
Design and Evaluation of a Multiagent Autonomic Information System°

Walamitien H. Oyenan and Scott A. DeLoach
Department of Computing & Information Sciences, Kansas State University

{oyenan, sdeloach}@ksu.edu

° This work was supported by grants from the US National Science Foundation (0347545) and the US Air Force Office of Scientific
Research (FA9550-06-1-0058).

Abstract
The goal of an autonomic system is to self-manage

itself and adjust its actions in the face of environmental
changes. In this paper, we adopt a multiagent approach
to developing an Autonomic Information System. The aim
of this Autonomic Information System (AIS) is to provide
an information system that can adjust its processing
algorithms and/or information sources to provide
required information at various levels of efficiency and
effectiveness. Our approach to developing autonomic
multiagent systems is based on the Organization Model
for Adaptive Computational Systems. We describe the
design of one particular autonomic system, the AIS, and
illustrate how this system fulfills certain desired
autonomic properties. We also evaluate the performance
of our autonomic system by comparing it to a non-
autonomic system.

1. Introduction
The goal of autonomic computing is to create new
systems that are able to manage themselves. This requires
such systems to have the ability to self-configure, self-
optimize, self protect, and self-heal [4, 5, 6, 10]. They
must adapt to environmental changes and strive to
improve their performance over time [5]. As systems
become increasingly complex, they are expected to handle
this complexity on their own. Therefore, it is crucial that
they exhibit autonomic behavior. In this paper, we adopt a
multiagent approach to developing an Autonomic
Information System as agents are autonomous and map
naturally to the autonomic computing principles.

The goal of our Autonomic Information System is to
provide an information system that can adjust its
processing algorithms and/or information sources to
provide required information at various levels of
efficiency and effectiveness. In this system, various types
of sensors at different locations are used to detect enemy
vehicles. These sensors are subject to failure and
erroneous outputs and typically have a delay in getting the
information categorized. When sensor data of interest is
available, it is fused with other related information to
answer queries from the commander. A field commander
uses the system interface to generate two types of queries:
transient and persistent. Transient queries are executed
only once whereas persistent queries are carried out

repeatedly until canceled. To overcome the loss of sensors
and continue to provide the required information, the
Autonomic Information System (AIS) needs to adapt by
replacing the failed sensors and adapting the information
processing adequately without the intervention of the
user.

The purpose of this paper is to design an autonomic
system based on the Organization Model for Adaptive
Computational System (OMACS), which provides the
system with enough knowledge to be able to self-
organize. OMACS is used to model the system we want
to develop. Once the system has been modeled, we use
our proposed generic agent architecture to create a
Multiagent Autonomic System. We demonstrate one
particular autonomic system, the AIS, and illustrate how it
realizes autonomic behavior.

The remainder of this paper is organized as follows.
First, we present other work related to autonomic
multiagent systems in Section 2. Next, we present our
AIS multiagent organization in Section 3 and 4 followed
by the system architecture in Section 5. In Section 6, we
show the autonomic properties of the AIS via a scenario.
A performance evaluation of the system is given in
Section 7 while Section 8 concludes and discusses future
work.

2. Related Work
There have been several multiagent approaches used to
build autonomic systems. Bigus et al. [12] describes a set
of agent component libraries that can be used to build
autonomic systems, which extend the ABLE platform by
adding external agents to manage and control the system.
In [15], Tesauro et al. presents an architecture in which
agents have predefined responsibilities which allow the
system to exhibits certain autonomic behaviors. In [13],
Kumar and Cohen describe an adaptive agent architecture
in which broker agents share the same knowledge of the
system and are thereby aware of any agent failure. Sterritt
and Bustard [14], propose design template in which
agents monitor the system using heartbeat signals.

All these works are similar to ours in the sense that
agents have system-level knowledge that allows them to
manage themselves in unpredictable environments.
However, in our approach, instead of embedding this
system-level knowledge in the architecture, we design

systems based on the underlying OMACS model, which
allows us to reuse the agent architecture and
systematically develop autonomic applications. Actually,
we are also in the process of developing an autonomic
sensor network application using the ideas outlined in this
paper. In addition, we have developed the Organization-
based Multiagent Systems Engineering methodology [2]
to support the development of OMACS-based systems.

3. Overview of OMACS
OMACS [2] is a metamodel for agent organizations. It
defines the required organizational structure that allows
multiagent teams to autonomously reconfigure at runtime,
thus enabling them to cope with unpredictable situations
in a dynamic environment. Specifically, OMACS
specifies the type of knowledge required for a multiagent
system to know itself and be able to reason about its own
status. Hence, multiagent teams are not limited by a
predefined set of configurations and can have the
appropriate information about their team, enabling them
to reconfigure in order to achieve their team goals more
efficiently and effectively. During the design of an
OMACS-based system, the designer only provides high-
level guidance about the organization, which will then be
able to self-configure based on the current goals and team
capabilities. These characteristics make OMACS ideal for
designing autonomic multiagent systems. OMACS
defines an organization as a set of goals (G) that the team
is attempting to accomplish, a set of roles (R) that must be
played to achieve those goals, a set of capabilities (C)
required to play those roles, and a set of agents (A) who
are assigned to roles in order to achieve organization
goals. At runtime, the assignments of agents to play roles
to achieve goals represent the key functionality that
allows the system to be autonomic.

4. The AIS Organization
Our Multiagent Autonomic System is an organization-
based multiagent system [1] built upon OMACS. Hence,
to implement the system, we need to design the goals,
roles, capabilities, and agent types defined in OMACS.

4.1. Goals
Goals are a high level description of what the system is
supposed to be doing [9]. We use a goal model to
represent system-level goals; this model includes the goal
definitions, goal decomposition, and the relationship
between the goals and their subgoals, which are either
conjunctive or disjunctive [7]. Typically, each
organization has a top-level goal that is decomposed into
refined subgoals. Eventually, this top-level goal is refined
into a set of leaf goals that will be actually pursued by the
organization. The set of all organizational goals is
denoted as G. The active goal set, Ga, is the current set of

goals that an organization is trying to achieve. Ga changes
as new goals are inserted or existing goals are achieved.

To capture the dynamic nature of OMACS-based
systems, there is a time-based relationship that exists
between goals. We say goal g1 precedes goal g2, if g1
must be satisfied before g2 can become active. This
allows the organization to work on one part of the goal
tree at a time. During the pursuit of specific goals, events
may occur that cause the instantiation of new goals.
Instantiated goals may be parameterized to allow a
context sensitive meaning. If an event can occur during
pursuit of goal g1 that instantiates goal g2, we say g1
triggers g2.

The main goal of the application is to answer each
query presented to the system. From the requirements, we
have derived the goal tree structure presented in Figure 1.
The boxes represent the goals and their parameters. The
arrows indicate triggers and their parameters. The dashed
arrows represent negative triggers, which allow for the
cancellation of a goal and all its subgoals. As the queries
are not predefined, most of the goals in the systems will
be triggered based on the query. These parameterized
goals will be instantiated and associated to specific
queries. Conjunctive sub-goals are connected to their
parents by a diamond shaped connector (◊) while
disjunctive sub-goals are connected to their parent by a
triangle shaped connector (∆). The leaf goals that the
organization must achieve are goal G1 to goal G6.

4.2. Roles
Roles are a high level description of how to achieve some
particular goals [3]. In OMACS, each organization has a
set of roles that it can use to achieve its goals. The
achieves function, which associates a score between 0 and
1 to each <goal, role> pair, tells how well that particular

Figure 1. AIS Goal Model

role can be used to achieve that goal (1 being the
maximum score). In addition, each role requires a set of
capabilities, which are inherent to particular agents.
Agents must possess all the required capabilities to be
considered as a potential candidate to assume that role.

For each goal in this organization, we have created a
role that can achieve it. Following are the roles we have
defined for the AIS organization, along with the goals
they can achieve and a description of their behavior.

R1 – Query Processor (G1): Periodically gets new
queries from the user. The role triggers an event to notify
the system that a new query has been entered.

R2 – Sensors Locator (G2): Query the sensor database
in order to find all sensors available in the area specified
by the parameter of the goal it achieves. Then it executes
an algorithm to find the best coverage based on the set of
available sensors. For each sensor selected, an event is
triggered (event ‘found(S:Sensor)’). This event will result
in the organization attempting to find an agent capable of
reading the selected sensor. After all sensors have been
selected, the role triggers an event (event ‘mergeSimilar’
or ‘mergeDiverse’) to notify the organization that it has
found all sensors capable of providing data for the query.

R3 – Sensor Reader (G3): Read the data from the
sensor given in parameter of the Read Sensor goal. This
role interacts with the battlefield simulator in order to get
the appropriate data. The data will be sent to any agents
(typically a data merger agent) interested in those data.

R4 – Data Merger Diverse (G4): Merge the data
collected from various sensors covering the area of
interest. This role uses a processing algorithm that allows
it to merge data coming from sensors of different type.

R5 – Data Merger Similar (G5): Behave like the
previous role. However, as oppose to the previous role,
this role uses a processing algorithm that allows it to
efficiently merge data coming from sensors of the same
type. Thus, this role will not be able to process data from
different sources.

R6 – Result Interface (G6): Return the results of the
query to the GUI for displaying to the user.

4.3. Capabilities
In OMACS, capabilities are fundamental in determining
which agents can be assigned to what roles in the
organization [8]. Agent may possess two types of
capabilities: hardware capabilities like actuator or
effectors, and software capabilities like computational
algorithms or resources usage.

The capabilities identified for the AIS and the roles
that require them are listed below.

C1 – User Interaction (R1, R6): Used to interact with
the GUI.

C2 – Coverage Processing (R2): Used to compute the
optimal set of sensors that has the maximum coverage of
the area of interest and that can satisfy the efficiency and
accuracy constraints.

C3 – Sensor Interaction <sensor> (R3): Used to
interact with the actual sensors on the battlefield.

C4 – Data Merging Diverse (R4): Provide
computational algorithms to merge data coming from
diverse type of sensors.

C5 – Data Merging Similar (R5): Provide fast
computational algorithms to merge data coming from
similar sources only.

C6 – Coordination (R3, R4, R5, R6): Provide the
ability to communicate with other agents.

For simplicity, we designed our system so all
capabilities equally are important in accomplishing a role.

4.4. Agents
The agents represent the autonomic elements of the
system. Within an OMACS organization, agents have the
ability to communicate with each other, accept
assignments to play roles that match their capabilities, and
work to achieve their assigned goals. Each agent is
responsible for managing its own state and its interactions
with the environment and with other agents. Once the
system provides goals and roles, the agents are expected
to determine themselves what behavior is necessary to
fulfill them. For that, a plan on how to play a role needs to
be provided at design time either by the role or the agent
designer. In OMACS, a tuple <a,r,g> represents the
assignment of agent a to play role r in order to achieve
goal g. The assignment set Φ represents the set of all the
current assignments in the organization. To capture a
given agent’s capabilities, OMACS defines a possesses
function, which maps each <agent, capability> pair to a
value between 0 and 1, describing the quality of the
capability possessed by an agent (1 representing the
maximum quality).

We define a set of agent types capable of playing at
least one role in the organization. To simplify the
application, we assume that an agent either possesses a
capability or not (possesses score is either 1 or 0). The
agent types and their capabilities are listed below.

QA – Query Agent (C1)
SFA – Sensor Finder Agent (C2)
DSA – Data Sensor Agent (C3, C6)
MAD – Merger Agent Diverse (C1, C4, C6)
MAS – Merger Agent Similar (C1, C5, C6)

5. Generic Agent Architecture
In this section, we present the generic agent architecture
of the AIS agents, which represent the autonomic
elements of our system [6]. As Figure 2 shows, an AIS
agent typically consists of two components: the Execution
Component (EC) and the Control Component (CC).

The EC represents the non-autonomic part of the
agent. It corresponds to the application specific part of the
agent. It is notified by its CC about what role to play in

the organization. Once it has been assigned a role, the EC
plays that role according to a predefined plan provided at
design time either by the role or the agent designer.

The CC represents the autonomic part of the agent. In
general, the more sophisticated this component, the more
autonomy the system will display. Typically, the CC is an
intelligent component in charge of all organization related
tasks. Depending on design strategies, it can have a partial
or total knowledge of the organization structure. We have
design a fixed communication interface between the CC
and the EC. This gives us the flexibility to plug several
different CCs designs into our application without having
to modify other application-specific components (the
ECs). Therefore, Control Components are generic and can
be reused for any other autonomic applications as long as
the communication interface is respected.

In general, a CC operates based on its knowledge and
the information collected from other agents via their CCs.
It can decide to reconfigure the organization by including
or canceling goals in the organization, or by modifying
the current assignments. This reconfiguration process can
be distributed or centralized. A distributed reconfiguration
would involve a deliberation process between all the CCs
in order to reach a consensus about the next state of the
organization. However, in our current implementation, we
have opted for a centralized approach in which all CCs
report to one particular CC that will then have all the
knowledge to make appropriate decisions. To differentiate
with other CCs, we call this particular CC the
Organization Master (OM). Therefore, the OM possesses
all the organizational knowledge and is in charge of all
the organization-related tasks (Figure 2). The OM reasons
about the current state of the organization and once it
reaches a decision about a new configuration, it notifies
all the CCs that are affected by this reconfiguration. This
autonomous reasoning is based on the underlying
OMACS architecture and results in a reconfiguration
which is fundamental in achieving the autonomic
properties described in the following section.

6. Autonomic properties of the AIS
In this section, we present a scenario that exemplifies
some of the autonomic behaviors of the AIS. To adapt to
a variety of unpredictable situations, our AIS organization
is able to detect changes in the performance of the overall
organization (self-monitoring) and modify its structure
accordingly (self-adjusting). Many of them are changes
within the environment; however, some changes occur
within the organization itself (e.g., capability failure or
goal completion). Hence, the AIS is not only aware of its
environment but it is also aware of its own state (self-
aware). These self-* properties of the AIS are facilitated
by our use of OMACS, which provides all the necessary
knowledge for a self-managing system.

6.1. AIS Scenario
To demonstrate the AIS system, we use a simulated
battlefield with sensors and enemy targets. In our
battlefield simulator, there are five different types of
vehicles that the system is trying to locate and identify:
truck, halftrack, tank, artillery, and launcher. For the
specific scenario described in this paper, we have defined
two types of sensors: ground sensors and airborne
automatic target recognition (ATR) sensors. The
screenshot in Figure 3 shows the simulated battlefield
along with the sensors and enemy targets. There are four
ground sensors (S1, S2, S3, S4) and one ATR sensor (S5).
There are also five enemy vehicles. We assume that the
system is only trying to answer one persistent query and

Figure 2. Generic Agent Architecture

Figure 3. Battlefield Map

omit the query parameter for goals and triggers. The
persistent query is: “Show the location and type of all
enemy vehicles in the selected area” (the area selected is
defined by a rectangle in Figure 3).

6.2. Initialization
For this scenario, we have created one agent for each
agent type except for the agent type DSA for which one
DSA agent has been created for each sensor in the
battlefield. Agents are named after their types and DSA
agents are numbered to match their sensor number. At
initialization, all the goals that have no predecessors and
do not require any triggers are inserted in Ga (the active
goal set) and thereby pursued by the organization. Based
on the goal model (Figure 1), only goal G1 is active
initially. Once G1 is active, the OM chooses the best role
to achieve G1. R1 will be chosen to achieve G1 because
the pair <G1,R1> has the highest achieves score. Then the
organization chooses the Query Agent QA to play R1.
This choice is motivated by the fact that A1 possess all
the required capabilities to play R1. Figure 4 shows the
successive states of the organization after the occurrence
of events. States contain the active goal set (Ga) and the
set of assignments (Ф). The initial assignment we have
just described corresponds to State 1 in Figure 4.

Once the QA retrieves the query from the GUI, it
triggers an event start(Query). This trigger results in the
activation of G2. Upon this activation, the system must
reconfigure itself to achieve this new active goal. By
taking the best role and agent to achieve goal G2, the
Sensor Finder Agent (SFA) is assigned to play role R2 to
achieve goal G2 (State 2).

When the query has been retrieved, the QA agent
terminates by sending an achieved message to the OM,
which causes the goal and its related assignment to be
removed from Ga and Φ. Next, the SFA agent chooses
sensors S1, S2, S3 for the query as those sensors
maximize the area of interest coverage. The following
events are then triggered: found(S1), found (S2),
found(S3). Each found event instantiates a parameterized
goal G3 having the parameter of the trigger. In our case,
goals G3(S1), G3(S2), and G3(S3) become active, which
again requires a reconfiguration with (DSA1,R3,G3(S1)),
(DSA2,R3,G3(S2)), and (DSA3,R3,G3(S3)) being
inserted into Φ (State 3).

As all the sensors found by the SFA agent are the same
type, an event mergeSimilar(<S1,S2,S3>) is triggered,
which results in the activation of the parameterized goal
G5(<S1,S2,S3>). After computing the best assignment,
the assignment of the Merger Agent Similar (MAS) to
play role R5 to achieve G5 is chosen (State 4).

Once all the events have been triggered, the SFA agent
notifies the OM that it has successfully completed its role
by sending an achieved message. At this point, the MAS
agent starts getting data from the DSA agents and merges

them to extract the necessary information. When the
results are ready, the MAS agent will then trigger a result
event, which will result in the activation of G6. As the
MAS agent has the capability to interact with the GUI, it
plays role R6 to achieve goal G6 and sends the results to
the GUI (State 5). When a query update is required, the
MAS agent coordinates with DSA agents to get new data.

The results report a coverage of a 100% of the area of
interest and the system effectively detected all three
targets in the selected area: Tank at 29,40, Truck at 20,40
and Launcher at 36,47.

This scenario shows an important part of the
autonomic system: self-configuration. The system is able
to reconfigure itself when new goals appear in the
organization. Every newly activated goal in the
organization requires the AIS to take action in order to
achieve this new goal. Our autonomic system is also
capable of self-optimizing in the case of a goal
completion. The achievement of a goal can free an agent
to take on a new role and goal assignment. When this
occurs, the organization may make new assignments in
order to optimize the performance of the system.

6.3. Sensors Failure
The AIS simulator allows us to fail specific sensors. If we
make S2 fail, the corresponding DSA agent (DSA2),
which is the only agent capable of playing R3 to achieve
G3(S2), can no longer achieve its goal. As a result, the
MAS agent, which was coordinating with the DSA2 agent
to gather the data, interrupts its task and generates a
negative trigger failure and a trigger start(query). The
negative trigger causes all the goals related to that query
to be removed, resulting in the cancellation of all their
current assignments. Thus, goals G3(S1), G3(S2),
G3(S3), G5(〈S1, S2, S3〉) are all removed. The
start(query) event causes the activation of a new instance
of goal G2 that will be achieved by the SFA agent playing
role R2. Taking into account the loss of capability of the
DSA2 agent, the SFA agent selects sensors S1, S3, S5 as

Figure 4. Organization States

the new optimal set of sensors for the query. The SFA
agent then triggers the following events: found(S1),
found(S3), found(S5) which result in the activation of goal
G3(S1), G3(S3), and G3(S5). As this set of sensors
contains sensors of different types (S1, S3 are ground
sensors whereas S5 is an ATR sensor), the SFA agent
triggers an event mergeDiverse(<S1, S3, S5>), which
results in the activation of goal G4(〈S1, S3, S5〉).

To achieve this new goal, the system chooses role R4,
which is played by the Merger Agent Diverse (MAD).
Then, the SFA sends an achieved message to the OM and
terminates. The system then continues its execution as
described in the previous section, except that the merger
in charge of the query is now the MAD agent. As the
coverage provided by the new set of sensors is also 100%,
the AIS detects all the enemies in the area of interest:
Tank at 29,40, Truck at 20,40 and Launcher at 36,47.

Therefore, by effectively detecting the sensor that
failed and replacing it, the AIS has demonstrated its self-
healing capability. The failure triggered a reconfiguration
of the system to allow sensor reading tasks to be
redistributed among all the DSA agents still operational
and capable of covering the area of interest. Through this
reconfiguration, the DSA5 agent has replaced the DSA2
agent that failed. In addition, during this scenario, an
illustration of the AIS self-optimizing behavior has also
occurred when the AIS organization has decided to
replace the MAS agent, which was merging the data prior
to the failure, by the MAD agent in order to insure a
better performance. Hence, even though a loss of a sensor
used to provide information for the query has occurred,
the AIS was able to reconfigure itself and maintain the
flow of information without the intervention of the user.

7. Experimental Results
To evaluate the performance of our autonomic system, we
performed 100 persistent queries executed 20 times each.
We selected the number of sensors failures which were
injected in the system almost simultaneously two minutes
after system initialization.

Our first sets of experiments attempted to evaluate the
system robustness. We created a battlefield containing 40
sensors at fixed locations and 100 merger agents. The
sensors were placed such that each point in the area of
interest was covered by at least two sensors. For each run,
we submitted 100 persistent queries and the experiment
ran until each query had been executed 20 times.
Experiments were run on both our autonomic system and
a non-autonomic system that we simulated. Basically,
once the queries were submitted, both systems chose the
optimal set of Data Sensor Agent (DSA) to provide
maximum coverage. However, when a DSA failed, the
non-autonomic system ignored the failure and continued
to provide results whereas the autonomic system
reconfigured. The robustness of the system was measured

in terms of the average coverage obtained at the end of
the experiment.

As expected, the results, as shown in Figure 5, clearly
indicate that for any failure rate, the autonomic system
was significantly more robust. Observe that after 30%
failure rate, the autonomic system was still able to provide
a coverage of 100% whereas this coverage had dropped to
75% for the non-autonomic system. However, when too
many sensors were lost (around 90%), the coverage
provided by both system was very close as the autonomic
system could not find any other sensors to replace the
failed sensors. On average, the autonomic system
achieved 25% more coverage than its counterpart.

In our second set of experiments, we were interested in
characterizing the cost of reconfiguration in term of the
number of messages sent by the agents. As in the first
experiment, we used 40 data sensor agents and 100
merger agents trying to answer 100 persistent queries.
The results in Figure 6 show that for the non-autonomic
system, the number of messages decreased as the failure
rate increased. This is due to the fact that as more sensors
fail, the system interacts with less data sensor agents
resulting in fewer messages. For the autonomic system,
we expected a monotonically increasing function due to
the messages involved in an increasing number of
reconfigurations. However, the number of messages only

Figure 5 : Comparison of area coverage

Figure 6 : Comparison of number of messages sent

increased until we reached a failure rate of 30% and then
decreased. These results suggest that before the 30%
failure rate, the number of reconfiguration messages was
larger than the number of messages generated by sensors
prior to their failure. As more sensors are lost (30%
failure rate and larger), the increase in messages due to
reconfiguration is completely hindered by the reduction in
messages due to the decreased number of sensor
interactions, globally resulting in less messages sent in the
system. Overall, the autonomic system generated
approximately 50% more messages.

Our final set of experiments attempted to confirm the
influence of the number of data sensor agents on system
performance. We ran the previous experiments with 3
different numbers of data sensor agents: 20, 30 and 80.
For each set, we measured the number of messages sent at
different failure rates. The results are shown in Figure 7.
We note that there is a direct correlation between the
number of data sensor agents and the number of message
sent. However, as the number of data sensor agents
doubles, the number of messages only increases by a
constant factor. This is an important result which ensures
an effective scalability of our system.

8. Conclusions and Future Work
We have described a multiagent approach for building an
Autonomic Information System. Our approach takes
advantage of OMACS, which fits well in the autonomic
computing perspective and allows autonomic systems to
achieve many self-* properties. Through a specific
scenario, we have illustrated the self-configuring, self-
optimizing, self-healing and self-protecting properties of
our autonomic information system. As a result of these
autonomic properties, the AIS can reason about system
goals, recover from failures, recognize and prevent
undesirable behaviors and optimize performance without
disrupting the flow of information and requiring the

intervention of the user. Finally, we have shown
experimentally that our autonomic information system
was more robust than a non-autonomic version.

In future work, we are investigating ways to allow a
distributed reconfiguration, as oppose to the centralized
approach of this paper. This would allow all the agents to
participate in the reconfiguration process, resulting in a
more robust autonomic system.

9. References
[1] P.M Blau, and W.R Scott, “Formal Organizations”,

Chandler, San Francisco, CA, 1962, 194-22.
[2] S.A. DeLoach, W.H. Oyenan, “An Organizational Model

and Dynamic Goal Model for Autonomous, Adaptive
Systems,” Multiagent & Cooperative Robotics Laboratory
TR MACR-TR-2006-01. Kansas State Univ. March 2006.

[3] J. Ferber, O. Gutknecht, C.M. Jonker, J.P. Müller, and J.
Treur, “Organization Models and Behavioral Requirements
Specification for Multi-Agent Systems”, Proc. of the 10th
European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Lecture Notes in AI, Springer, 2002.

[4] A.G. Ganek and T. A. Corbi, “The dawning of the
autonomic computing era”, IBM Systems Journal, Vol 42,
No 1, 2003, pp. 5-18

[5] P. Horn, “Autonomic computing: IBM perspective on the
state of information technology”, IBM T.J. Watson Labs,
NY, 2001 (http://www.research.ibm.com/autonomic/)

[6] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing”, Computer, 36(1):41–50, 2003.

[7] A. van Lamsweerde, R. Darimont, E. Letier, “Managing
conflicts in goal-driven requirements engineering”, IEEE
Trans on Software Engineering. 24(11), pp 908-926, 1998.

[8] E. Matson, S. DeLoach, “Capability in Organization Based
Multi-agent Systems”, Proceedings of the Intelligent and
Computer Systems Conference, 2003.

[9] Russell, S. and Norvig, P. “Artificial Intelligence a Modern
Approach”, 2nd Ed. Pearson Education, Inc., 2003.

[10] R. Sterritt, “Towards Autonomic Computing: Effective
Event Management”, Proceedings of the 27th Annual
IEEE/NASA Software Engineering Workshop, Greenbelt,
MD, Dec. 2002. pp 40-47.

[11] C. Zhong, “An Investigation of Reorganization
Algorithms,” MS Thesis, Kansas State University, 2006.

[12] J. P. Bigus et al., “ABLE: A toolkit for building multiagent
autonomic systems”, IBM Sys Jnl, Vol. 41, No. 3, 2002.

[13] S. Kumar, P. Cohen, “Towards a Fault-Tolerant Multi-
Agent System Architecture”, Proceedings of the Fourth
International Conference on Autonomous Agents,
Barcelona, Spain, 2000.

[14] R. Sterritt, D. Bustard, “Towards an Autonomic Computing
Environment”, DEXA Workshops, 2003

[15] G. Tesauro, et. al., “A Multi-Agent Systems Approach to
Autonomic Computing”, AAMAS, 2004

Figure 7 : Impact of data sensor agents numbers

