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ABSTRACT
In this paper we consider the problem of approximating the
set of states reachable within a time bound T in a linear
dynamical system, to within a given error bound ε. Fix-
ing a degree d, our algorithm divides the interval [0, T ] into
sub-intervals of not necessarily equal size, such that a poly-
nomial of degree d approximates the actual flow to within
an error bound of ε, and approximates the reach set within
each sub-interval by the polynomial tube. Our experimen-
tal evaluation of the algorithm when the degree d is fixed to
be either 1 or 2, shows that the approach is promising, as it
scales to large dimensional dynamical systems, and performs
better than previous approaches that divided the interval
[0, T ] evenly into sub-intervals.

Categories and Subject Descriptors
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General Terms
Verification
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Approximation, Linear Dynamical Systems, Post Computa-
tion

1. INTRODUCTION
Integral to the automatic verification of safety properties

is the computation of the set of reachable states of a sys-
tem. In the context of hybrid systems, the key challenge
in reachability computation is to compute, for a given set
of states X, all states that are reachable from X under the
continuous dynamics, within (some) time T . While states
reachable within a bounded time can be computed for some
hybrid systems with simple dynamics [3, 1, 16, 19, 27], it
must typically be approximated, since the problem of com-
puting the reachable set is undecidable for most dynamical
systems.
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There are three principal techniques for computing an ap-
proximation to the reachable set of states. The first con-
structs an abstract transition system that simulates (in a
formal sense) the dynamical system, and carries out the
reachability computation on the abstract system [5, 2, 8,
7, 11, 17, 26]. In this method, the quality of the approxi-
mate solution cannot be measured, and so, often this is com-
pensated by repeatedly refining the abstract transition sys-
tem. The second approach, called hybridization [25, 4, 10],
partitions the continuous state space, and approximates the
continuous dynamics in each partition. Here one can explic-
itly bound the error between the reachable set of the hybrid
system with simpler dynamics and the original dynamical
system.

The third method is to directly compute the states reach-
able within time T . This has been carried out primarily for
linear dynamical systems and a convex polytope as initial
set X. For such systems, the algorithm proceeds as follows.
First, the time interval [0, T ] is partitioned into equal inter-
vals of size ∆. Then, the points reached at time ∆ from
the vertices of X are computed. The set of states reachable
within time ∆ is then approximated by the convex hull of the
vertices of the set X and the points reached at time ∆ from
the vertices of X. Given ∆, T , and the dynamics, the error
(or Hausdorff distance) between this convex hull and the ac-
tual set of states reachable within time ∆ can be bounded.
Based on this error bound, this convex hull is first “bloated”
to contain all the reachable states and then approximated
by a data structure of choice. Different data structures that
have been considered and found useful include griddy poly-
topes [9], ellipsoids [18], level sets [21], polytopes [6], zono-
topes [13, 14], and support functions [15]. After this, the
computation for the time interval [0,∆] is translated to ob-
tain the reachable states for the time interval [i∆, (i+ 1)∆]
— the states reached at time i∆ and (i+ 1)∆ are obtained
by translating the vertices of X and those at time ∆, re-
spectively, and then the “bloated” convex hull of all of these
points is approximated by the data structure of choice. This
method has been found to scalable and successful, making
the automated analysis of linear dynamical systems possible.

In this paper, we take a slightly different stance on the
problem of directly approximating the reachable set. In-
stead of trying to bound the error of a reachability compu-
tation, we view the problem as one where given an error
bound ε, one has to compute an over-approximation of the
reachable set whose Hausdorff distance from the actual set
of reachable states is bounded by ε. This subtle change
in perspective, immediately suggests some natural changes



to the basic algorithm outlined in the previous paragraph.
First, the discretization of the time interval [0, T ] need not
be in terms of equal-sized intervals. We could change inter-
val sizes, as long as the error of approximating the reachable
states within that interval can be bounded by ε. Second, in
the “basic algorithm”, the convex hull of the points of the
initial set and those at time ∆ is taken to be the approxima-
tion of the set of states reachable within time ∆. Instead, we
view the approximation process as first approximating the
flow in the interval [0,∆] by a polynomial, and then taking
the “polynomial tube” defined by this dynamics to be the
approximation of the reachable states — when the polyno-
mial is taken to be a linear function, then it corresponds to
taking the convex hull of the points, as done in the basic
algorithm. Combining these ideas, the algorithm we plan to
study in this paper can be summarized as follows. Given an
error bound ε and the degree d of the polynomials to be con-
sidered, we first find a time (hopefully, as large as possible)
t such that dynamics in [0, t] when approximated by degree
d polynomials is within error bound ε of actual dynamics.
The degree d polynomial approximating the actual dynam-
ics can be found by constructing the appropriate Bernstein
polynomial [20]. We approximate the set of reachable states
in the interval [0, t] by the degree d polynomial tube, and
then repeat the process for the time interval [t, T ], each time
dynamically figuring out the appropriate discretization.

Our algorithm, when compared with the basic algorithm
previously studied, has both perceptible advantages and dis-
advantages. On first glance, the basic algorithm seems to
be computationally simpler and potentially faster. For a
system with linear dynamics, computing the set of states
reached at time ∆ involves computing (or rather approxi-
mating) matrix exponentials. This is a significant compu-
tational overhead. In the basic algorithm, this cost is min-
imized, as it is performed once for the first [0,∆] interval,
and for subsequent intervals it is obtained by translation
rather than direct computation. In our algorithm, this must
be computed afresh for each sub-interval. Moreover, in our
algorithm, the intervals need to be determined dynamically,
which is an additional overhead to the computation in each
sub-interval. However, on the flip side, dynamically deter-
mining intervals is likely to give us larger sub-intervals in
some places and therefore result in fewer intervals overall to
consider. This could be a potentially significant advantage.
This is because the eventual approximation of the reach set
for the interval [0, T ] is given as the union of basic sets (rep-
resented by the chosen data structure) that are computed for
each sub-interval; thus, the number of terms in the union is
as large as the number of sub-intervals. Subsequent steps
in verifying safety properties (or other properties of inter-
est) involve taking intersections, and checking emptiness and
membership of states in these sets. The complexity of these
set-theoretic operations depends on how many terms there
are in the union — this is true no matter what the chosen
data structure is. Thus, the time (and memory) used in ver-
ification is directly influenced by how many steps the time
interval [0, T ] is divided into. Note, that the “quality” of the
solution computed by the basic algorithm is not better than
the one computed by our algorithm, even if it uses smaller
sub-intervals and more of them, because the overall quality
is determined by the quality of the solution in the “worst”
interval, which is then built into the bloating factor used by
both algorithms.

In order to evaluate these competing claims, we imple-
mented both the basic algorithm and our algorithm in Mat-
lab. Observe that in both the basic algorithm and our al-
gorithm, states reached at certain times must be computed,
and then the convex hull or polynomial tube must be approx-
imated by the data structure of choice. In our experimental
evaluation, we choose to be agnostic about the relative mer-
its of different data structures, and we make no claims about
which data structure should be chosen. Therefore, we only
compute the states reached at certain time steps, and not
the data structure representing the reachable states. Once a
data structure is chosen, the computational overhead in con-
structing the desired set will be the same whether the basic
algorithm or our method is used (provided linear flows are
used to approximate the actual flow in our method). Thus,
our experimental setup is to evaluate under what conditions
(types of matrices and time bound T ) does unequal inter-
vals plus associated computation costs beat uniform inter-
vals with computation minimized by translation. We also
try to understand, when it makes sense to use polynomials
that are not linear to approximate the flow. Our results
apply no matter what your favorite data structure is.

Our experimental results are surprising. We evaluated
the two methods on both “natural” examples that have been
studied before, and randomly generated matrices, and for
different time intervals and error bounds. First we observed
that our algorithm is scalable as it computes the points for
both large matrices (we tried it on 100× 100 matrices) and
for many time steps (requiring thousands of iterations). Sec-
ond, surprisingly, our algorithm, approximating flow by lin-
ear functions, most of the time outperforms the basic algo-
rithm, sometimes by a few orders of magnitude. The gap
in the performance between the two algorithms only widens
considerably as the time bound T is increased. This can be
explained by the fact that as the number of iterations in-
creases the significant reduction in the number of intervals
dominates the computation costs. Our algorithm not only
uses significantly fewer number of intervals for the same pre-
cision (as would be expected) but the size of the minimum
interval is also significantly larger than the size of the uni-
form interval chosen by the basic algorithm. This suggests
that our algorithm reaps the benefits of dynamic compu-
tation of error bounds, over static determination of them.
Next, we compare the potential benefits of using non-linear
flows to approximate the actual flow. We consider polyno-
mials of degree 2, as they are appropriate when consider-
ing ellipsoids as the data structure. Theoretically, the size
of a dynamically determined sub-interval could be a factor
of 2 larger when using polynomials of degree 2 when com-
pared with linear functions. That, in turn, could translate
to significant (exponential) savings in terms of the number
of intervals. However, these theoretical possibilities were
not observed in our experiments — the number of intervals
for degree 2 polynomials were at most a factor of 2 smaller.
This could be explained by our observation that most of the
sub-intervals in the linear approximation tend to be small,
and they are roughly of the same size. In such a scenario the
theoretical benefits of using quadratic approximations don’t
translate to visible gains.

We would like to remark that the approximations that we
compute depend on the machine precision, since the approx-
imations are constructed by sampling the function at certain
points, and are only as precise as that of the function values



computed for the sample points. There are other approaches
for reachability analysis [23, 22, 19, 27] which rely on the
decidability of the satisfiability problem for the first order
theory of reals, which in contrast are algebraic techniques
with infinite precision computation. However, for reacha-
bility analysis for the class of linear dynamical system, the
above techniques need to first compute a polynomial approx-
imation of the dynamics.

The rest of the paper is organized as follows. We begin
with some preliminaries in Section 2. Next, in Section 3, we
outline our algorithm to compute post for general dynamical
systems by approximating flows using Bernstein polynomi-
als. In Section 4, we describe the specific algorithm for linear
dynamical systems. We then give details of our experimental
results (Section 5) before presenting our conclusions.

2. PRELIMINARIES
Let N denote the set of natural numbers and let R and

R≥0 denote the set of real numbers and non-negative real
numbers, respectively. Given x ∈ Rn, let (x )i denote the
projection of x onto the i-th component, that is, if x =
(x1, · · · , xn), then (x )i = xi. Given a function F : A →
Rn, let Fi : A → R denote the function given by Fi(a) =
(F (a))i . Given a function F : R≥0 → B and [a, b] ⊆ R≥0,
let F [a, b] : [0, b − a] → B denote the function given by
F [a, b](c) = F (a+ c).

We will use ∞-norms for measuring the distance between
two vectors. Given x, y ∈ Rn, let ||x − y|| denote the dis-
tance between x and y in the ∞-norm, that is, ||x − y|| =
max1≤i≤n|(x )i − (y)i |. Also, given two functions G : A →
Rn and H : A→ Rn, the distance between the functions, de-
noted ||G−H||, is given by ||G−H|| = infx∈A ||G(x)−H(x)||.
Given two sets A,B ⊆ Rn, the Hausdorff distance between
the two sets, denoted dH(A,B), is defined as

dH(A,B) = max(sup
x∈A

inf
y∈B
||x− y||, sup

x∈B
inf
y∈A
||x− y||)

A polynomial over a variable x of degree k, denoted p(x),
is a term of the form a0 + a1x

1 + · · · + akx
k, where ai ∈ N

for all 1 ≤ i ≤ k and ak 6= 0. Given a v ∈ R, let p(v)
denote the value obtained by substituting v for x in the
expression p(x) and evaluating the resulting expression. A
function P : [a, b] → Rn, for some a, b ∈ R, is a polyno-
mial function if there exist polynomials, p1, · · · , pn over x,
such that for all v ∈ [a, b], Pi(v) = pi(v). The degree of the
polynomial function P is the maximum degree of the poly-
nomials representing it, that is, degree of P is maximum of
the degrees of p1, · · · , pn (the degree is unique). Note that
polynomial functions are continuous functions. A piecewise
polynomial function is a function whose domain can be di-
vided into finite number of intervals such that the function
restricted to each of these intervals is a polynomial function.
A piecewise polynomial function (PPF) is a continuous func-
tion P : [a, b] → Rn, where a, b ∈ R, such that there exists
a sequence t1, · · · , tk such that a < t1 < · · · < tk < b and
P [a, t1], P [t1, t2], · · · , P [tk, b] are all polynomial functions.

3. POST COMPUTATION BY FLOW APPROX-
IMATION

In this section, we describe a general algorithm to approx-
imate the flow of a dynamical system by a piecewise polyno-
mial function of any fixed degree within any approximation

error bound. The approximations are based on Bernstein
Polynomials.

3.1 Bernstein Polynomial Approximations
Our general algorithm for approximating a flow within

a given error bound is based on the well-known Weierstrass
Approximation Theorem, which says that an arbitrary func-
tion over the reals with a compact domain can be approxi-
mated by a polynomial such that the distance between the
two functions is within a given error bound.

Theorem 1 (Weierstrass). Given a continuous func-
tion F : R → R, a compact subset [a, b] of R and an ε > 0,
there exists a polynomial function P : R→ R such that

|F (x)− P (x)| < ε, ∀x ∈ [a, b].

We can use the polynomial function guaranteed by this
theorem to obtain a polynomial approximation of the flow of
a dynamical system. Application of this theorem for hybrid
system verification by construction of ε-simulations can be
found in [24].

The above theorem is an existential theorem, and by itself
does not suggest a way to obtain the polynomials. However,
there exist a class of polynomials called Bernstein Polyno-
mials, which can be constructed for a given function F , and
an ε > 0, such that the distance between the function F and
the corresponding polynomial is within ε. The approximate
polynomial is constructed by evaluating the function F at
some finite number of points and using these values to com-
pute the coefficients of the polynomial. Let F : [a, b] → R
be a function. Then a Bernstein polynomial of degree n
approximating F , denoted by Bernn(F ) is given by:

(Bernn(F ))(x) =

nX
k=0

F (a+ k(b− a)/n) ∗

 
n

k

!
∗

((x− a)/(b− a))k(1− (x− a)/(b− a))n−k,

for all a ≤ x ≤ b.
The next two lemmas essentially show that the approx-

imation error introduced by the polynomial approximation
can be made arbitrarily small. In particular, given an ε > 0,
we can choose an n effectively such that the distance between
the two functions is bounded by ε. Let us denote by Fdiff,
the absolute difference between the maximum and minimum
values of F in its domain, i.e, Fdiff = maxx1,x2∈[a,b] |F (x2)−
F (x1)|. Then, we have the following from [20]:

Lemma 1. Let F : [a, b] → R be a continuous function
and ε > 0. Let δ > 0 be such that for all x1, x2 ∈ [a, b],
|x2 − x1| ≤ δ implies |F (x2) − F (x1)| ≤ ε. Then |F (x) −
Bernn(F )(x)| ≤ ε if n > Fdiff/(εδ

2).

Lemma 2. Let F : [a, b] → R be a continuous function
satisfying the Lipschitz condition |F (x) − F (y)| < L|x − y|
for x, y ∈ [a, b]. Then |F (x)− Bernn(F )(x)| < L/(2

p
(n)).

Note that both the lemmas give an n such that the er-
ror or distance between F and Bernn(F ) is within ε. In
particular, given an ε the first lemma tells us to choose an
n > Fdiff/(εδ

2), and the second lemma tells us that a choice
of n > (L/2ε)2 would ensure that the error is within ε.



3.2 General Algorithm
Our aim is to approximate a flow F over a time interval

[0, T ] by a polynomial of very low degree, such as a linear
or a quadratic polynomial. Lemmas 1 and 2 give us a poly-
nomial of a certain degree approximating the function over
the interval [0, T ] ensuring the desired error bound. How-
ever, the degree of the polynomial can be large. Hence in-
stead of approximating by a single polynomial of high de-
gree, we present an algorithm which splits the interval [0, T ]
into smaller intervals, and approximates the flow separately
in each of the smaller intervals, thereby giving a piecewise
continuous polynomial approximation of a fixed degree.

Consider the following dynamical system.

ẋ = f(x), x ∈ Rn, x(0) ∈ X0,

where X0 is a set of initial vectors. We will assume that f
is a ‘nice’ function (for example, Lipschitz continuous) such
that it has a unique solution Φ : Rn ×R≥0 → Rn, satisfying
d/dt(Φ(x0, t)) = f(Φ(x0, t)) for all x0 ∈ X0 and t ∈ R≥0.
Note that Φ is assumed to be continuous and differentiable.

Let us fix an initial vector x0 ∈ X0, and a time T ∈ R≥0.
Let F : [0, T ] → Rn be the function F (t) = Φ(x0, t) for
all 0 ≤ t ≤ T . We will approximate each Fi by a piecewise
polynomial function Pi of degree ≤ m within an error bound
of ε. Hence ||F − P || < ε. The general algorithm is outlined
below.

Algorithm 1 Varying Time Step Algorithm

Input: m ∈ N, ε ∈ R≥0, F : [0, T ]→ R
Output: Sequence of polynomials

t := 0
while t < T do

Choose 0 < ti < T s.t.
||Bernm(F [t, t+ ti])− F [t, t+ ti]|| ≤ ε
Output Bernm(F [t, t+ ti])
t := t+ ti

end while

Starting at time t = 0, find a time 0 < t1 ≤ T such that
||Bernn(Fi[0, t1])−Fi[0, t1]|| < ε. There always exists such a
t1, since continuity of F implies that Fi[0, t1]diff can be made
arbitrarily small by taking t1 to be sufficiently small, and
therefore one can satisfy the condition Fi[0, t1]diff/εδ

2 < m
in Lemma 1. This reduces the problem to finding a piecewise
polynomial approximation of the function Fi[t1, T ], and we
proceed in the same manner to compute t2, t3, · · · . Since the
function values of the Bernstein polynomial and the function
it is approximating match at the end-point, the piecewise
polynomial function P , in any interval [0,

Pk
i=1 ti] is con-

tinuous. To ensure that the number of iterations is finite,
we need to ensure that the we make progress. This can be
guaranteed by ensuring that in each step, the ti chosen is
at least ∆, for some ∆ > 0. Note that there always exists
a ∆, which can be chosen at any step which satisfies the
condition in Lemma 1. To see this, let γ = mεδ2, where
m is the degree of the polynomials we are considering, ε is
the desired bound on approximation error, and δ is the pa-
rameter in the definition of continuity for Fi corresponding
to ε. Since Fi is continuous and bounded, there exists a
∆ > 0 such that for all t, t′ ∈ [0, T ], |t − t′| ≤ ∆ implies
|Fi(t) − Fi(t′)| ≤ γ. Hence choosing ∆ at any step ensures

that we make progress. In order to materialize the above
sketch of the algorithm, we need to be able to compute Fdiff

or some upper bound on it, which ensures progress. In the
next section, we present two methods to compute the tis for
the class of linear dynamical systems.

4. APPROXIMATION OF LINEAR DYNAM-
ICAL SYSTEMS

In this section, we consider linear dynamical systems and
present our algorithm in detail. Consider the following sys-
tem:

ẋ = Ax, x ∈ Rn, x(0) ∈ X0,

where X0 ⊆ Rn is a bounded convex polyhedron. The
solution of the above equation is given by:

Φ(x0, t) = eAtx0, x0 ∈ X0, t ∈ R≥0.

Let us define PostΦ(X, [0, T ]) = {Φ(x, t) |x ∈ X, t ∈ [0, T ]}.
We consider the problem of computing an over approxima-

tion of PostΦ(X0, [0, T ]) such that the error in the approxi-
mation is within an ε. More precisely, we wish to find a set

P̂ostΦ(X0, [0, T ]) such that P̂ostΦ(X0, [0, T ]) is an over ap-

proximation, that is, PostΦ(X0, [0, T ]) ⊆ dPostΦ(X0, [0, T ]),
and the Hausdorff distance between the two sets is bounded
by ε, that is, dH(PostΦ(X0, [0, T ]), P̂ostΦ(X0, [0, T ])) ≤ ε.

First we show that the flow function for a linear system
preserves convexity and hence it suffices to approximate only
the flows starting from the vertices of X0.

Proposition 1. Let x = α1x1 + · · · + αkxk where xi ∈
Rn and

Pk
i=1 αk = 1. Then Φ(x, t) = α1Φ(x1, t) + · · · +

αkΦ(xk, t).

Let Vertices(X0) denote the set of vertices of X0. Let us
fix a time T . Given a v ∈ Vertices(X0), let Fv : [0, T ] →
Rn be the function Fv(t) = Φ(v, t) for all t ∈ [0, T ]. For

each v ∈ Vertices(X0), let F̂v denote a function such that

||F̂v−Fv|| ≤ ε. Let R̂ = {α1F̂v1(t)+· · ·+αkF̂vk (t) |α1 +· · ·+
αk = 1, t ∈ [0, T ]}. The next lemma says that the Hausdorff

distance between the exact post set and R̂ is bounded by ε.

Lemma 3.

dH(PostΦ(X0, [0, T ]), R̂) ≤ ε.

The above proposition tells us that it suffices to approx-
imate the flows starting at the vertices of the polyhedron.
More precisely, if we approximate the flows at the vertices
within an error bound of ε in an interval [0, T ], then at any
time t ∈ [0, T ], the Hausdorff distance between the actual
and approximate sets is with ε.

In the literature, various methods have been proposed to

compute P̂ostΦ. These methods can be seen as consisting of
the following two steps.

• Depending on the ε, a time step ∆ is chosen. Let V0 =
Vertices(X0) and Vi = PostΦ(V0, [i∆, i∆]) for i > 0 be
the set of points reached from the vertices of X0 after
i time steps of size ∆. First V1 = PostΦ(V0, [∆,∆])
is computed. Then the convex hull C0 of V0 and V1

is bloated by ε, and the resulting set is enclosed by a
data structure of a certain form to obtain an overap-
proximation C′0 of PostΦ(X0, [0,∆]).



• Similarly, to obtain an overapproximation of PostΦ(X0,
[i∆, (i + 1)∆]), the convex hull Ci of Vi and Vi+1 is
bloated by ε, and enclosed in a data structure. How-
ever, instead of computing Vi directly from V0, it is
computed iteratively from Vi−1, that is, Vi is computed
from Vi−1 by a linear transformation using the matrix
e∆.

We think of the above algorithm as first computing an
approximation of the flow function, which is the piecewise
linear function obtained by joining the corresponding points
in Vis, and then enclosing the reach set given by the ap-
proximated flow function by a set of a certain form. The
above algorithms compute a piecewise linear approximation
of the flow function by dividing the interval [0, T ] into equal
intervals of size ∆. Our main contribution is a novel algo-
rithm for computing an approximation of the flow function,
which does not divide the interval uniformly, but dynami-
cally computes the next time step. The obvious advantage
is the reduction in the number of times steps, since a time
step chosen by the dynamic algorithm is always larger than
the constant time step ∆ chosen by the uniform time step
algorithm. This in turn implies that the size of the final
representation of the post set would be smaller, and the size
plays a crucial role in further analysis. However, there is
a overhead involved with the dynamic algorithm, which is
in computing the set of vertices Vis at various time points,
since these Vis can no more be computed iteratively by mul-
tiplication using a fixed matrix. Since the timesteps ∆ keep
changing, there does not exist a fixed matrix e∆ which can
be used to obtain Vi from Vi−1 for every i. So the new al-
gorithm involves computing a new matrix exponential e∆i

at each step. However, as we will see in the next section,
our experimental evaluations show that the overhead intro-
duced due to computation of a new matrix exponential at
each time step becomes negligible due to the huge decrease
in the number of steps. In other words, the cost of doing
the large number of matrix multiplications in the constant
time step algorithm is greater than the cost of computing
new matrix exponentials followed by matrix multiplications
for a small number of timesteps in the dynamic algorithm.

To compute the approximation of the flow function for
a linear dynamical system, we instantiate Algorithm 1 to
obtain an effective algorithm for linear dynamical systems.
As mentioned in the discussion of Algorithm 1, we need
to present a method to compute the tis in each step such
that progress is ensured. Next we present two methods for
computing tis.

4.1 Computing ti: First method
In this section we use Lemma 2 to compute the bound

ti. Let us fix an x0 ∈ Rn and an n × n matrix A. Let
F : [0, T ]→ Rn be the function F (t) = eAtx0. First we show
that F satisfies the Lipschitz condition, and the Lipschitz
constant can be bounded by a function of T .

Lemma 4. Let F : [0, T ]→ Rn be as defined above. Then
for each 1 ≤ i ≤ n, Fi is Lipschitz continuous with the
Lipschitz constant L = ||A||e||A||T ||x0||.

The next lemma gives us a lower bound on the time step
ti that can be chosen at each step such that the approximate
polynomial is within distance ε from the original function.

Lemma 5. Let F : [0, T ] → Rn be as defined above. For
t1 = loge(2

√
mε/||A||||x0||)/||A||, ||F [0, t1]−Bm(F [0, t1])|| ≤ ε.

Using the ti in the definition of Lemma 5 is desirable
since it gives a closed form expression for computing the
ti. However, the problem with the above expression is that
the expression being computed might not result in a positive
number in which case we are in trouble. Next we present
another method for computing lower bound for ti, which
always gives a positive answer.

4.2 Computing ti: Second method
In this section, we use Lemma 1 to compute a bound on

the tis.

Lemma 6. Let F : [0, T ] → Rn be as defined above. Let

t1 be such that e3||A||t1t1 < mε3/||A||3||x0||3. Then we have
that ||Bm(F [0, t1])− F [0, t1]|| ≤ ε.

There always exists a positive real number t1 ≤ t satis-
fying the inequality eat1t1 < b where a = 3||A|| and b =
mε3/||A||3||x0||3, since the function eaxx → 0 as x → 0.
Computing a t1 such that eat1t1 = b might not be possi-
ble, instead one can obtain an upper bound on this value.
For example, we know that t1 ≤ t. Hence we can consider
t1 = b/eat. We use the following alternative bound. If at1 <
1, then we can upper bound eat1 by 1/(1−at1). This gives us
a bound t1 < b/(1 + ab). Hence t1 < min{b/(1 + ab), 1/2a1}
is a positive bound for t1.

The algorithm for computing a piecewise polynomial ap-
proximation of a linear dynamical system is given in Algo-
rithm 2.

Algorithm 2 Post Computation Algorithm for Linear Dy-
namical Systems

Input: m ∈ N, ε ∈ R≥0, V0 ⊆Fin Rn, A ∈ Rn×n, T > 0
Output: Sequence of a set of n polynomials

Let F x : [0, T ]→ Rn be F x(t) = eAtx
for all v ∈ V0 do
t := 0
x := v
while t < T do

Choose τ1 > 0 s.t
e3||A||τ1τ1 < mε3/||A||3||x||3
Let τ2 = loge(2

√
mε/||A||||x||)/||A||

Let ti = max τ1, τ2
Output Bernm(F vj [t, t+ ti]), for each 1 ≤ j ≤ n
t := t+ ti
x := eAtv

end while
end for

4.3 Termination of the Algorithm
In each step, we take as the next time step the maxi-

mum of the values obtained by methods in Lemma 5 and
Lemma 6. This time step is always going to be positive,
since Method 2 always gives a positive answer. Next we
show that the time step we choose in any iteration has a
positive lower bound. Hence, the algorithm always termi-
nates.



Figure 1: Constant time step Algorithm

Assume that in each step of method 2, we choose ti =
min{b/(1 + ab), 1/2a1}.

b/(1 + ab) =
(mε3/(||A||3||xi||3))

(1 + (amε3/(||A||3||xi||3)))

=
(mε3/(||A||3))

(||xi||3 + (amε3/(||A||3)))

≥ (mε3/(||A||3))

(eaT ||x0||3 + (amε3/(||A||3)))

Therefore, the time steps ti are lower bounded by a posi-
tive number.

Figure 1 and Figure 4.5 illustrate the difference between
the constant step and varying step algorithms. For each al-
gorithm, the points (t, y) are plotted, where t ranges over

the times
Pi
j=0 ti, where t1, t2, · · · is the sequence of time

steps chosen by the algorithm, and y is given by eAtx. Ob-
serve that in the case of timestep varying algorithm, initially
larger steps are chosen, and when the time approaches close
to T , the timesteps taken by the constant time step algo-
rithm and the varying time step algorithm become identical.
Notice that the sampling rate of the varying time step algo-
rithm depends on the value of the derivative of the function
at various points, where as the constant time step algorithm
makes no such distinction.

4.4 Function Evaluation Errors
Observe that we need to compute the value of the func-

tions at several time points. In practice, these values can
seldom be computed exactly. One can only hope to com-
pute approximations within arbitrary error bounds. Let the
function values be computed with in an error bound of γ.
The approximate values of the samples can be thought of
as the samples of a new function F̂ such that ||F̂ − F || ≤ γ.
Given an ε, let P be the piecewise polynomial approximation
of F constructed using our algorithm, and let γ be a bound
on the error in evaluating the function F . Then the error
||P − F || ≤ ||P − F̂ ||+ ||F̂ − F || ≤ ε+ γ. Hence, by reducing
γ, we can get as precise an approximation as desired.

Figure 2: Varying time step Algorithm

4.5 Comparison with other polynomial approx-
imations

In this paper, we considered Bernstein polynomials to ap-
proximate an arbitrary function by a polynomial function.
Another popular technique to obtain polynomial approxi-
mations is to use Taylor’s series expansion of the function
and truncate the infinite sum after some points to obtain a
polynomial. There are a few caveats in using Taylor’s ap-
proximation in general. First it assumes that the function is
smooth, and the derivatives can be computed. Secondly, it
does not give a closed form expression for m, the number of
terms in the Taylor’s expansion that should be considered
to obtain an ε bound on the approximation error.

5. EXPERIMENTAL EVALUATION
In this section, we explain our experimental set up for

evaluating the performance of our algorithm and compari-
son with other methods. We implemented our algorithm is
Matlab 7.4.0, and the experiments were conducted on Mac
OS X Version 10.4.11, with a 2.16 GHz Intel Core 2 Duo pro-
cessor and 1GB SDRAM. We performed our experiments on
linear and quadratic approximations. We will report and ex-
plain our results for both the approximations in the following
sections.

5.1 Linear approximation
Our experimental evaluation of the two algorithms chooses

to be agnostic of the relative benefits of different data struc-
tures, and attempts to highlight the relative advantages of
each algorithm, independent of the chosen data structure.
No matter what the chosen data structure, the algorithms
require computing the states reached at certain time steps.
Once these points are computed, the data structure approx-
imating a convex hull of the points needs to be computed.
Thus, in our experimental evaluation we only compared the
computational costs of finding the states reached at the re-
quired times using the two algorithms. In the basic algo-
rithm, the interval size is fixed to be ∆, and then the states
reached at time ∆ are computed by multiplying initial set
of states with matrix exponential e∆, but for subsequent
times i∆ they are computed by translation that involves
only multiplication with e∆ which is evaluated only once.



Matrix ε T n m RTV RTC tmax tmin Constant
2DR 4.93E-03 1 3.34E+02 8.53E+02 1.80E-01 2.79E-02 5.54E-03 1.78E-03 1.17E-03
2DR 6.78E-02 2 1.80E+01 1.60E+03 1.77E-02 1.15E-01 1.96E-01 7.81E-02 1.25E-03
2DR 3.60E-01 5 1.20E+01 4.27E+03 1.68E-02 4.99E-01 4.83E-01 4.83E-01 1.17E-03
2DR 1.85E+00 10 9.20E+01 8.47E+03 5.64E-02 1.51E+00 4.60E-01 9.42E-03 1.18E-03
5DR 4.92E-01 1 1.00E+01 5.65E+02 1.49E-02 4.69E-02 1.23E-01 1.07E-01 1.77E-03
5DR 3.14E+00 2 1.50E+01 1.14E+03 1.96E-02 1.15E-01 1.44E-01 1.44E-01 1.76E-03
5DR 2.11E+02 5 3.30E+01 2.99E+03 2.95E-02 4.97E-01 1.57E-01 1.57E-01 1.67E-03
5DR 3.04E+05 10 6.20E+01 6.15E+03 4.81E-02 1.62E+00 1.65E-01 1.65E-01 1.63E-03
100DR 2.01E-02 1 3.70E+02 9.16E+02 4.81E+00 5.33E-01 2.76E-03 2.61E-03 1.09E-03
100DR 2.56E-02 2 3.17E+02 1.84E+03 4.42E+00 2.93E+00 6.57E-03 5.93E-03 1.09E-03
100DR 6.13E-02 5 8.20E+01 4.59E+03 1.24E+00 2.14E+01 7.69E-02 4.97E-02 1.09E-03
100DR 2.65E-01 10 1.30E+01 9.17E+03 4.05E-01 9.23E+01 8.65E-01 8.22E-01 1.09E-03

Figure 3: Random matrices

Matrix ε T n m RTV RTC tmax tmin Constant
Z2 1E-01 1 1.30E+02 7.47E+02 7.43E-02 2.55E-02 1.13E-02 5.96E-03 1.34E-03
Z2 1E-01 2 1.86E+02 6.69E+03 1.04E-01 9.95E-01 2.69E-02 5.96E-03 2.99E-04
Z2 1E-01 3 2.42E+02 4.49E+04 1.33E-01 2.78E+01 2.69E-02 5.96E-03 6.68E-05
Z5 1E-01 1 1.04E+02 5.61E+02 6.22E-02 4.00E-02 1.34E-02 7.91E-03 1.78E-03
Z5 1E-01 2 1.52E+02 5.02E+03 8.75E-02 1.04E+00 3.82E-02 7.91E-03 3.98E-04
Z5 1E-01 3 1.87E+02 3.38E+04 1.07E-01 4.33E+01 3.82E-02 7.91E-03 8.89E-05
Nav 1E+00 1 7.00E+00 5.00E+00 1.47E-02 2.30E-02 1.92E-01 1.92E-01 1.92E-01
Nav 1E+00 2 1.20E+01 9.30E+01 1.65E-02 2.30E-02 1.92E-01 1.92E-01 2.14E-02
Nav 1E+00 3 1.70E+01 6.37E+03 1.95E-02 1.45E+00 1.92E-01 1.92E-01 4.71E-04

Figure 4: Standard Examples for total time T = 1, 2, 3

In contrast, in our algorithm, the states reached at each
of the designated time steps is computed from scratch us-
ing matrix exponentials, and the size of the next interval is
found dynamically. Recall from Section 4, that when the
initial set is a convex polyhedron, reach set computation
involves computing this approximated flow for each vertex.
Thus, in our experimental evaluation, we start from a sin-
gle point, as this will faithfully reflect the costs of starting
from a polyhedron. Finally, the error bound chosen for the
varying time step algorithm was the one guaranteed by the
fixed time step algorithm.

To determine feasibility of the algorithms, we first ran
them on some randomly generated matrices. The entries
of the matrices were random values in the interval [−1, 1].
The results of our experiments are shown in Figure 3. The
rows labelled 2DR report results for 2 × 2 matrices, those
labelled 5DR for 5 × 5 matrices, and finally those labelled
100DR for 100 × 100 matrices. The columns reported in
the table are as follows: ε gives the error bound; T gives
the time bound chosen for the experiment; m and n are the
number of sub-intervals used by the constant timestep algo-
rithm and varying timestep algorithms, respectively; RTC
and RTV are the running times of the constant timestep
and varying timestep algorithms, respectively; tmax and tmin

are the largest and smallest time intervals considered by the
varying timestep algorithm; “Constant” is the size of the in-
terval used by the constant timestep algorithm. For these
matrices, we chose a time step for the constant timestep al-
gorithm to be of the order of 10−3, and used the resulting
error bound as ε. The results show that the varying timestep
algorithm is scalable and has a running time comparable to

the constant timestep algorithm; in many cases the vary-
ing timestep algorithm is faster by 2 orders of magnitude.
The number of sub-intervals used by the varying timestep
algorithm (n) is always less than that used by the constant
timestep method (m) by either a magnitude or two orders
of magnitude. The other surprising observation is that the
smallest time interval used by the varying timestep method
is in all cases larger than the interval used by the constant
timestep algorithm.

We also experimented on benchmark examples considered
in [13]. Nav is the navigation benchmark first suggested
in [12], while Z2 and Z5 are the 2 dimensional and 5 dimen-
sional examples from [13]. The matrices describing their
dynamics is as follows.

Nav =

2664
0 0 1 0
0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

3775 , Z2 =

»
−0.1 −0.4
0.4 −0.1

–

Z5 =

26664
−0.1 −0.4 0 0 0
0.4 −0.1 0 0 0
0 0 −0.3 0.1 0
0 0 −0.1 −0.3 0
0 0 0 0 −0.2

37775
We tried to study the effect of increasing the time bound T
on the running time of these algorithms and so we considered
T = 1, 2, 3. Figure 4 shows our results for these benchmark
examples and varying time. It shows that as T increases, the
varying timestep algorithm’s relative performance improves
both in terms of the number of sub-intervals considered and



Matrix tmin tmax RTV n tQmin tQmax RTQ nQ
Z2 5.96E-03 1.13E-02 9.88E-02 1.30E+02 7.21E-03 2.20E-02 4.74E-02 6.70E+01
Z2 5.96E-03 2.69E-02 1.28E-01 1.86E+02 1.26E-05 5.10E-02 5.98E-02 9.60E+01
Z2 1.00E-03 2.69E-02 1.60E-01 2.42E+02 1.18E-02 5.10E-02 7.49E-02 1.24E+02
Z5 2.48E-03 1.34E-02 1.21E-01 1.04E+02 1.56E-02 2.55E-02 4.10E-02 5.30E+01
Z5 1.60E-03 3.82E-02 1.12E-01 1.52E+02 1.56E-02 6.45E-02 5.17E-02 7.80E+01
Z5 7.91E-03 3.82E-02 1.31E-01 1.87E+02 1.56E-02 7.02E-02 6.25E-02 9.70E+01
Nav 1.92E-01 1.92E-01 3.54E-02 7.00E+00 1.92E-01 1.92E-01 1.10E-02 7.00E+00
Nav 1.92E-01 1.92E-01 3.84E-02 1.20E+01 1.92E-01 1.92E-01 1.44E-02 1.20E+01
Nav 1.92E-01 1.92E-01 4.09E-02 1.70E+01 1.92E-01 1.92E-01 1.57E-02 1.70E+01

Figure 5: Comparison of Quadratic and Linear Approximations

the running time, with the gap increasing to as much two
orders of magnitude.

5.2 Quadratic approximation
We also implemented the varying time step algorithm for

approximation by piecewise quadratic approximation. The-
oretically, a single timestep of the quadratic approximation
could be twice as much as that of the linear approxima-
tion. Interestingly, this could lead to a huge reduction in the
number of total time steps. Consider an exponentially grow-
ing function, for which the time steps chosen by the linear
approximation decrease by a constant factor in consecutive
time steps. For example, consider the following sequence
of timesteps 1, 1/2, 1/22, · · · , 1/2k. A doubling of the time
step in the quadratic approximation could lead to the skip-
ping of k timesteps in the above example. However, we did
not observe this phenomenon in our experiments which are
tabulated in Figure 5. The columns tmin, tmax, RTV , and
n report the smallest time interval, largest time interval,
running time, and number of intervals when using a linear
approximations; the columns with superscript or subscript
Q refer to the same quantities for the quadratic approxima-
tion. The improvement for the quadratic approximation was
not as dramatic as we hoped it might, and in the best case
was better by a factor of 2.

6. CONCLUSIONS
We presented a new algorithm for approximating the set of

states reachable within time bound T in a linear dynamical
system to within an arbitrary error bound ε. The main inno-
vations in our algorithm over previous approaches is that the
interval [0, T ] is dynamically subdivided into unequal sized
intervals and then the flow in each interval is approximated
by a polynomial of fixed degree. Our experimental evalua-
tion of our algorithm reveals that the approach is scalable
to high dimensional system, and is both faster and yields
fewer sub-intervals than previous approaches that consid-
ered statically dividing the interval [0, T ] into equal sized
sub-intervals.
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9. APPENDIX

9.1 Proofs of the upper bounds

9.1.1 Proof of Lemma 4

Proof. First let us recall the following identity. Given
n× n matrices X and Y ,

||eX+Y − eX || ≤ ||Y ||e||X||e||Y ||.

W.l.o.g assume t2 > t1.

||eAt2x0 − eAt1x0||
||t2 − t1||

=
||eAt1+A(t2−t1)x0 − eAt1x0||

|t2 − t1|

≤ ||A(t2 − t1)||e||At1||e||A(t2−t1)||||x0||
|t2 − t1|

=
||A|||t2 − t1|e||A|||t1|e||A|||t2−t1|||x0||

|t2 − t1|

= ||A||e||A||e(|t1|+|t2−t1|)||x0||

= ||A||e||A||T ||x0||

L ≥ max
t1,t2

||eAt2x0 − eAt1x0||
||t2 − t1||

≥ ||A||e||A||T ||x0||

9.1.2 Proof of Lemma 5

Proof. The Lipschitz constant L for the function F [0, t1]

is given by L = ||A||e||A||t1 ||x0|| from Lemma 4.

||F [0, t1]−Bm(F [0, t1])|| < L/(2
√
m) from Lemma 2.

L/(2
√
m) ≤ ε implies ||A||e||A||t1 ||x0|| ≤ 2

√
mε.

Hence for t1 ≤ loge(2
√
mε/||A||||x0||)/||A||,

||F [0, t1]−Bn(F [0, t1])|| ≤ ε.



9.1.3 Proof of Lemma 6

Proof. From Lemma 1, we have that ||Bn(F [0, t1]) −
F [0, t1]|| ≤ ε if n > Fdiff/εδ

2.
We will find bounds on the values of Fdiff and δ as a func-

tion of t1.

Fdiff = max
x,y∈[0,t1]

||F (x)− F (y)||

= max
x,y∈[0,t1]

||eAxx0 − eAyx0|| ≤ ||A||e||A||t1 ||x0||t1

(See proof of Lemma 5.)
Next we need to find a lower bound on δ such that

∀x, y ∈ [0, t1], |x− y| ≤ δ =⇒ ||F (x)− F (y)|| ≤ ε.

Or equivalently

max
x,y∈[0,t1],|x−y|≤δ

||F (x)− F (y)|| ≤ ε.

However,

max
x,y∈[0,t1],|x−y|≤δ

||F (x)− F (y)|| ≤ ||A||e||A||t1 ||x0||δ

(again from the proof of Lemma 5).
Hence it suffices to choose a δ which ensures

||A||e||A||t1 ||x0||δ ≤ ε.

Hence we can choose

δ = ε/(||A||e||A||t1 ||x0||).

We want to choose a t1 so as to satisfy m > Fdiff/εδ
2. It

suffices to satisfy

m >
||A||e||A||t1 ||x0||t1)

(ε(ε/(||A||e||A||t1 ||x0||))2)
.

Or,

mε3 > ||A||3e3||A||t1 ||x0||3t1.

For t1 such that

e3||A||t1t1 < nε3/||A||3||x0||3,

we have ||F (x)−Bm(F (x))|| ≤ ε for all 0 ≤ x ≤ t1.

9.1.4 Proof of Lemma 3

Proof. Given x ∈ PostΦ(X0, [0, T ]) we will find an x′ ∈
R̂ such that ||x− x′|| ≤ ε and vice versa.

Let x ∈ PostΦ(X0, [0, T ]).

Then x = eAtx0 for some x0 ∈ X0 and t ∈ T .

Let Vertices(X0) = {v1, · · · , vk}.

Since X0 is a bounded convex polyhedron,

x0 = α1v1 + · · ·+ αkvk,

for some α1 + · · ·+ αk = 1.

Then x = eAtx0 = eAt(α1v1 + · · ·+ αkvk)

= (α1e
Atv1 + · · ·+ αke

Atvk).

Let x′ = α1F̂v1(t) + · · ·+ αkF̂vk (t).

Then |x− x′| =

|(α1e
Atv1 + · · ·+ αke

Atvk)− (α1F̂v1(t) + · · ·+ αkF̂vk (t))|

≤ α1|eAtv1 − F̂v1(t)|+ · · ·+ αk|eAtvk − hatFvk (t)|

≤ α1ε+ · · ·+ αkε = ε.

Similarly given an x ∈ R̂, we can find a x′ ∈ PostΦ(X0, [0, T ])
such that |x− x′| ≤ ε.


