Pre-orders for reasoning about stability

Pavithra Prabhakar, Geir E. Dullerud and Mahesh Viswanathan

Pre-orders between processes, like simulation, have played a central role in the verification and analysis of discrete-state systems. Logical characterization of such pre-orders have allowed one to verify the correctness of a system by analyzing an abstraction of the system. In this paper, we investigate whether this approach can be feasibly applied to reason about stability properties of a system. Stability is an important property of systems that have a continuous component in their state space; it stipulates that when a system is started somewhere close to its ideal starting state, its behavior is close to its ideal, desired behavior. In Cuijpers 2007, it was shown that stability with respect to equilibrium states is not preserved by bisimulation and hence additional continuity constraints were imposed on the bisimulation relation to ensure preservation of Lyapunov stability. We first show that stability of trajectories is not invariant even under the notion of bisimulation with continuity conditions introduced in Cuijpers 2007. We then present the notion of uniformly continuous simulations --- namely, simulation with some additional uniform continuity conditions on the relation --- that can be used to reason about stability of trajectories. Finally, we show that uniformly continuous simulations are widely prevalent, by recasting many classical results on proving stability of dynamical and hybrid systems as establishing the existence of a simple, obviously stable system that simulates the desired system through uniformly continuous simulations.

Hybrid Systems: Computation and Control (HSCC), 2012
Download: BIB PS PDF