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Abstract 
The goal of an autonomic system is to self-manage 

itself and adjust its actions in the face of environmental 
changes. In this paper, we adopt a multiagent approach 
to developing an Autonomic Information System. The aim 
of this Autonomic Information System (AIS) is to provide 
an information system that can adjust its processing 
algorithms and/or information sources to provide 
required information at various levels of efficiency and 
effectiveness. Our approach to developing autonomic 
multiagent systems is based on the Organization Model 
for Adaptive Computational Systems. We describe the 
design of one particular autonomic system, the AIS, and 
illustrate how this system fulfills certain desired 
autonomic properties. We also evaluate the performance 
of our autonomic system by comparing it to a non-
autonomic system. 

1. Introduction 
The goal of autonomic computing is to create new 
systems that are able to manage themselves. This requires 
such systems to have the ability to self-configure, self-
optimize, self protect, and self-heal [4, 5, 6, 10]. They 
must adapt to environmental changes and strive to 
improve their performance over time [5]. As systems 
become increasingly complex, they are expected to handle 
this complexity on their own. Therefore, it is crucial that 
they exhibit autonomic behavior. In this paper, we adopt a 
multiagent approach to developing an Autonomic 
Information System as agents are autonomous and map 
naturally to the autonomic computing principles. 

The goal of our Autonomic Information System is to 
provide an information system that can adjust its 
processing algorithms and/or information sources to 
provide required information at various levels of 
efficiency and effectiveness. In this system, various types 
of sensors at different locations are used to detect enemy 
vehicles. These sensors are subject to failure and 
erroneous outputs and typically have a delay in getting the 
information categorized. When sensor data of interest is 
available, it is fused with other related information to 
answer queries from the commander. A field commander 
uses the system interface to generate two types of queries: 
transient and persistent. Transient queries are executed 
only once whereas persistent queries are carried out 

repeatedly until canceled. To overcome the loss of sensors 
and continue to provide the required information, the 
Autonomic Information System (AIS) needs to adapt by 
replacing the failed sensors and adapting the information 
processing adequately without the intervention of the 
user. 

The purpose of this paper is to design an autonomic 
system based on the Organization Model for Adaptive 
Computational System (OMACS), which provides the 
system with enough knowledge to be able to self-
organize. OMACS is used to model the system we want 
to develop. Once the system has been modeled, we use 
our proposed generic agent architecture to create a 
Multiagent Autonomic System. We demonstrate one 
particular autonomic system, the AIS, and illustrate how it 
realizes autonomic behavior. 

The remainder of this paper is organized as follows. 
First, we present other work related to autonomic 
multiagent systems in Section 2. Next, we present our 
AIS multiagent organization in Section 3 and 4 followed 
by the system architecture in Section 5. In Section 6, we 
show the autonomic properties of the AIS via a scenario. 
A performance evaluation of the system is given in 
Section 7 while Section 8 concludes and discusses future 
work. 

2. Related Work 
There have been several multiagent approaches used to 
build autonomic systems. Bigus et al. [12] describes a set 
of agent component libraries that can be used to build 
autonomic systems, which extend the ABLE platform by 
adding external agents to manage and control the system. 
In [15], Tesauro et al. presents an architecture in which 
agents have predefined responsibilities which allow the 
system to exhibits certain autonomic behaviors. In [13], 
Kumar and Cohen describe an adaptive agent architecture 
in which broker agents share the same knowledge of the 
system and are thereby aware of any agent failure. Sterritt 
and Bustard [14], propose design template in which 
agents monitor the system using heartbeat signals. 

All these works are similar to ours in the sense that 
agents have system-level knowledge that allows them to 
manage themselves in unpredictable environments. 
However, in our approach, instead of embedding this 
system-level knowledge in the architecture, we design 



systems based on the underlying OMACS model, which 
allows us to reuse the agent architecture and 
systematically develop autonomic applications. Actually, 
we are also in the process of developing an autonomic 
sensor network application using the ideas outlined in this 
paper. In addition, we have developed the Organization-
based Multiagent Systems Engineering methodology [2] 
to support the development of OMACS-based systems. 

3.  Overview of OMACS 
OMACS [2] is a metamodel for agent organizations. It 
defines the required organizational structure that allows 
multiagent teams to autonomously reconfigure at runtime, 
thus enabling them to cope with unpredictable situations 
in a dynamic environment. Specifically, OMACS 
specifies the type of knowledge required for a multiagent 
system to know itself and be able to reason about its own 
status. Hence, multiagent teams are not limited by a 
predefined set of configurations and can have the 
appropriate information about their team, enabling them 
to reconfigure in order to achieve their team goals more 
efficiently and effectively. During the design of an 
OMACS-based system, the designer only provides high-
level guidance about the organization, which will then be 
able to self-configure based on the current goals and team 
capabilities. These characteristics make OMACS ideal for 
designing autonomic multiagent systems. OMACS 
defines an organization as a set of goals (G) that the team 
is attempting to accomplish, a set of roles (R) that must be 
played to achieve those goals, a set of capabilities (C) 
required to play those roles, and a set of agents (A) who 
are assigned to roles in order to achieve organization 
goals. At runtime, the assignments of agents to play roles 
to achieve goals represent the key functionality that 
allows the system to be autonomic. 

4. The AIS Organization 
Our Multiagent Autonomic System is an organization-
based multiagent system [1] built upon OMACS. Hence, 
to implement the system, we need to design the goals, 
roles, capabilities, and agent types defined in OMACS. 

4.1. Goals 
Goals are a high level description of what the system is 
supposed to be doing [9]. We use a goal model to 
represent system-level goals; this model includes the goal 
definitions, goal decomposition, and the relationship 
between the goals and their subgoals, which are either 
conjunctive or disjunctive [7]. Typically, each 
organization has a top-level goal that is decomposed into 
refined subgoals. Eventually, this top-level goal is refined 
into a set of leaf goals that will be actually pursued by the 
organization. The set of all organizational goals is 
denoted as G. The active goal set, Ga, is the current set of 

goals that an organization is trying to achieve. Ga changes 
as new goals are inserted or existing goals are achieved. 

To capture the dynamic nature of OMACS-based 
systems, there is a time-based relationship that exists 
between goals. We say goal g1 precedes goal g2, if g1 
must be satisfied before g2 can become active. This 
allows the organization to work on one part of the goal 
tree at a time. During the pursuit of specific goals, events 
may occur that cause the instantiation of new goals. 
Instantiated goals may be parameterized to allow a 
context sensitive meaning. If an event can occur during 
pursuit of goal g1 that instantiates goal g2, we say g1 
triggers g2. 

The main goal of the application is to answer each 
query presented to the system. From the requirements, we 
have derived the goal tree structure presented in Figure 1. 
The boxes represent the goals and their parameters. The 
arrows indicate triggers and their parameters. The dashed 
arrows represent negative triggers, which allow for the 
cancellation of a goal and all its subgoals. As the queries 
are not predefined, most of the goals in the systems will 
be triggered based on the query. These parameterized 
goals will be instantiated and associated to specific 
queries. Conjunctive sub-goals are connected to their 
parents by a diamond shaped connector (◊) while 
disjunctive sub-goals are connected to their parent by a 
triangle shaped connector (∆). The leaf goals that the 
organization must achieve are goal G1 to goal G6. 

4.2. Roles 
Roles are a high level description of how to achieve some 
particular goals [3]. In OMACS, each organization has a 
set of roles that it can use to achieve its goals. The 
achieves function, which associates a score between 0 and 
1 to each <goal, role> pair, tells how well that particular 

 
Figure 1. AIS Goal Model 



role can be used to achieve that goal (1 being the 
maximum score). In addition, each role requires a set of 
capabilities, which are inherent to particular agents. 
Agents must possess all the required capabilities to be 
considered as a potential candidate to assume that role. 

For each goal in this organization, we have created a 
role that can achieve it. Following are the roles we have 
defined for the AIS organization, along with the goals 
they can achieve and a description of their behavior. 

R1 – Query Processor (G1): Periodically gets new 
queries from the user. The role triggers an event to notify 
the system that a new query has been entered. 

R2 – Sensors Locator (G2): Query the sensor database 
in order to find all sensors available in the area specified 
by the parameter of the goal it achieves.  Then it executes 
an algorithm to find the best coverage based on the set of 
available sensors. For each sensor selected, an event is 
triggered (event ‘found(S:Sensor)’). This event will result 
in the organization attempting to find an agent capable of 
reading the selected sensor. After all sensors have been 
selected, the role triggers an event (event ‘mergeSimilar’ 
or ‘mergeDiverse’) to notify the organization that it has 
found all sensors capable of providing data for the query. 

R3 – Sensor Reader (G3): Read the data from the 
sensor given in parameter of the Read Sensor goal. This 
role interacts with the battlefield simulator in order to get 
the appropriate data. The data will be sent to any agents 
(typically a data merger agent) interested in those data. 

R4 – Data Merger Diverse (G4): Merge the data 
collected from various sensors covering the area of 
interest. This role uses a processing algorithm that allows 
it to merge data coming from sensors of different type. 

R5 – Data Merger Similar (G5): Behave like the 
previous role. However, as oppose to the previous role, 
this role uses a processing algorithm that allows it to 
efficiently merge data coming from sensors of the same 
type. Thus, this role will not be able to process data from 
different sources. 

R6 – Result Interface (G6): Return the results of the 
query to the GUI for displaying to the user. 

4.3. Capabilities 
In OMACS, capabilities are fundamental in determining 
which agents can be assigned to what roles in the 
organization [8]. Agent may possess two types of 
capabilities: hardware capabilities like actuator or 
effectors, and software capabilities like computational 
algorithms or resources usage. 

The capabilities identified for the AIS and the roles 
that require them are listed below. 

C1 – User Interaction (R1, R6): Used to interact with 
the GUI. 

C2 – Coverage Processing (R2):  Used to compute the 
optimal set of sensors that has the maximum coverage of 
the area of interest and that can satisfy the efficiency and 
accuracy constraints. 

C3 – Sensor Interaction <sensor> (R3): Used to 
interact with the actual sensors on the battlefield. 

C4 – Data Merging Diverse (R4): Provide 
computational algorithms to merge data coming from 
diverse type of sensors. 

C5 – Data Merging Similar (R5):  Provide fast 
computational algorithms to merge data coming from 
similar sources only. 

C6 – Coordination (R3, R4, R5, R6): Provide the 
ability to communicate with other agents. 

For simplicity, we designed our system so all 
capabilities equally are important in accomplishing a role. 

4.4. Agents 
The agents represent the autonomic elements of the 
system. Within an OMACS organization, agents have the 
ability to communicate with each other, accept 
assignments to play roles that match their capabilities, and 
work to achieve their assigned goals. Each agent is 
responsible for managing its own state and its interactions 
with the environment and with other agents. Once the 
system provides goals and roles, the agents are expected 
to determine themselves what behavior is necessary to 
fulfill them. For that, a plan on how to play a role needs to 
be provided at design time either by the role or the agent 
designer. In OMACS, a tuple <a,r,g> represents the 
assignment of agent a to play role r in order to achieve 
goal g. The assignment set Φ represents the set of all the 
current assignments in the organization. To capture a 
given agent’s capabilities, OMACS defines a possesses 
function, which maps each <agent, capability> pair to a 
value between 0 and 1, describing the quality of the 
capability possessed by an agent (1 representing the 
maximum quality). 

We define a set of agent types capable of playing at 
least one role in the organization. To simplify the 
application, we assume that an agent either possesses a 
capability or not (possesses score is either 1 or 0). The 
agent types and their capabilities are listed below. 

QA – Query Agent (C1) 
SFA – Sensor Finder Agent (C2) 
DSA – Data Sensor Agent (C3, C6) 
MAD – Merger Agent Diverse (C1, C4, C6) 
MAS – Merger Agent Similar (C1, C5, C6) 

5. Generic Agent Architecture 
In this section, we present the generic agent architecture 
of the AIS agents, which represent the autonomic 
elements of our system [6]. As Figure 2 shows, an AIS 
agent typically consists of two components: the Execution 
Component (EC) and the Control Component (CC). 

The EC represents the non-autonomic part of the 
agent. It corresponds to the application specific part of the 
agent. It is notified by its CC about what role to play in 



the organization. Once it has been assigned a role, the EC 
plays that role according to a predefined plan provided at 
design time either by the role or the agent designer.  

The CC represents the autonomic part of the agent. In 
general, the more sophisticated this component, the more 
autonomy the system will display. Typically, the CC is an 
intelligent component in charge of all organization related 
tasks. Depending on design strategies, it can have a partial 
or total knowledge of the organization structure. We have 
design a fixed communication interface between the CC 
and the EC. This gives us the flexibility to plug several 
different CCs designs into our application without having 
to modify other application-specific components (the 
ECs). Therefore, Control Components are generic and can 
be reused for any other autonomic applications as long as 
the communication interface is respected.  

In general, a CC operates based on its knowledge and 
the information collected from other agents via their CCs. 
It can decide to reconfigure the organization by including 
or canceling goals in the organization, or by modifying 
the current assignments. This reconfiguration process can 
be distributed or centralized. A distributed reconfiguration 
would involve a deliberation process between all the CCs 
in order to reach a consensus about the next state of the 
organization. However, in our current implementation, we 
have opted for a centralized approach in which all CCs 
report to one particular CC that will then have all the 
knowledge to make appropriate decisions. To differentiate 
with other CCs, we call this particular CC the 
Organization Master (OM). Therefore, the OM possesses 
all the organizational knowledge and is in charge of all 
the organization-related tasks (Figure 2). The OM reasons 
about the current state of the organization and once it 
reaches a decision about a new configuration, it notifies 
all the CCs that are affected by this reconfiguration. This 
autonomous reasoning is based on the underlying 
OMACS architecture and results in a reconfiguration 
which is fundamental in achieving the autonomic 
properties described in the following section. 

6. Autonomic properties of the AIS 
In this section, we present a scenario that exemplifies 
some of the autonomic behaviors of the AIS. To adapt to 
a variety of unpredictable situations, our AIS organization 
is able to detect changes in the performance of the overall 
organization (self-monitoring) and modify its structure 
accordingly (self-adjusting). Many of them are changes 
within the environment; however, some changes occur 
within the organization itself (e.g., capability failure or 
goal completion). Hence, the AIS is not only aware of its 
environment but it is also aware of its own state (self-
aware). These self-* properties of the AIS are facilitated 
by our use of OMACS, which provides all the necessary 
knowledge for a self-managing system. 

6.1. AIS Scenario 
To demonstrate the AIS system, we use a simulated 
battlefield with sensors and enemy targets. In our 
battlefield simulator, there are five different types of 
vehicles that the system is trying to locate and identify: 
truck, halftrack, tank, artillery, and launcher. For the 
specific scenario described in this paper, we have defined 
two types of sensors: ground sensors and airborne 
automatic target recognition (ATR) sensors. The 
screenshot in Figure 3 shows the simulated battlefield 
along with the sensors and enemy targets. There are four 
ground sensors (S1, S2, S3, S4) and one ATR sensor (S5). 
There are also five enemy vehicles. We assume that the 
system is only trying to answer one persistent query and 

Figure 2. Generic Agent Architecture 

Figure 3. Battlefield Map 



omit the query parameter for goals and triggers. The 
persistent query is: “Show the location and type of all 
enemy vehicles in the selected area” (the area selected is 
defined by a rectangle in Figure 3). 

6.2. Initialization 
For this scenario, we have created one agent for each 
agent type except for the agent type DSA for which one 
DSA agent has been created for each sensor in the 
battlefield. Agents are named after their types and DSA 
agents are numbered to match their sensor number. At 
initialization, all the goals that have no predecessors and 
do not require any triggers are inserted in Ga (the active 
goal set) and thereby pursued by the organization. Based 
on the goal model (Figure 1), only goal G1 is active 
initially. Once G1 is active, the OM chooses the best role 
to achieve G1. R1 will be chosen to achieve G1 because 
the pair <G1,R1> has the highest achieves score. Then the 
organization chooses the Query Agent QA to play R1. 
This choice is motivated by the fact that A1 possess all 
the required capabilities to play R1. Figure 4 shows the 
successive states of the organization after the occurrence 
of events. States contain the active goal set (Ga) and the 
set of assignments (Ф). The initial assignment we have 
just described corresponds to State 1 in Figure 4.  

Once the QA retrieves the query from the GUI, it 
triggers an event start(Query). This trigger results in the 
activation of G2. Upon this activation, the system must 
reconfigure itself to achieve this new active goal. By 
taking the best role and agent to achieve goal G2, the 
Sensor Finder Agent (SFA) is assigned to play role R2 to 
achieve goal G2 (State 2). 

When the query has been retrieved, the QA agent 
terminates by sending an achieved message to the OM, 
which causes the goal and its related assignment to be 
removed from Ga and Φ. Next, the SFA agent chooses 
sensors S1, S2, S3 for the query as those sensors 
maximize the area of interest coverage. The following 
events are then triggered: found(S1), found (S2), 
found(S3). Each found event instantiates a parameterized 
goal G3 having the parameter of the trigger. In our case, 
goals G3(S1), G3(S2), and G3(S3) become active, which 
again requires a reconfiguration with (DSA1,R3,G3(S1)), 
(DSA2,R3,G3(S2)), and (DSA3,R3,G3(S3)) being 
inserted into Φ (State 3). 

As all the sensors found by the SFA agent are the same 
type, an event mergeSimilar(<S1,S2,S3>) is triggered, 
which results in the activation of the parameterized goal 
G5(<S1,S2,S3>). After computing the best assignment, 
the assignment of the Merger Agent Similar (MAS) to 
play role R5 to achieve G5 is chosen (State 4). 

Once all the events have been triggered, the SFA agent 
notifies the OM that it has successfully completed its role 
by sending an achieved message. At this point, the MAS 
agent starts getting data from the DSA agents and merges 

them to extract the necessary information. When the 
results are ready, the MAS agent will then trigger a result 
event, which will result in the activation of G6. As the 
MAS agent has the capability to interact with the GUI, it 
plays role R6 to achieve goal G6 and sends the results to 
the GUI (State 5). When a query update is required, the 
MAS agent coordinates with DSA agents to get new data. 

The results report a coverage of a 100% of the area of 
interest and the system effectively detected all three 
targets in the selected area: Tank at 29,40, Truck at 20,40 
and Launcher at 36,47. 

This scenario shows an important part of the 
autonomic system: self-configuration. The system is able 
to reconfigure itself when new goals appear in the 
organization. Every newly activated goal in the 
organization requires the AIS to take action in order to 
achieve this new goal. Our autonomic system is also 
capable of self-optimizing in the case of a goal 
completion. The achievement of a goal can free an agent 
to take on a new role and goal assignment. When this 
occurs, the organization may make new assignments in 
order to optimize the performance of the system. 

6.3. Sensors Failure 
The AIS simulator allows us to fail specific sensors. If we 
make S2 fail, the corresponding DSA agent (DSA2), 
which is the only agent capable of playing R3 to achieve 
G3(S2), can no longer achieve its goal. As a result, the 
MAS agent, which was coordinating with the DSA2 agent 
to gather the data, interrupts its task and generates a 
negative trigger failure and a trigger start(query). The 
negative trigger causes all the goals related to that query 
to be removed, resulting in the cancellation of all their 
current assignments. Thus, goals G3(S1), G3(S2), 
G3(S3), G5(〈S1, S2, S3〉) are all removed. The 
start(query) event causes the activation of a new instance 
of goal G2 that will be achieved by the SFA agent playing 
role R2. Taking into account the loss of capability of the 
DSA2 agent, the SFA agent selects sensors S1, S3, S5 as 

Figure 4. Organization States 



the new optimal set of sensors for the query. The SFA 
agent then triggers the following events: found(S1), 
found(S3), found(S5) which result in the activation of goal 
G3(S1), G3(S3), and G3(S5). As this set of sensors 
contains sensors of different types (S1, S3 are ground 
sensors whereas S5 is an ATR sensor), the SFA agent 
triggers an event mergeDiverse(<S1, S3, S5>), which 
results in the activation of goal G4(〈S1, S3, S5〉). 

To achieve this new goal, the system chooses role R4, 
which is played by the Merger Agent Diverse (MAD). 
Then, the SFA sends an achieved message to the OM and 
terminates. The system then continues its execution as 
described in the previous section, except that the merger 
in charge of the query is now the MAD agent. As the 
coverage provided by the new set of sensors is also 100%, 
the AIS detects all the enemies in the area of interest: 
Tank at 29,40, Truck at 20,40 and Launcher at 36,47. 

Therefore, by effectively detecting the sensor that 
failed and replacing it, the AIS has demonstrated its self-
healing capability. The failure triggered a reconfiguration 
of the system to allow sensor reading tasks to be 
redistributed among all the DSA agents still operational 
and capable of covering the area of interest. Through this 
reconfiguration, the DSA5 agent has replaced the DSA2 
agent that failed. In addition, during this scenario, an 
illustration of the AIS self-optimizing behavior has also 
occurred when the AIS organization has decided to 
replace the MAS agent, which was merging the data prior 
to the failure, by the MAD agent in order to insure a 
better performance. Hence, even though a loss of a sensor 
used to provide information for the query has occurred, 
the AIS was able to reconfigure itself and maintain the 
flow of information without the intervention of the user. 

7. Experimental Results 
To evaluate the performance of our autonomic system, we 
performed 100 persistent queries executed 20 times each. 
We selected the number of sensors failures which were 
injected in the system almost simultaneously two minutes 
after system initialization.  

Our first sets of experiments attempted to evaluate the 
system robustness. We created a battlefield containing 40 
sensors at fixed locations and 100 merger agents. The 
sensors were placed such that each point in the area of 
interest was covered by at least two sensors. For each run, 
we submitted 100 persistent queries and the experiment 
ran until each query had been executed 20 times. 
Experiments were run on both our autonomic system and 
a non-autonomic system that we simulated. Basically, 
once the queries were submitted, both systems chose the 
optimal set of Data Sensor Agent (DSA) to provide 
maximum coverage. However, when a DSA failed, the 
non-autonomic system ignored the failure and continued 
to provide results whereas the autonomic system 
reconfigured. The robustness of the system was measured 

in terms of the average coverage obtained at the end of 
the experiment.  

As expected, the results, as shown in Figure 5, clearly 
indicate that for any failure rate, the autonomic system 
was significantly more robust. Observe that after 30% 
failure rate, the autonomic system was still able to provide 
a coverage of 100% whereas this coverage had dropped to 
75% for the non-autonomic system. However, when too 
many sensors were lost (around 90%), the coverage 
provided by both system was very close as the autonomic 
system could not find any other sensors to replace the 
failed sensors. On average, the autonomic system 
achieved 25% more coverage than its counterpart. 

In our second set of experiments, we were interested in 
characterizing the cost of reconfiguration in term of the 
number of messages sent by the agents. As in the first 
experiment, we used 40 data sensor agents and 100 
merger agents trying to answer 100 persistent queries. 
The results in Figure 6 show that for the non-autonomic 
system, the number of messages decreased as the failure 
rate increased. This is due to the fact that as more sensors 
fail, the system interacts with less data sensor agents 
resulting in fewer messages. For the autonomic system, 
we expected a monotonically increasing function due to 
the messages involved in an increasing number of 
reconfigurations. However, the number of messages only 

Figure 5 : Comparison of area coverage 

Figure 6 : Comparison of number of messages sent 



increased until we reached a failure rate of 30% and then 
decreased. These results suggest that before the 30% 
failure rate, the number of reconfiguration messages was 
larger than the number of messages generated by sensors 
prior to their failure. As more sensors are lost (30% 
failure rate and larger), the increase in messages due to 
reconfiguration is completely hindered by the reduction in 
messages due to the decreased number of sensor 
interactions, globally resulting in less messages sent in the 
system. Overall, the autonomic system generated 
approximately 50% more messages.  

Our final set of experiments attempted to confirm the 
influence of the number of data sensor agents on system 
performance. We ran the previous experiments with 3 
different numbers of data sensor agents: 20, 30 and 80. 
For each set, we measured the number of messages sent at 
different failure rates. The results are shown in Figure 7. 
We note that there is a direct correlation between the 
number of data sensor agents and the number of message 
sent. However, as the number of data sensor agents 
doubles, the number of messages only increases by a 
constant factor. This is an important result which ensures 
an effective scalability of our system.  

8. Conclusions and Future Work 
We have described a multiagent approach for building an 
Autonomic Information System. Our approach takes 
advantage of OMACS, which fits well in the autonomic 
computing perspective and allows autonomic systems to 
achieve many self-* properties. Through a specific 
scenario, we have illustrated the self-configuring, self-
optimizing, self-healing and self-protecting properties of 
our autonomic information system. As a result of these 
autonomic properties, the AIS can reason about system 
goals, recover from failures, recognize and prevent 
undesirable behaviors and optimize performance without 
disrupting the flow of information and requiring the 

intervention of the user. Finally, we have shown 
experimentally that our autonomic information system 
was more robust than a non-autonomic version. 

In future work, we are investigating ways to allow a 
distributed reconfiguration, as oppose to the centralized 
approach of this paper. This would allow all the agents to 
participate in the reconfiguration process, resulting in a 
more robust autonomic system. 
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