
An Organizational Design for Adaptive Sensor Networks°

Walamitien H. Oyenan, Scott A. DeLoach and Gurdip Singh
Department of Computing & Information Sciences, Kansas State University

{oyenan, sdeloach, gurdip}@ksu.edu

Abstract

As wireless sensor network applications grow in
complexity, ad-hoc techniques are no longer adequate.
Thus, it is crucial that these systems be adaptive and
autonomous to remain functional in the face of
unreliable communications, dead nodes, and other
unexpected failures. We propose to manage sensor
networks based on a rigorous multiagent organizational
design, which separates application logic from low-level
sensor implementation details. The organizational design
allows designers to specify high-level goals that the
systems will try to achieve based on sensor capabilities.

1. Introduction
Wireless sensor networks (WSN) have been used in
many applications to obtain information about the
environment. WSN have constrained power and
computational resources and often operate unattended in
highly dynamic and harsh environments. These
conditions along with the inherently distributed nature of
these systems make designing WSN applications a
complex and challenging task. Consequently, ad-hoc
techniques for developing this kind of systems are no
longer adequate.

We propose to manage sensor nodes based on a
multiagent organizational design, which helps separate
application logic from low-level sensor implementation.
In fact, organizations facilitate cooperation between
heterogeneous sensors and provide guidelines to handle
recurrent events like sensor registration, sensor failure,
and capability degradation. Moreover, due to their
distributed structure, sensor networks are inherently
suitable for multiagent systems approaches [16]. Hence,
sensors can be viewed as autonomous agents that
collaborate to achieve a common goal.

To design organization-based multiagent systems, we
base our work on the Organization Model for Adaptive
Computational Systems (OMACS) [4] as its capability
orientation makes it particularly suitable to
heterogeneous sensors. OMACS defines the concepts
required to provide the agents with the knowledge to
self-organize. In addition, OMACS allows designers to

° This work was supported by grants from the US National Science
Foundation (0347545) and the US Air Force Office of Scientific
Research (FA9550-06-1-0058).

define application events that cause the system to
reorganize. For instance, if an event of interest is the
appearance of a vehicle, the organizational knowledge
would define the right goal to pursue in response to it.

Moreover, OMACS is supported by a rigorous
process based on Organization-based Multiagent
Engineering [6]. In this paper, we follow a similar
process to capture the important organizational concepts.
These concepts are implemented in runtime models that
are the basis for the system’s adaptive reasoning.

Our design is based on two O-MaSE design models,
the Goal and Role models, and a set of policies, all of
which are presented in Section 2. In Section 3 we
introduce the system architecture. In Section 4, we
examine how agents are assigned to roles and goals at
runtime. Finally, we evaluate our approach in Section 5.

2. System Design
In general, multiagent organizations are designed using a
set of related design models which capture various
organizational concepts such as goals, roles, interactions
and norms [5]. In this work, we use the organizational
concepts defined in the OMACS model [4]. OMACS
defines an organization as a set of goals that need to be
accomplished, a set of roles that must be played to
achieve these goals, a set of capabilities required to play
these roles, a set of agents that are assigned to roles in
order to achieve organization goals and a set of policies
that constrain the possible behaviors of agents in the
organization. At runtime, the assignments of agents to
play roles to achieve goals represent the key
functionality that allows systems to be adaptive.

Our design follows the multiagent systems
development process proposed in [12], which is built
based on method fragments from the O-MaSE
framework [6]. Although the methodology introduced in
[12] presents several design models, for the sake of
brevity, the sensor network design presented here only
focuses on two main models, which are adequate to
capture all the organizational concepts aforementioned.

First, we define our organization goals and organize
them in a goal model that consists of AND/OR
decompositions of goals along with a trigger relationship
that allows goals to be instantiated with application-
specific parameters. At runtime, the organization goals

sdeloach
Typewriter
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT ‘10). Toronto Canada, September 2010.

change dynamically as new goals are created or existing
goals are achieved. Then, we identify the roles that
describe the high-level behavior required to achieve
particular goals. These roles are organized into a role
model, which captures interactions (protocols) between
roles and the capabilities required for each role. Next, we
specify reorganization policies to guide the system when
assigning the goals to agents [8]. These policies typically
specify the types of assignments the system should prefer
or avoid. Finally, agents are designed to play roles.

Design models are created using agentTool III (aT3), a
multiagent development environment [2]. aT3 supports
the development and validation of design models that are
automatically translated into runtime models.

3. System Architecture
Once the organization design models are defined, we
need to define the agents that will be participating in the
organization. We have two types of agents: Base Station
agents and Mote agents. In general, a system contains
one Base Station agent running on a PC platform and
several Mote agents running on a Berkeley mote
platform, which is a sensor network platform [1].

The overall system architecture is presented in Figure
1. The design models (goal model and role model) and
policies obtained from aT3 are automatically translated
into runtime models that are used by the Base Station
agent to make decision about the reconfiguration of the
organization. We chose to have the entire organizational
knowledge in the Base Station agent because it has more
computational resources than the motes and it is less
prone to failure. Therefore, in our system, the Base
Station is the only agent that possesses the organizational
knowledge and decides the next configuration of the
organization. The Base Station agent runs on a laptop
with a base station mote (mote 0) attached to it. This
mote acts as a gateway and allows the Base Station agent
running on a PC to interact with the rest of the agents
exclusively running on the mote platform.

Once assignments have been made by the Base
Station agent, they are passed on to the proper Mote
agents who execute them and return feedback based on
events of interest to the organization (goal completion,
goal failure, application specific events). Consequently,

the Mote agents have limited autonomy as they must
agree to play their assigned role and pursue their
assigned goal. Nonetheless, they have freedom in the
choice of the specific actions necessary to play a role.
Details of the agent architecture are given in [13].

4. System Implementation
At runtime, the system cycles through four main phases:
update goals, make assignments, play roles, propagate
events. The update goals and make assignments phases
are organization-related phases and are performed by
agents participating in the organization control, in our
case, the Base Station agent. The play roles and
propagate events phases are application-related phases
that concern all agents in the organization. Once goals
are added in response to organizational events, the Base
Station agent assigns agents to play roles to achieve the
newly added goals. Once an agent has been assigned to
play a role, it follows the role’s plan to achieve its goal
and reports all events to the Base Station agent.

To make assignments, we use a greedy algorithm as
shown in Figure 2. For each unassigned goal (line 1), we
get the first role that can achieve it (line 5) and the first
agent that has the required capabilities (line 8). The
assignment produced is checked for policies compliance
(line 11). If it fails, the passPolicies method removes the
assignment that caused it to fail and a new assignment is

Figure 1. Overall System Architecture

function makeAssignments(activeGoalSet) returns
assignmentSet

1. for each goal g in activeGoalSet.unassigned
2. assignment.goal ← g
3. do
4. for each role r in Knowledge.roles
5. if r.achieves(g) then assignment.role ← r;

break
6. end loop
7. for each agent a in Knowledge.agents
8. if a.possess(r.requiredCapabilities)
9. then assignment.agent ← a; break
10. end loop
11. until passPolicies(assignment)
12. assignmentSet.add(assignment)
13. end loop
14. return assignmentSet

Figure 2. Assignment Algorithm

sought. If no valid assignment exists, the least important
policy is deactivated and we try again. Our policies are
guidance policies [8] that guide the system towards a
desired behavior without constraining it. They can be
abandoned if they prevent the system from progressing.
Policies are ordered by importance, allowing the system
to ignore the least important policies when needed.

5. Example
To show the application of organizational design to
sensor networks, we implemented a familiar surveillance
application, where sensors collaboratively monitor and
track vehicles entering an area. Sensors have limited
sensing range and must collaborate to cover the area of
interest. The sensors also have limited energy.

In the application, 25 sensors were arranged in a 5 x 5
grid covering 100 ft2. Mote agents were implemented in
nesC [7] on mote-based sensors [1] running the TinyOS
[10]. The Base Station agent was implemented in Java.
We used TOSSIM [11] to emulate the mote code
execution; TOSSIM also supports inserting mote failures
and simulated targets. Targets were implemented as
magnetometer sources that affect the magnetometer
readings of nearby sensors. We assumed reliable one hop
communication. We also developed a non-adaptive
version of the system for comparison purposes.

When agents fail, reorganization is triggered resulting
in a new agent assigned to the failed agent’s goal or in a
set of alternative goals being assigned to the available
agents. Thus, our first set of experiments attempted to
see how the system recovers from failures of agents in
charge of covering the surveillance area. When such
failures happened, the organization tried to find another
set of agents to ensure total area coverage. System
adaptation was measured by the percentage of the
surveillance area covered by sensors after various
failures. The coverage was computed as the average
observed over 5 runs of 1000 simulation seconds.

Figure 3 shows the results obtained for the adaptive
and non-adaptive systems. With up to 6 sensor failures,
the adaptive system provided 100% coverage whereas
the non-adaptive system failed to cover the entire area as
soon as a sensor failed. By the end of the simulation, the
adaptive system lost 70% of its sensors but still covered
more than 65% of the area. The organization was able to
reorganize in the face of failures and reassign the failed
goals to available sensors to continue to get maximum
coverage.

Our second set of experiments shows how the system
adapts to decreasing power levels. Like most
surveillance systems, most of the energy is consumed
during the surveillance phase, monitoring for potential
targets [9]. Having a non-adaptive design with static
monitoring agents leads to the complete energy depletion

for monitoring agents, while non monitoring agents use
little energy. Hence, we were interested in having the
system adapt to maintain a uniform level of energy
among sensors while maintaining maximum coverage.
To accomplish this, we introduced several guidance
policies that allowed agents to give up monitoring when
their energy dropped below a given threshold.

We compared the energy level of each agent at the
end of a simulation with and without policies. Without
policies, the system kept the same monitor agents
throughout, whereas the system with policies behaved as
indicated above. We used the number of messages to
measure energy consumption, which is reasonable given
that communication dominates mote energy use [14].

Figure 4 shows the energy consumed for both
systems. The results were observed over a run of 1000
simulation seconds with 3 targets appearing one at a time
along the same path. Globally, there was a target present
20% of the time. In the non-adaptive version, agents 6, 9,
21 and 24 used more energy than any other agents. This
is due to the fact that these agents were playing the
monitor role during the entire simulation. On the other
hand, we observed that the adaptive version kept the
energy level uniform among all agents. In fact, even
though both systems used 41% of their global energy, the
standard deviation for the adaptive system was 12%
whereas the one for the non-adaptive version was 28%.
These results support the fact that our adaptive system
was able to reorganize to maintain a uniform distribution
of the energy used as directed by the policies.

6. Related Work
Several multiagent approaches have been proposed to

develop sensor networks. A survey of MAS perspectives
for WSN is available in [16]. However, most of the
multiagent approaches do not consider an organizational
design, which provide a better abstraction for MAS.

Figure 3. Coverage obtained with agent failures

Organizational approaches for WSN have been used
in [15], [17]. Like ours, these approaches use
organization mechanisms to manage sensor nodes.
However, these approaches only deal with specific
problems and do not specifically tackle the issue of
adaptation. In addition, they do not follow a rigorous
development process. Our organizational approach
provides systems with enough knowledge to be able to
self-organize and is supported by the O-MaSE process
framework [6].

7. Conclusion
We presented an adaptive surveillance application that
uses wireless sensor nodes to collaboratively monitor and
track all vehicles entering an area. Our design was based
on a multiagent organizational design paradigm [4] that
provides the sensor nodes with the required knowledge
to self-organize. The implementation was tested on a
simulator to demonstrate the adaptive properties gained
from developing applications using our organizational
design approach. This implementation demonstrated both
self-configuration and self-healing properties.

8. References
[1] Crossbow. Wireless sensor networks (mica motes). cited

2009; Available from: http://www.xbow.com/.
[2] S.A. DeLoach. The agentTool III Project. cited 2008;

Available from: http://agenttool.cis.ksu.edu/.
[3] S.A. DeLoach and M. Miller, A Goal Model for Adaptive

Complex Systems. International Journal of Computational
Intelligence: Theory and Practice, 2010. 5(2).

[4] S.A. DeLoach, W.H. Oyenan, and E. Matson, A
capabilities-based model for adaptive organizations.
Autonomous Agents and Multi-Agent Systems, 2008.
16(1): p. 13-56.

[5] V. Dignum, Handbook of Research on Multi-Agent
Systems: Semantics and Dynamics of Organizational
Models. 2009, Information Science Reference.

[6] J.C. Garcia-Ojeda, et al. O-MaSE: A Customizable
Approach to Developing Multiagent Development
Processes. in 8th International Workshop on Agent
Oriented Software Engineering 2007.

[7] D. Gay, et al. The nesC language: A holistic approach to
networked embedded systems. in Programming language
design and implementation (PLDI '03). 2003.

[8] S. Harmon, S. DeLoach, and Robby, Trace-Based
Specification of Law and Guidance Policies for Multi-
Agent Systems, in ESAW: Engineering Societies in the
Agents World VIII. 2008. p. 333-349.

[9] T. He, et al., VigilNet: An integrated sensor network
system for energy-efficient surveillance. ACM Trans. Sen.
Netw., 2006. 2(1): p. 1-38.

[10] J. Hill, et al., System architecture directions for networked
sensors. SIGPLAN Notice, 2000. 35(11): p. 93-104.

[11] P. Levis, et al. TOSSIM: accurate and scalable simulation
of entire TinyOS applications. in SenSys '03: Proceedings
of the 1st international conference on Embedded
networked sensor systems. 2003. Los Angeles, California.

[12] W.H. Oyenan and S.A. DeLoach, Towards a Systematic
Approach for Designing Autonomic Systems. Web
Intelligence and Agent Systems (WIAS): An International
Journal, 2010. 8(1): p.79-97.

[13] W.H. Oyenan and S.A. DeLoach, and G. Singh. Designing
Adaptive Sensor Networks Using an Organization-based
Approach. MACR Lab Technical Report No. MACR-TR-
2010-04. Kansas State University. June, 2010.

[14] V. Shnayder, et al. PowerTOSSIM: Efficient Power
Simulation for TinyOS Applications. in ACM Conference
on Embedded Networked Sensor Systems (SenSys). 2004.

[15] M. Sims, D. Corkill, and V. Lesser, Automated organiza-
tion design for multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 2008. 16(2): p. 151-185.

[16] M. Vinyals, J.A. Rodriguez-Aguilar, and J. Cerquides, A
survey on sensor networks from a multi-agent perspective.
The Computer Journal, 2010: p. Advance Access,
doi:10.1093/comjnl/bxq018.

[17] H. Zafar, et al., Using organization knowledge to improve
routing performance in wireless multi-agent networks, in
7th intl. joint conference on Autonomous Agents and
Multiagent Systems. 2008: Estoril, Portugal.

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Agent ID

En
er

gy
 U

se
d

Adaptive

Non-Adaptive

Figure 4. Energy Used discrepancies between the adaptive and non-adaptive system

