). Then
from the Lyapunov stability of H2, there exists a ρ2 in T2

such that d(σ2, ρ2) < ǫ′. Let ρ1 be a trajectory in T1 such
that ρ2 ∈ R(ρ1) (ρ1 exists due to the second condition in
the definition of semi-completeness). We will show that
d(σ1, ρ1) < ǫ.
Let (t1, i1, x1) be inGph(σ1). Then (t1, i1, y1) is inGph(σ2)

for some y1 ∈ R(x1). (t1, i1, y1) is with in distance ǫ′ from
some (t2, i2, y2) in Gph(ρ2). In particular, d(y1, y2) < ǫ′,
|t1 − t2| < ǫ′ and |i − j| < ǫ′. Since R−1(y2) is a sin-
gleton (from the third condition of the definition of semi-
completeness), say x2, every point in R−1(y1) is with in
distance ǫ from x2. In particular, d(x1, x2) < ǫ, and hence
(t1, i1, x1) is with in distance ǫ from (t2, i2, x2) (since ǫ

′ < ǫ).
The argument is similar when we fix a (t2, i2, x2) in Gph(ρ1).
Hence, d(σ1, ρ1) < ǫ.
(Asymptotic stability preservation) Let H2 be asymptot-

ically stable with respect to T2. We will show that H1 is
asymptotically stable with respect to T1. Let δ′ > 0 be
such that for every σ2 starting with in a δ′ ball of First(T2),

there exists a ρ2 in T2, such that Conv(σ2, ρ2). Let δ be
an element of R≥0 given by the uniform continuity of R.
We will show that for every σ1 starting with in a δ ball of
First(T1), there exists a ρ1 in T1, such that Conv(σ1, ρ1).
(This is enough since the preservation of Lyapunov stabil-
ity follows from the previous part). Let us fix such a σ1.
Then similar to an argument in the previous part, there ex-
ists a σ2 which simulates σ1 and d(First(σ2),First(T2)) < δ′.
Then from the asymptotic stability of H2 there exists ρ2 in
T2 such that Conv(σ2, ρ2). Let ρ1 be a trajectory in T1

such that ρ2 ∈ R(ρ1). We will show that Conv(σ1, ρ1).
Let us fix an ǫ > 0. We need to show that there ex-
ist T ∈ R≥0 such that d(Gph(σ1)|T ,Gph(ρ1)|T ) < ǫ. Let
us choose ǫ′ as before. There exist T ∈ R≥0 such that
d(Gph(σ2)|T ,Gph(ρ2)|T ) < ǫ′. We show that the same T
works in H1 for the ǫ. The proof is similar to showing
that d(σ1, ρ2) < ǫ in the previous part (replace Gph(σi)
by Gph(σi)|T ).

The above theorem implies that the stability of a system
H1 can be concluded by analysing a potentially simpler sys-
tem H2 which uniformly continuously simulates H1.

Remark 2. Observe that the definition of stability cru-
cially depends on the notion of distance between two execu-
tions. The definition used in this paper has been argued to
be useful in [13] and accounts for all the discrete transitions
in the execution. However, there might be situations where
for stability purposes we might want to ignore the effects of
these discrete transitions because these changes happen on
a set of “measure 0” in the time domain. More precisely,
let an execution σ be a function with domain [0,∞) ob-
tained by first dropping all the (discrete) transitions and
then concatenating all the trajectories in order. The dis-
tance between two executions is then the supremum of the
pointwise distance between their corresponding functions. It
can be easily observed that the above proof of Theorem 1
works even for this definition of distance between executions.
Thus, stability preservation by our definition of simulation is
not very tightly bound to the specific definition of distance
between executions.

As a corollary of Theorem 1, we obtain that Lyapunov sta-
bility and asymptotic stability are invariant under uniformly
continuous bisimulations.

Definition 11. A uniformly continuous bisimulation be-
tween two HTSs H1 and H2 is a binary relation R ⊆ S1×S2

such that R is a uniformly continuous simulation from H1

to H2 and R−1 is a uniformly continuous simulation from
H2 to H1.

Corollary 1. Let H1 and H2 be two hybrid transition
systems and T1 ⊆ Exec(H1) and T2 ⊆ Exec(H2) be two sets
of execution. Let R ⊆ S1 × S2 be a uniformly continuous
bisimulation between H1 and H2, and let R be complete with
respect to T1 and T2. Then the following hold:

1. H1 is Lyapunov stable with respect to T1 if and only if
H2 is Lyapunov stable with respect to T2.

2. H1 is asymptotically stable with respect to T1 if and
only if H2 is asymptotically stable with respect to T2.



5. APPLICATIONS OF THE STABILITY
PRESERVATION THEOREM

In this section, we show that various methods used in
proving Lyapunov and asymptotic stability of systems can
be formulated as constructing a simpler system which uni-
formly continuously simulates the original system and show-
ing that the simpler system is Lyapunov or asymptotically
stable, respectively.

5.1 Lyapunov Functions
We will show that Lyapunov’s direct method for proving

stability of dynamical systems can be interpreted as first
constructing a simpler system using a Lyapunov function
which uniformly continuously simulates the original system,
and then establishing the stability of the simpler system.
Then Theorem 1 gives us the stability of the original system.
Consider the following time-invariant system,

ẋ = f(x), x ∈ R
n, (3)

where f : Rn → R and let 0̄ be an equilibrium point, that
is, f(0̄) = 0̄.
We can associate a hybrid transition systemHf = (S,Σ,∆)

with the dynamical system in (3), where S = R
n, Σ = ∅, ∆

is the set of C1 trajectories3 τ : D → R
n (where D ∈ Int)

such that dτ(t)/dt = f(τ(t)). Let the metric d be the Eu-
clidean distance. Let Tf,x be the set of all trajectories τ ∈ ∆
corresponding to an equilibrium point x, that is, τ such that
τ(t) = x for all t ∈ Dom(τ).
Next we state Lyapunov’s theorem which provides a suf-

ficient condition for the stability of a system.

Theorem 2 (Lyapunov [20]). Suppose that there ex-
ists a neighborhood Ω of 0̄ and a positive definite C1 function
V : Rn → R satisfying the algebraic condition:

V̇ (x) ≤ 0, ∀x ∈ Ω, (4)

where V̇ (x) = ∂V
∂x

f(x). Then System (3) is Lyapunov stable.

Furthermore, if V̇ satisfies

V̇ (x) < 0, ∀x ∈ Ω/{0}, (5)

then System (3) is asymptotically stable.

A C1 positive definite function satisfying inequality (4)
is called a weak Lyapunov function for f over Ω and one
satisfying (5) is called a Lyapunov function.
The following theorem formulates Lyapunov’s first method

as a stability preserving reduction to a simpler system using
uniformly continuous simulations.

Theorem 3. Let ẋ = f(x), x ∈ R
n be a dynamical sys-

tem with an equilibrium point 0̄. Suppose that V : Rn → R

is a (weak) Lyapunov function for the dynamical system.
Then:

• V (Hf ) is (Lyapunov) asymptotically stable.

• V restricted to a set containing a δ-neighborhood of
First(Tf,0̄) is a uniformly continuous simulation which
is semi-complete with respect to Tf,0̄ and V (Tf,0̄).

Therefore, Hf is (Lyapunov) asymptotically stable.

3C1 is the set of continuously differentiable functions.

So Lyapunov’s theorem can be casted as reducing the orig-
inal system to a simpler system by uniformly upper contin-
uous simulations and proving the stability of the simpler
system. The steps in the above theorem give an alternate
proof of Lyapunov and asymptotic stability using Theorem
1.

5.2 Multiple Lyapunov Functions
We show that proving stability of switched systems using

multiple Lyapunov functions can be recast into the frame-
work of Theorem 1.

A switched system consists of a set of dynamical systems
and a switching signal which specifies the times at which
the system switches its dynamics. Let us fix the following
switched system with N dynamical systems.

ẋ = fi(x), i ∈ [N ], x ∈ R
n,

α = ({ti}i∈N, {ωi}i∈N), ti ∈ R≥0, ωi ∈ [N ]. (6)

The switching signal α = ({ti}i∈N, {ωi}i∈N) is a mono-
tonically increasing divergent sequence, that is, it satisfies
t0 = 0, ti < tj for j > i and for every T ∈ R≥0, there exists
a k such that tk > T .

The solution of this system is the set of functions σ :
[0,∞) → R

n such that σ restricted to the interval between
two switching times is a solution to the corresponding differ-
ential equation. Let σ[a, b] denote the function from [0, b−a]
to R

n such that σ[a, b](t) = σ(a + t). σ is a solution of (6)
if for every i ∈ N, σ[ti, ti+1] is a solution of the differential
equation ẋ = fωi

(x).
We can associate a HTS Hf1,··· ,fN ,α with the switched

system in (6) given by (S,Σ,∆), where S = N × R
n, Σ =

{((i, x), (i + 1, x)) | i ∈ N, x ∈ R
n}, and ∆ consists of tra-

jectories τ : [0, ti+1 − ti] → {i} × R
n for some i ∈ N such

that there exists a trajectory θ : [0, ti+1 − ti] → R
n which

is a solution of the differential equation ẋ = fωi
(x), and

the value of τ(t) is (i, θ(t)), We can associate a metric d
over S, where d((i, x), (j, y)) is the Euclidean distance be-
tween x and y if i = j and ∞ otherwise. Let Tf1,··· ,fN ,α,0̄

be the set of all executions σ in Exec(Hf1,··· ,fN ,α) such that
States(σ) ⊆ [N ]× {0̄}.

Next we state a result on the multiple Lyapunov method
for stability analysis. Given a switching sequence α = ({ti}i∈N,
{ωi}i∈N), we say that ti and tj are adjacent if tj is the first
switching time after ti such that ωi = ωj .

Theorem 4 (Multiple Lyapunov Method [3]).
Let us consider the switched system of (6). Suppose there ex-
ist N weak Lyapunov functions Vi for fi over a neighborhood
Ω of 0̄ such that for any pair of adjacent switching times ti
and tj , Vωi

(σ(tj)) ≤ Vωi
(σ(ti)) for every solution σ of the

switched system. Then the switched system is Lyapunov sta-
ble.

We call a vector of functions V̄ = (V1, · · · , VN ) satisfying
the hypothesis of Theorem 4, a multiple Lyapunov function
for the switched system (6).

The above theorem can again be formulated as establish-
ing a function from the HTS Hf1,··· ,fN ,α to a simpler HTS
using the functions V1, · · · , VN such that the simpler system
is Lyapunov stable and the mapping is a uniformly continu-
ous simulation, thereby proving the stability of the original
system.



Given a vector of functions V̄ = (V1, · · · , Vk), where Vi :
R

m → R for 1 ≤ i ≤ k, and a switching signal α = ({ti}i∈N,
{ωi}i∈N), we define a function V̄ [α] : N×R

m → N×R, such
that V̄ [α](i, x) = (i, Vωi

(x)).

Theorem 5. Given the switched system in Equation (6),
let V̄ be a multiple Lyapunov function for the switched sys-
tem. Then:

• V̄ [α](Hf1,··· ,fN ,α) is Lyapunov stable.

• V̄ [α] when restricted to a set containing a δ-neighborhood
of First(Tf1,··· ,fN ,α,0̄) is a uniformly continuous simu-
lation which is semi-complete with respect to the sets
Tf1,··· ,fN ,α,0̄ and V̄ [α](Tf1,··· ,fN ,α,0̄).

Therefore, Hf1,··· ,fN ,α is Lyapunov stable.

5.3 Hartman-Grobman Theorem
We consider a theorem due to Hartman-Grobman which

constructs linear approximations of non-linear dynamics and
establishes a homeomorphism between the two dynamics.
We show that the homeomorphic mapping from the non-
linear dynamics to the linear dynamics is a uniformly contin-
uous bisimulation. And hence one can use these reductions
from non-linear to linear dynamics to potentially establish
stability properties of non-linear dynamics by proving sta-
bility of the simpler linear dynamics, and using Theorem 1
to deduce the stability of the non-linear dynamics.

Theorem 6 (Local Hartman-Grobman Theorem).
Consider a system ẋ = F (x), where F : Ω → R

n and
Ω ⊆ R

n is an open set. Suppose that x0 ∈ Ω is a hyper-
bolic equilibrium point of the system, that is, A = DF (x0)
is a hyperbolic matrix, where DF denotes the Jacobian of
F . Let ϕ be the (local) flow generated by the system, that
is, ϕ : Rn ×R≥0 → R

n is a differentiable function such that
dϕ(x, t)/dt = F (ϕ(x, t)) for all t ∈ R≥0.
Then there are neighborhoods U and V of x0 and a home-

omorphism h : U → V such that ϕ(h(x), t) = h(x0+etA(x−
x0)) whenever x ∈ U and x0 + etA(x− x0) ∈ U .

Let us call a function h satisfying the above condition, a
Hartman-Grobman function associated with the dynamical
system ẋ = F (x). Given a HTS H = (S,Σ,∆), the restric-
tion of H to a set X ⊆ S is the HTS (X,Σ∩Trans(X),∆∩
Traj(S)).

Remark 3. The terminologies referred to in the above the-
orem are standard. However, we define them in the Ap-
pendix for the sake of completeness.

Theorem 7. Let ẋ = F (x) be a dynamical system, where
F : Ω → R

n and Ω ⊆ R
n is an open set, and let x0 ∈ Ω

be a hyperbolic equilibrium point. Let G be a function from
R

n to R
n such that G(x) = Ax where A = DF (x0). Let h

be a Hartman-Grobman function associated with the above
dynamical system. Then, there exists a set X containing a δ-
neighborhood of First(TG,x0

) such that h restricted to this set
is a uniformly continuous bisimulation from HG restricted
to X to HF restricted to h(X) and is complete with respect
to TG,x0

and TF,x0
.

Again, we see that the reduction defined in Hartman-
Grobman theorem from the non-linear dynamics to linear
dynamics is a uniformly continuous bisimulation. We can
use Theorem 7 along with Theorem 1 to deduce that HF

restricted to h(X) is Lyapunov (asymptotically) stable iff
HG restricted to X is Lyapunov (asymptotically) stable.

6. CONCLUSIONS
In this paper, we investigated pre-orders for reasoning

about stability properties of dynamical and hybrid systems.
We showed that bisimulation relations with continuity con-
ditions, introduced in [6], are inadequate when stronger no-
tions of stability like asymptotic stability, or the stability
of trajectories is considered. We, therefore, introduced uni-
formly continuous simulations and bisimulations and showed
that they form the semantic basis to reason about stability.
Using such notions, we showed that, classical reasoning prin-
ciples in control theory can be recast in a more “computer-
science-like light”, wherein they can be seen as being founded
on abstracting/simplifying a system and then relying on the
reflection of certain logical properties by the abstraction re-
lation.

As argued in [6], one by-product of investigating the conti-
nuity requirements on simulations and bisimulations needed
to reason about stability, is that it allows one to conclude
the inadequacy of the modal logic in [8] to express stability
properties. What is the right logic to express properties like
stability? That remains open. Just like Hennessy-Milner
logic serves as the logical foundation for classical simulation
and bisimulation, the right modal logic that can express sta-
bility might form the logical basis for the simulation and
bisimulation relations introduced here.

Acknowledgements
We would like to thank the anonymous referees for pointing
us to the work in [6] on bisimulations for preservation of
stability with respect to sets of points.

7. REFERENCES
[1] R. Alur, T. Dang, and F. Ivancic. Counter-Example

Guided Predicate Abstraction of Hybrid Systems. In
Tools and Algorithms for the Construction and
Analysis of Systems, pages 208–223, 2003.

[2] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[3] M. S. Branicky. Stability of hybrid systems: state of
the art. In Conference on Decision and Control, pages
120–125, 1997.

[4] T. Brihaye and C. Michaux. On the expressiveness
and decidability of o-minimal hybrid systems. Journal
of Complexity, 21(4):447–478, 2005.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In
Computer Aided Verification, pages 154–169, 2000.

[6] P. J. L. Cuijpers. On bicontinuous bisimulation and
the preservation of stability. In Proceedings of the
International Conference on Hybrid Systems:
Computation and Control, pages 676–679, 2007.

[7] J. Davoren. Topological semantics and bisimulations
for intuitionistic modal logics and their classical
companion logics. In Proceedings of the International
Conference on Logical Foundations of Computer
Science, pages 162–180, 2007.
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APPENDIX

A. COMPARISON WITH PREVIOUS DEF-
INITIONS

We begin by showing that the notion of simulation and
bisimulation introduced in [6] are not sufficient to reason
about stability of trajectories even with an additional con-
straint of continuity on the relation.

Lyapunov Stability of Trajectories.
Consider a hybrid transition system H1 = (S1,Σ1,∆1),

where

• the state space S1 is the set R2
≥0, which is the positive

quadrant of the two dimensional plane;

• the set of transitions Σ1 is the empty set; and

• ∆1 is the set {fm |m ∈ R≥0}, where for a particular
m ∈ R≥0, fm : [0,∞) → R

2
≥0 is the trajectory such

that f(t) = (t,m).

y

x(0, 0)

Figure 1: A HTS which is

Lyapunov stable

y

x(0, 0)

Figure 2: An unstable

HTS

As shown in Figure 1, H1 consists of trajectories which
start on the positive y-axis and evolve parallel to the positive
x-axis. It is easy to see that H1 is Lyapunov stable with
respect to the unique trajectory τ1 which starts at the origin
and moves along the x-axis.

Now let us consider another system H2 = (S2,Σ2,∆2),
shown in Figure 2, which is similar to H1, that is, S2 = S1

and Σ2 = Σ1, except that ∆2 = {fm : [0,∞) → R≥0 | fm(t) =
(t,m(1 + t)),m ∈ R≥0}. The trajectories of H2 start on the
positive y-axis and evolve along a straight line whose slope
is given by the y intercept. So they form a diverging set
of straight lines. Consider the trajectory τ2 which starts at
the origin and evolves along the x-axis. Note that H2 is not
Lyapunov stable with respect to {τ2}.

However, R = {((x1, y1), (x2, y2)) |x1 = x2 and y2 =
y1(1 + x1)} is a bisimulation relation between H1 and H2,
in fact, a bi-continuous bijection, that is, R and R−1 (when
considered as single valued functions) are continuous. Thus,
Lyapunov stability with respect to trajectories is not invari-
ant under the bisimulations that are only continuous.

Asymptotic Stability of Trajectories.
We can show in a similar fashion that bi-continuous bisim-

ulations do not preserve asymptotic stability. For example,
consider a system H3 which is similar to H2 except that fm



is defined as fm(t) = (t,me−t). Note that H1 is not asymp-
totically stable, where as H3 is. And there is a bi-continuous
bisimulation relation given by R = {((x1, y1), (x2, y2)) |x1 =
x2 and y2 = y1e

−x1}.

Insufficiency of the continuity conditions in [6] for
asymptotic stability with respect to a set of points.
Consider a system T1 with statespace R and the equilib-

rium point 0. Let the trajectory x starting at any point
x(0) > 0 in R be such that x(t) > 0 for all t, x(t1) > x(t2)
for all t1 < t2 and x(t) → 0 as t → ∞. Similarly, a tra-
jectory x starting at any point x(0) < 0 in R be such that
x(t) < 0 for all t, x(t1) < x(t2) for all t1 < t2 and x(t) → 0 as
t → ∞. Note that T1 is asymptotically stable with respect
to the equilibrium 0.
Next consider a system T2 with statespace R such that

every points is an equilibrium point. Note that T2 is stable
with respect to 0, but not asymptotically stable.
Now, we define a relation R from T1 to T2 satisfying the

hypothesis of Theorem 2 of [6]. R = {(x, y) ∈ R
2 | y ≥ x > 0

or 0 < x ≤ y}. Then R satisfies the following:

• R−1 is a simulation, that is, if x1 can go to x2 in time t
in T2, then for every y1 such that (x1, y1) ∈ R−1, there
exists a y2 such that y2 can be reached from y1 in time
t and (x2, y2) ∈ R−1,

• R is upper semi-continuous, and

• R−1 is lower semi-continuous, that is for any open set
X, R(X) = {y | ∃x ∈ X : (x, y) ∈ R} is an open set.

It can be verified that R satisfies the above conditions
and hence the hypothesis of Theorem 2 in [6]. However,
the conclusion of the theorem does not hold for asymptotic
stability because it would state that if T1 is asymptotically
stable with respect to a closed set S, then T2 is asymptoti-
cally stable with respect to R(S). Note however that T1 is
asymptotically stable with respect to {0}, however T2 is not
asymptotically stable with respect to R({0}) = {0}.

B. PRELIMINARIES AND PROOFS OF THE-
OREMS

In this section, we recall certain standard definitions and
provide proofs of theorems in Section 5.

B.1 Preliminaries
Consider a C1 (i.e., continuously differentiable) function

V : Rn → R. It is called positive definite if V (0̄) = 0 and
V (x) > 0 for all x 6= 0. Let

V̇ (x) =
∂V

∂x
f(x),

and note that V̇ is the time derivative of V (x(t)), where x(t)
is a solution of the Equation 3.
Below, we present the definitions of terminologies used in

Theorem 6. A function f : A → B, where A,B ⊆ R
n is a

homeomorphism if f is a bijection and both f and f−1 are
continuous. A function F : Rn → R

m is given by m-real
valued component functions, y1(x), · · · , ym(x), where x =
(x1, · · · , xn). The partial derivatives of all these functions
(if they exist) can be organized in a m×n matrix called the
Jacobian of F , denoted by DF (x), where the entry in the
i-th row and j-th column is ∂yi/∂xj .

Given an n-vector a = (a1, · · · , an) ∈ R
n, DF (a) is the

matrix obtained by substituting xi in the terms of the ma-
trix DF (x1, · · · , xn) by ai. A square matrix A is hyperbolic
if none of its eigen values are purely imaginary values (in-
cluding 0).

B.2 Proof of Theorem 3
Proof. (Sketch.) Proof of Part (1): Let Hf = (S1,Σ1,

∆1), and V (Hf ) = (S2,Σ2,∆2). We need to show that if V
is a weak Lyapunov function, then V (Hf ) is Lyapunov sta-
ble, and if V is a Lyapunov function, then V (Hf ) is asymp-
totically stable.

Let Ω be an open subset around 0̄ as given by Lyapunov’s
theorem. Observe that if V is a weak Lyapunov function,
then for every τ ∈ ∆2 such that τ(0) ∈ V (Ω), for any t1 < t2,

τ(t1) ≥ τ(t2), since V̇ (x) ≤ 0 for every x ∈ Ω and τ arises
from a trajectory of Hf . Hence the distance of τ(t) from 0
is non-increasing as time t progresses. Since for any τ∗ ∈
V (Tf,0̄), τ

∗(t) = 0 for any t, d(τ(t), τ∗(t)) ≤ d(τ(0), τ∗(0)).
So given any ǫ > 0, choose a δ′ which is less than δ and
ǫ. Then V (Hf ) is Lyapunov stable with respect to δ′, that
is, any τ starting with in δ′-neighborhood of First(V (Tf,0̄))
(which is same as V (First(Tf,0̄)) in this case) remains with
in a distance of ǫ from some trajectory in V (Tf,0̄).

Next, if V is a Lyapunov function, we need to show that
in addition to the above, there is a neighborhood of First(V (
Tf,0̄)) such that trajectories starting from it converge to
some trajectory in V (Tf,0̄). Let Ω be the set associated

with the Lyapunov function f such that V̇ (x) < 0 for all
x ∈ Ω. We will show that V (Ω) is such a neighborhood.
It suffices to show that for any trajectory τ : [0,∞) → S2

starting from a state x ∈ V (Ω), τ converges to 0. Since V is
positive and decreasing along any solution τ , it has a limit
c ≥ 0 as t → ∞. If c = 0, then we are done. Otherwise, the
solution cannot enter the set {x : V (x) < c}. In this case,
the solution evolves in a compact set that does not contain
the origin. Let the compact set be C. Let d = maxx∈C V̇ (x);
this number is well defined due to compactness of Cand neg-
ative due to 5. We have V̇ ≤ d, and hence V (t) ≤ V (0)+dt.
But then V will eventually become smaller than c, which is
a contradiction.

Proof of Part (2): V restricted to a set containing a δ-
neighborhood of First(Tf,0̄) is a uniformly continuous simu-
lation. First observe that V is a simulation relation from Hf

to V (Hf ) by definition, and V is an upper semi-continuous
function (since it is continuous). Therefore its inverse V −1

is also upper semi-continuous. Further, Ω is an open set
around 0̄, hence V (Ω) is an open set around V (0̄) = 0. Let
δ be such that a closed ball of radius δ around 0 is contained
in V (Ω). Then V restricted to the compact set, closed ball
of radius δ around 0, is a uniformly continuous function and
hence so is V −1. Note that V restricted to the compact set is
also a simulation owing to V being a decreasing function. V
is semi-complete, since the first three conditions are trivially
true and the fourth condition is true because of the previous
observation.

Conclusion: Let V restricted to the closed ball of radius
δ be the function V ′. Since V ′ is a uniformly continuous
simulation between H1 = Hf and H2 = V (Hf ) and is semi-
complete with respect to T1 = Tf,0̄ and T2 = V (T2); and H2

is (Lyapunov) asymptotically stable, it follows from The-
orem 1 that Hf = H1 is (Lyapunov) asymptotically sta-
ble.


