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Abstract  

As wireless sensor network applications grow in 
complexity, ad-hoc techniques are no longer adequate. 
Thus, it is crucial that these systems be adaptive and 
autonomous to remain functional in the face of 
unreliable communications, dead nodes, and other 
unexpected failures. We propose to manage sensor 
networks based on a rigorous multiagent organizational 
design, which separates application logic from low-level 
sensor implementation details. The organizational design 
allows designers to specify high-level goals that the 
systems will try to achieve based on sensor capabilities. 

1. Introduction 
Wireless sensor networks (WSN) have been used in 
many applications to obtain information about the 
environment. WSN have constrained power and 
computational resources and often operate unattended in 
highly dynamic and harsh environments. These 
conditions along with the inherently distributed nature of 
these systems make designing WSN applications a 
complex and challenging task. Consequently, ad-hoc 
techniques for developing this kind of systems are no 
longer adequate.  

We propose to manage sensor nodes based on a 
multiagent organizational design, which helps separate 
application logic from low-level sensor implementation. 
In fact, organizations facilitate cooperation between 
heterogeneous sensors and provide guidelines to handle 
recurrent events like sensor registration, sensor failure, 
and capability degradation. Moreover, due to their 
distributed structure, sensor networks are inherently 
suitable for multiagent systems approaches [16]. Hence, 
sensors can be viewed as autonomous agents that 
collaborate to achieve a common goal.  

To design organization-based multiagent systems, we 
base our work on the Organization Model for Adaptive 
Computational Systems (OMACS) [4] as its capability 
orientation makes it particularly suitable to 
heterogeneous sensors. OMACS defines the concepts 
required to provide the agents with the knowledge to 
self-organize. In addition, OMACS allows designers to 
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define application events that cause the system to 
reorganize. For instance, if an event of interest is the 
appearance of a vehicle, the organizational knowledge 
would define the right goal to pursue in response to it. 

Moreover, OMACS is supported by a rigorous 
process based on Organization-based Multiagent 
Engineering [6]. In this paper, we follow a similar 
process to capture the important organizational concepts. 
These concepts are implemented in runtime models that 
are the basis for the system’s adaptive reasoning. 

Our design is based on two O-MaSE design models, 
the Goal and Role models, and a set of policies, all of 
which are presented in Section 2. In Section 3 we 
introduce the system architecture. In Section 4, we 
examine how agents are assigned to roles and goals at 
runtime. Finally, we evaluate our approach in Section 5.  

2. System Design 
In general, multiagent organizations are designed using a 
set of related design models which capture various 
organizational concepts such as goals, roles, interactions 
and norms [5]. In this work, we use the organizational 
concepts defined in the OMACS model [4]. OMACS 
defines an organization as a set of goals that need to be 
accomplished, a set of roles that must be played to 
achieve these goals, a set of capabilities required to play 
these roles, a set of agents that are assigned to roles in 
order to achieve organization goals and a set of policies 
that constrain the possible behaviors of agents in the 
organization. At runtime, the assignments of agents to 
play roles to achieve goals represent the key 
functionality that allows systems to be adaptive. 

Our design follows the multiagent systems 
development process proposed in [12], which is built 
based on method fragments from the O-MaSE 
framework [6]. Although the methodology introduced in 
[12] presents several design models, for the sake of 
brevity, the sensor network design presented here only 
focuses on two main models, which are adequate to 
capture all the organizational concepts aforementioned.  

First, we define our organization goals and organize 
them in a goal model that consists of AND/OR 
decompositions of goals along with a trigger relationship 
that allows goals to be instantiated with application-
specific parameters. At runtime, the organization goals 
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change dynamically as new goals are created or existing 
goals are achieved. Then, we identify the roles that 
describe the high-level behavior required to achieve 
particular goals. These roles are organized into a role 
model, which captures interactions (protocols) between 
roles and the capabilities required for each role. Next, we 
specify reorganization policies to guide the system when 
assigning the goals to agents [8]. These policies typically 
specify the types of assignments the system should prefer 
or avoid. Finally, agents are designed to play roles.  

Design models are created using agentTool III (aT3), a 
multiagent development environment [2]. aT3 supports 
the development and validation of design models that are 
automatically translated into runtime models.  

3. System Architecture 
Once the organization design models are defined, we 
need to define the agents that will be participating in the 
organization. We have two types of agents: Base Station 
agents and Mote agents. In general, a system contains 
one Base Station agent running on a PC platform and 
several Mote agents running on a Berkeley mote 
platform, which is a sensor network platform [1].   

The overall system architecture is presented in Figure 
1. The design models (goal model and role model) and 
policies obtained from aT3 are automatically translated 
into runtime models that are used by the Base Station 
agent to make decision about the reconfiguration of the 
organization. We chose to have the entire organizational 
knowledge in the Base Station agent because it has more 
computational resources than the motes and it is less 
prone to failure. Therefore, in our system, the Base 
Station is the only agent that possesses the organizational 
knowledge and decides the next configuration of the 
organization. The Base Station agent runs on a laptop 
with a base station mote (mote 0) attached to it. This 
mote acts as a gateway and allows the Base Station agent 
running on a PC to interact with the rest of the agents 
exclusively running on the mote platform. 

Once assignments have been made by the Base 
Station agent, they are passed on to the proper Mote 
agents who execute them and return feedback based on 
events of interest to the organization (goal completion, 
goal failure, application specific events). Consequently, 

the Mote agents have limited autonomy as they must 
agree to play their assigned role and pursue their 
assigned goal. Nonetheless, they have freedom in the 
choice of the specific actions necessary to play a role. 
Details of the agent architecture are given in [13]. 

4. System Implementation 
At runtime, the system cycles through four main phases: 
update goals, make assignments, play roles, propagate 
events. The update goals and make assignments phases 
are organization-related phases and are performed by 
agents participating in the organization control, in our 
case, the Base Station agent. The play roles and 
propagate events phases are application-related phases 
that concern all agents in the organization. Once goals 
are added in response to organizational events, the Base 
Station agent assigns agents to play roles to achieve the 
newly added goals. Once an agent has been assigned to 
play a role, it follows the role’s plan to achieve its goal 
and reports all events to the Base Station agent. 

To make assignments, we use a greedy algorithm as 
shown in Figure 2. For each unassigned goal (line 1), we 
get the first role that can achieve it (line 5) and the first 
agent that has the required capabilities (line 8). The 
assignment produced is checked for policies compliance 
(line 11). If it fails, the passPolicies method removes the 
assignment that caused it to fail and a new assignment is 

 
Figure 1. Overall System Architecture 

function makeAssignments(activeGoalSet) returns 
assignmentSet 

1. for each goal g in activeGoalSet.unassigned 
2.   assignment.goal ← g 
3.   do 
4.     for each role r in Knowledge.roles  
5.       if  r.achieves(g)  then  assignment.role  ←  r; 

break 
6.     end loop 
7.     for each agent a in Knowledge.agents 
8.       if a.possess(r.requiredCapabilities)  
9.       then assignment.agent ← a; break 
10.     end loop 
11.   until passPolicies(assignment) 
12.   assignmentSet.add(assignment)    
13. end loop 
14. return assignmentSet 

Figure 2. Assignment Algorithm 



sought. If no valid assignment exists, the least important 
policy is deactivated and we try again. Our policies are 
guidance policies [8] that guide the system towards a 
desired behavior without constraining it. They can be 
abandoned if they prevent the system from progressing. 
Policies are ordered by importance, allowing the system 
to ignore the least important policies when needed.  

5. Example 
To show the application of organizational design to 
sensor networks, we implemented a familiar surveillance 
application, where sensors collaboratively monitor and 
track vehicles entering an area. Sensors have limited 
sensing range and must collaborate to cover the area of 
interest. The sensors also have limited energy.  

In the application, 25 sensors were arranged in a 5 x 5 
grid covering 100 ft2. Mote agents were implemented in 
nesC [7] on mote-based sensors [1] running the TinyOS 
[10]. The Base Station agent was implemented in Java. 
We used TOSSIM [11] to emulate the mote code 
execution; TOSSIM also supports inserting mote failures 
and simulated targets. Targets were implemented as 
magnetometer sources that affect the magnetometer 
readings of nearby sensors. We assumed reliable one hop 
communication. We also developed a non-adaptive 
version of the system for comparison purposes. 

When agents fail, reorganization is triggered resulting 
in a new agent assigned to the failed agent’s goal or in a 
set of alternative goals being assigned to the available 
agents. Thus, our first set of experiments attempted to 
see how the system recovers from failures of agents in 
charge of covering the surveillance area. When such 
failures happened, the organization tried to find another 
set of agents to ensure total area coverage. System 
adaptation was measured by the percentage of the 
surveillance area covered by sensors after various 
failures. The coverage was computed as the average 
observed over 5 runs of 1000 simulation seconds.  

Figure 3 shows the results obtained for the adaptive 
and non-adaptive systems. With up to 6 sensor failures, 
the adaptive system provided 100% coverage whereas 
the non-adaptive system failed to cover the entire area as 
soon as a sensor failed. By the end of the simulation, the 
adaptive system lost 70% of its sensors but still covered 
more than 65% of the area. The organization was able to 
reorganize in the face of failures and reassign the failed 
goals to available sensors to continue to get maximum 
coverage. 

Our second set of experiments shows how the system 
adapts to decreasing power levels. Like most 
surveillance systems, most of the energy is consumed 
during the surveillance phase, monitoring for potential 
targets [9]. Having a non-adaptive design with static 
monitoring agents leads to the complete energy depletion 

for monitoring agents, while non monitoring agents use 
little energy. Hence, we were interested in having the 
system adapt to maintain a uniform level of energy 
among sensors while maintaining maximum coverage. 
To accomplish this, we introduced several guidance 
policies that allowed agents to give up monitoring when 
their energy dropped below a given threshold.  

We compared the energy level of each agent at the 
end of a simulation with and without policies. Without 
policies, the system kept the same monitor agents 
throughout, whereas the system with policies behaved as 
indicated above. We used the number of messages to 
measure energy consumption, which is reasonable given 
that communication dominates mote energy use [14].  

Figure 4 shows the energy consumed for both 
systems. The results were observed over a run of 1000 
simulation seconds with 3 targets appearing one at a time 
along the same path. Globally, there was a target present 
20% of the time. In the non-adaptive version, agents 6, 9, 
21 and 24 used more energy than any other agents. This 
is due to the fact that these agents were playing the 
monitor role during the entire simulation. On the other 
hand, we observed that the adaptive version kept the 
energy level uniform among all agents. In fact, even 
though both systems used 41% of their global energy, the 
standard deviation for the adaptive system was 12% 
whereas the one for the non-adaptive version was 28%. 
These results support the fact that our adaptive system 
was able to reorganize to maintain a uniform distribution 
of the energy used as directed by the policies. 

6. Related Work 
Several multiagent approaches have been proposed to 

develop sensor networks. A survey of MAS perspectives 
for WSN is available in [16]. However, most of the 
multiagent approaches do not consider an organizational 
design, which provide a better abstraction for MAS.  

Figure 3. Coverage obtained with agent failures 



Organizational approaches for WSN have been used 
in [15], [17]. Like ours, these approaches use 
organization mechanisms to manage sensor nodes. 
However, these approaches only deal with specific 
problems and do not specifically tackle the issue of 
adaptation. In addition, they do not follow a rigorous 
development process. Our organizational approach 
provides systems with enough knowledge to be able to 
self-organize and is supported by the O-MaSE process 
framework [6].  

7. Conclusion 
We presented an adaptive surveillance application that 
uses wireless sensor nodes to collaboratively monitor and 
track all vehicles entering an area. Our design was based 
on a multiagent organizational design paradigm [4] that 
provides the sensor nodes with the required knowledge 
to self-organize. The implementation was tested on a 
simulator to demonstrate the adaptive properties gained 
from developing applications using our organizational 
design approach. This implementation demonstrated both 
self-configuration and self-healing properties. 
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Figure 4. Energy Used discrepancies between the adaptive and non-adaptive system 


