
 
GRAPHICAL USER INTERFACE  

AND  
JOB DISTRIBUTION OPTIMIZER  

FOR A  
VIRTUAL PIPELINE SIMULATION TESTBED 

 
 
 

By  
WALAMITIEN OYENAN 

B.S., Université des Sciences et Technologies de Lille, 2001 
 
 
 
 
 
 

A PORTFOLIO 
Submitted in the partial fulfillment of the requirement for the degree 

MASTER OF SOFTWARE ENGINEERING 
 

Department of Computing and Information Sciences 
College of Engineering 

 
Kansas State University 

Manhattan, Kansas 
2003 

 
 
 

Approved by: 
 
 

Major Professor 
Dr. Virgil Wallentine 



 
CHAPTER 1: PROJECT OVERVIEW .............................................................................. 5 

1. Purpose ........................................................................................................................ 5 
2. Goals ........................................................................................................................... 5 
3. Constraints .................................................................................................................. 5 

CHAPTER 2: Software Requirement Specification ........................................................... 6 
1. Introduction ................................................................................................................. 6 

1.1Purpose ....................................................................................................................... 6 
1.2 Scope ......................................................................................................................... 6 
1.3 Overview ................................................................................................................... 6 

2. Overall description ...................................................................................................... 6 
2.1 Product perspective ................................................................................................... 6 
2.2 User interface: Pipeline Editor .................................................................................. 7 
2.3 Hardware interfaces .................................................................................................. 7 
2.4 Software interfaces .................................................................................................... 7 
2.5 Communications interfaces ....................................................................................... 8 
2.6 Product functions ...................................................................................................... 8 
2.7  User characteristics ............................................................................................ 8 

3. Specific requirements ...................................................................................................... 9 
3.1 External interface requirements ................................................................................ 9 
3.2 Functional requirements .......................................................................................... 10 

3.2.1 Pipeline Editor .......................................................................................... 12 
3.2.2 Optimizer .................................................................................................. 14 
3.2.3 Simulator ................................................................................................... 14 

3.3. Performance requirements ..................................................................................... 14 
3.4. Software system attributes ..................................................................................... 15 

a. Accuracy ........................................................................................................... 15 
b. Reusability ........................................................................................................ 15 
c. Maintainability .................................................................................................. 15 
d. Portability .......................................................................................................... 15 

CHAPTER 3: PROJECT PLAN ....................................................................................... 16 
CHAPTER 4: COST ESTIMATE .................................................................................... 17 

I- Function Point Analysis : .......................................................................................... 17 
II- Cost Analysis Using COCOMO .............................................................................. 21 

CHAPTER 5: Architecture Elaboration Plan ................................................................... 23 
CHAPTER 6: Software Quality Assurance Plan .............................................................. 24 
1. Purpose .......................................................................................................................... 24 
2. Management .................................................................................................................. 24 

2.1 Organization ............................................................................................................ 24 
2.2 Tasks ....................................................................................................................... 24 
2.3 Roles and Responsibilities ...................................................................................... 25 

3. Documentation .............................................................................................................. 25 
3.1 Purpose .................................................................................................................... 25 
3.2 Minimum documentation requirements .................................................................. 25 



3.2.1 Software requirements specification ................................................................ 25 
3.2.2 Software Test Plan ........................................................................................... 25 
3.2.3 Formal Software Specification ........................................................................ 25 
3.2.4 Software design document ............................................................................... 25 
3.2.5 User Documentation ........................................................................................ 25 

4. Standards, practices, conventions, and metric .............................................................. 26 
4.1 Purpose .................................................................................................................... 26 
4.2 Content .................................................................................................................... 26 

4.2.1 Documentation Standards ................................................................................ 26 
4.2.2 Coding Standards ............................................................................................. 26 
4.2.3 Metrics ............................................................................................................. 26 

5. Reviews and Audits ...................................................................................................... 26 
5.1 Purpose .................................................................................................................... 26 
5.2 Minimum Requirements ......................................................................................... 27 

6. Testing and Verification ............................................................................................... 27 
7. Problem reporting and corrective action ....................................................................... 27 
8. Tools, techniques, and methodologies .......................................................................... 27 

CHAPTER 7: Architecture Design ............................................................................... 28 
1. System Design Description ............................................................................... 28 
2. JGraph design.................................................................................................... 28 
3. Pipeline Editor Design ...................................................................................... 31 
4. Optimizer Design .............................................................................................. 33 

CHAPTER 8: Formal Requirement Specification ............................................................ 40 
Introduction ............................................................................................................... 40 
Specification ............................................................................................................. 40 
Verification ............................................................................................................... 40 

CHAPTER 9: Test Plan .................................................................................................... 46 
1. Introduction ....................................................................................................... 46 
2. Scope ................................................................................................................. 46 
5. Approach ........................................................................................................... 46 
6. Test Cases ......................................................................................................... 47 
7. Pass/Fail Criteria ............................................................................................... 47 
8. Deliverables ...................................................................................................... 47 
9. Responsibilities ................................................................................................. 47 
10. Schedule ........................................................................................................ 48 
11. Approval ....................................................................................................... 48 

CHAPTER 10: Implementation Plan ................................................................................ 49 
User Manual .............................................................................................................. 49 
Architecture Design .................................................................................................. 49 
Source Code .............................................................................................................. 49 
Assessment Evaluation ............................................................................................. 49 
Project evaluation: .................................................................................................... 49 
Other documents: ...................................................................................................... 49 

CHAPTER 11: Formal Technical Inspection ................................................................... 50 
Introduction ............................................................................................................... 50 
Items to be inspected ................................................................................................. 50 



Participants ................................................................................................................ 50 
Criteria ...................................................................................................................... 50 
Formal Technical Inspection Check List .................................................................. 50 

CHAPTER 12: USER MANUAL .................................................................................... 53 
I - System Overview ..................................................................................................... 53 
II - System Requirements .............................................................................................. 53 
III - Installation and Execution ..................................................................................... 53 
IV - Getting Started ....................................................................................................... 54 

4.1 Horizontal Toolbar Description .......................................................................... 54 
4.2 Vertical toolbar description ................................................................................. 54 

V - FEATURES ............................................................................................................ 56 
5.1 Change component properties............................................................................. 56 
5.2 Name a component ............................................................................................. 56 
5.3 Station view  ....................................................................................................... 56 
5.4 Create/Insert Library ........................................................................................... 57 
5.5 Save/Open ........................................................................................................... 57 
5.6 Cut/paste/copy..................................................................................................... 58 
5.7 Remove ............................................................................................................... 58 
5.8 Zoom ................................................................................................................... 58 
5.9 Optimize .............................................................................................................. 58 
5.10 Simulate ............................................................................................................ 58 
5.11 View simulation data ........................................................................................ 59 
5.12 Replay ............................................................................................................... 59 
5.13 Bend pipes ......................................................................................................... 59 

VI – FAQ ...................................................................................................................... 59 
CHAPTER 13: Technical Manual .................................................................................... 61 

I- Purpose ...................................................................................................................... 61 
II - Description .............................................................................................................. 61 

2.1 Adding and modifying components .................................................................... 61 
2.2 Mouse click handling and popup menu .............................................................. 68 
2.3 Mapping cells and jobComponents ..................................................................... 68 

III- Naming Conventions .............................................................................................. 68 
3.1 File names ........................................................................................................... 69 
3.2 Variable names .................................................................................................... 69 

IV- Communications ..................................................................................................... 69 
4.1 GUI-Optimizer .................................................................................................... 70 
4.2 GUI-Simulator .................................................................................................... 70 

V- Java Web Start ......................................................................................................... 70 
References: ........................................................................................................................ 72 
Acknowledgements: .......................................................................................................... 73 



CHAPTER 1: PROJECT OVERVIEW 

1. Purpose 
The purpose of this project is to develop a virtual pipeline simulation testbed. The 
simulation will model the pressure and flow rate distribution of gas in a real pipeline 
system. 
 

    2. Goals 
The design and implementation goals are: 

• Design a GUI to create and manipulate the pipeline system. 
• Implement an optimizer to efficiently distribute computation among several 

machines. 
• Integrate the GUI with a simulator that will simulate the behavior of each 

component of the real pipeline system by solving a set of particular partial 
differential equations. 

 

3. Constraints 
When developing a simulation, the main constraint is the time. The simulation has to run 
in a reasonable amount of time. For this reason, the software will use various parallel and 
distributed algorithms.  Another constraint is the space constraint (memory). The project 
will take into consideration those constraints and will be designed to optimize the use of 
time and space. 
  



CHAPTER 2: Software Requirement Specification 
 
1. Introduction 

1.1Purpose 
The purpose of this Software Requirement Specification is to establish and maintain a 

common understanding between the customer, Dr. Wallentine, and the software 
developer regarding the requirements for the proposed software. 
 

1.2 Scope 
The proposed software is a GUI and a job distribution optimizer for a virtual pipeline 

simulation testbed. The software will simulate the pressure and flow distribution that is 
happening in a real pipeline system. The software will use various parallel algorithms on 
several machines in order to reduce the amount of time needed by this computing-
extensive simulation. The software will also provide a GUI to graphically build the 
pipeline system and will perform the require computation in order to have a simulation as 
accurate as possible in a reasonable amount of time. The GUI will also be used to 
visualize the result of the simulation.  
 

1.3 Overview 
This Software Requirements Specification (SRS) is organized into two main sections: 
overall description and specific requirements.  The overall description section provides 
information describing general factors that will affect the requirements of the software.  
The specific requirements section describes in detail the requirements the software must 
meet. 
 
 
2. Overall description 

2.1 Product perspective 
The software is an interface to the Virtual Pipeline Simulation Testbed. It comprises a 
GUI (Pipeline Editor) and a job distribution optimizer (Optimizer). Once the pipeline 
system is drawn, the optimization and the simulation will be able start.  The computation 
will be done on several powerful computers and result will be transmitted back to the 



GUI for display. Communication among cluster machines will be done by message 
passing and shared memory. 
 

2.2 User interface: Pipeline Editor  
a) The pipeline editor shall support drag and drop operations for drawing 

components (pipes, joints, and compressors). 
b) The pipeline editor shall support standard editing functions (copy, cut, 

paste).   
c) The pipeline editor shall provide zoom functions. 
d) The pipeline editor shall display the simulation results.   
e) The user shall be able to store/retrieve a previously drawn pipeline system 

(group of components called library) and connect it with some new groups 
or components.  

f) The user shall be able to move components inside the editor to have a 
better positioning. 

g) The user shall be able to edit the characteristic of each component 
displayed. 

h) The user shall be able to define some checkpoints during the simulation. 
i) The user shall be able to playback (replay) the simulation from any given 

checkpoints. 
j) The user shall be able to start the application from any machines (using a 

browser and WebStart). 
k) At any time during the simulation, the user shall be able to interrupt the 

simulation. 
 
 

2.3 Hardware interfaces 
a) Each computer shall have enough memory and enough computing power 

(processors) to handle computing-extensive tasks. 
b) Each computer shall have an Ethernet card to communicate with other 

computers. 
 

2.4 Software interfaces  
a) The cluster computers shall run under the Linux operating system. 
b) Each computer shall have the Java Virtual Machine installed (version 1.4 

or later). 
c) Each computer shall have the JGraph 3.0 package installed. 

 



2.5 Communications interfaces 
Computers shall support TCP/IP to communicate with each other. 

 

2.6 Product functions 
a) The product shall provide a GUI with all the components needed to draw a 

complete pipeline system, a button to start the optimizer and a button to start the 
simulation. 

b) The product shall provide an optimizer. The optimizer should be able to produce a 
job allocation that balances the load of each processor (that is, minimizes the load 
differences among cluster machines assigned to the simulation). The jobs are the 
pipelines components (pipes, joints, compressors …). Each job has some 
computation time and some communication time. The computation time depends 
on the characteristic of the component and the machine on which it is executed. 
The communication time depends on the amount of information exchanged and 
whether or not the connected component are on the same machine (local 
communication) or not (remote communication). Given these constraints, the 
optimizer will find an optimal distribution of jobs among machines that 
minimizes the workload of each processor. 

c) The product shall integrate a simulator. The simulator should solve a set of partial 
differential equations that mathematically models the pressure and flow rate 
distribution in each component of the real pipeline system.    

 

2.7  User characteristics 
a) Users of the system should be experienced pipeline design engineers who 

have a good understanding of a pipeline system. 
b) Users should be able to understand and manipulate pipeline 

characteristics.  
c) No particular training should be necessary to use the software. 

Following is the use case diagram for the software: 
 



Save/Open Network

Save/Open Library

Draw/Edit Network

Optimize

Start Simulation

Interrupt Simulation

Insert/Delete Checkpoint

User

Replay

 
Virtual Pipeline Simulation System: Use Case 

3. Specific requirements 

3.1 External interface requirements 
The interface provided will be the pipeline editor. It should be able to be started from 

any computer via a browser using Java WebStart. The interface should provide all the 
necessary components to draw a complete pipeline system. Characteristics of those 
components shall be defined at the time of their creation. As the pipeline system can be 
very large, the interface shall provide a way to save/retrieve previously built pipeline 
subsystems. The interface will consist of one window with 2 toolbars and one menu bar. 
The horizontal toolbar will have a button for the components and will support drag and 
drop to insert components. The vertical toolbar will contain all the buttons for editing and 
zooming. The menu bar will offer the same functionality as the 2 toolbars in addition of 
the save/open function. The interface will offer the possibility to use the keyboard via 
some shortcut keys. 

 
Following is a screenshot of a prototype GUI: 

 



 
 

PIPELINE EDITOR 
 
 
 

3.2 Functional requirements 
In order to provide the most realistic and accurate simulation, the system should 
implement adequately every features of the pipeline simulation.  Each feature presents 
some required conditions that the system should meet to react correctly. 
The diagrams below show the sequence diagram and the interaction of the different parts 
of the software. 
 



 : Pipeline Editor : User  : Optimizer  : Simulator

Drag component

Optimize () Optimize (Graph) BuildJobGraph(graph)

Optimize(JobGraph)

Simulate()

Display component

          Client Side           Server Side ---Socket---

 : Server

Build Network

Display Network

WriteFile(jobsLists)

Interupt

Save Network

Simulate(JobsFilename)
ReadFile(filename)

Simulate
Send simulationData

Display Data

Interupt
Stop Simulation

Interupt_confirm
End of simulation

End of simulation

End_confirmEnd of simulation

Click link in Browser

Download Application (WebStart)

replay
ReadFile

Send Replay Data

 
Sequence diagram of the Virtual Pipeline Simulation Testbed 

 



OPTIMIZER

SIMULATOR

PIPELINE
EDITOR

**Graph Model ,
**Component Characteristics (
Type, Diameter, Length, Index,

Value, Gas-Type )
User Input

** List of Job Objects
(JobTypt, Machine,
Connections, File,

Parameters,
ExecTime)

Simulation
Data

 
Dataflow of the Virtual Pipeline Simulation Testbed 

 

.2.1 Pipeline Editor 
peline editor should come from the user. The user will define 

ent can 

a. List of components 
Th mponents: pipes, station, split, joint, orifice meter, 

 
3
Inputs: The input for the pi
the components belonging to the pipeline system along with their characteristics. 
Outputs: The pipeline editor shall produce a list of component objects. A compon
be either a pipe or a compressor. 
  

e GUI shall provide the following co
storage, compressor, driver, regulator, receipt point, delivery point.  
Following are the icons used in the GUI:  

                     
om sor Pipe Split Rec

b. Draw a component 
ny components needed for the pipeline system 

either b ng 

a) Draw a compressor 
nly be connected to pipelines. It can accept several 

pipelines connections. 

C pres Station          Storage Orifice  eipt 
 

The user shall be able to draw a
y clicking on the component icon in the toolbar or by dragging it into the drawi

pad. 

A compressor shall o



b) 
cted to at least two pipelines. Pipelines should be the 

nts connectable to joints. 
c) 

nnected at each end. 

ny components in the pipeline system either by 
rig ecting remove or by clicking on the remove icon 
in the t

the characteristics of any components inside the 
pip ck menu. Features available for editing should 
depend

t 
any components of the pipeline system inside the 

dra All the components connected to the component 
moved 

redo any action done on any components of the 
pip con in the toolbar. If there is no action to undo 
(or redo

ponent 
 any components of the pipeline system 

usi board shortcuts.  
 

zoom out any area of the pipeline system 
usi
 

le to launch the optimizer from the GUI by clicking on a 
bu
 

Draw a joint 
A joint should be conne
only compone
Draw a pipe 
Pipes should have another component co

 
c. Delete a component 

The user shall be able to delete a
ht-clicking on the component and sel

oolbar or using the delete key. 
 

d. Edit a component 
The user shall be able to edit 

eline system by using the right-cli
 on the component selected. 

 
e. Move a componen

The user shall be able to move 
wing space using a dragging move. 

should also move and stay connected. 
 

f. Undo/Redo an action 
The user shall be able to undo or 

eline system either by clicking on an i
), the button should be disable. 

 
g. Copy/Cut/Paste a com

The user shall be able to copy, cut or paste
ng the buttons in the toolbar or the standard key

h. Zoom in/Zoom out 
The user shall be able to zoom in or 

ng the buttons in the toolbar.  

i. Optimize 
The user shall be ab

tton on the toolbar. 



j. Simulate 
The user shall be able to launch the simulation from the GUI by clicking on a 

button on the toolbar. 
 

k. Insert a checkpoint 
The user shall be able to launch insert a checkpoint at any time during the 

simulation. 
 

l. Playback 
The user shall be able to restart the simulation by providing a checkpoint from 

where the simulation should be restarted.  
 
 
3.2.2 Optimizer 
Input: A list of components objects 
Output: A list of job objects. In addition to the fields of a component, a job has 
information about the machine on which it should be executed, the components 
connected to it, the execution time and the associated file containing the source code of 
its execution. 
 

The job allocation optimization is a discrete optimization problem. The system 
will use the Branch and Bound algorithm to find the best distribution given some time 
and communication constraints. The solution may not be optimal but should be very close 
to the optimal one. The optimizer should adequately balance computation and 
communication time among all the processors. It should output a list of all jobs along 
with the machines on which they should be executed in order to have the best 
distribution. 
 
3.2.3 Simulator 
Input: A list of job objects 
Output: A list of job object with their new property values. 

The simulator should solve a set of partial differential equations to simulate the 
pressure and flow rate distribution in each component of the pipeline system. It should 
continuously output some values in order to visualize the current state of the simulation 
in the GUI.    
 
 

3.3. Performance requirements 
The system should be able to handle at least a set of 1000 jobs. The computation time 

should be kept minimal in both the optimizer and the simulator. The user should not wait 



more than 20 minutes to have the output of the optimizer and no more than 1 hour for the 
results of the simulator. The amount of data transferred should also be kept minimal to 
avoid too much communication overhead. 
 

3.4. Software system attributes 
a. Accuracy 

Accuracy is the most important attribute for the virtual simulation pipeline 
testbed. The simulator must accurately model the pressure and the flow in each 
component of the pipeline system. If the convergence criteria are not well established, the 
simulation will be far from the real model. 
 

b. Reusability 
The system will have several releases with each time an increased number of 

functionality. Some new components and features will be added.  
 
 

c. Maintainability 
The system shall be separated into modules following the MVC (Model View 

Controller) pattern. There will be a module for the GUI, one for the optimizer and 
another one for the simulator. 
 

d. Portability 
The modules will be written in Java.  As Java is supported on many platforms, it 

should be quite easy to move to another platform. For performance reasons, some parts 
will be written in some specific platform-dependant languages.  
 

 
 
 
 
 
 

References 
IEEE STD 830-1998, "IEEE Recommended Practice for Software Requirements 

Specifications". 1998 Edition, IEEE, 1998. 
Dr. Scott Deloach’s CIS748 lecture notes “http://www.cis.ksu.edu/~sdeloach/748” 

 

http://www.dcc.ufmg.br/%7Erodolfo/es-1-03/IEEE-Std-830-1998.pdf
http://www.dcc.ufmg.br/%7Erodolfo/es-1-03/IEEE-Std-830-1998.pdf
http://www.cis.ksu.edu/%7Esdeloach/748


CHAPTER 3: PROJECT PLAN 

The project is divided into three phases, which are Specification phase, Design phase, and 

Implementation, Testing, and Documentation phase.  Each of those three phases is ended by 

presentation at the end of the phase. 

 
 
 
 Project Task Duration (Days) Start Date End Date

 
Phase I: Specification    

1. Background Study (JNI, Branch & Bound) 30 7/1/03 8/1/03
2. Overview 1 9/20/03 9/21/03
3. Optimizer prototype 30 8/1/03 9/1/03
4. GUI Prototype  25 9/10/03 10/6/03
5. Software Requirements Specification 1 9/24/03 9/25/03
6. Project Plan 1 9/23/03 9/24/03
7. Cost Estimation 1 9/25/03 9/26/03

  8. Software Quality Assurance Plan 1 9/26/03 9/27/03
  9.  Documentation for Presentation 2 4 9/29/03 10/2/03
10. Presentation 1  10/3/03
    
    
Phase II: Design   

11. Develop Prototype 20 10/05/03 10/25/03
12. Update SRS 1 11/03/03 11/04/03
13. Update SQAP 1 11/04/03 11/05/03
14. Test Plan 3 11/05/03 11/08/03
15. Develop Implementation Plan 3 10/20/03 10/23/03
16. Design 7 10/23/03 10/30/03
17. Formal Technical Inspection 4 11/03/03 11/07/03
18.  Documentation for Presentation 2 2 11/07/03 11/09/03
19. Presentation 2  11/10/03
    
    
Phase III: Implementation   

20. Source Code 30 11/11/03 12/10/03
21. Testing and Reliability Evaluation 2 12/1/03 12/3/03
22. Create User Manual 5 12/3/03 12/8/03
23. Project Evaluation 4 12/5/03 12/9/03
24. Project Document 10 12/3/03 12/13/03
25. Documentation for Presentation 3 9 12/3/03 12/11/03
26. Presentation 3   12/12/03
     
     



 

CHAPTER 4: COST ESTIMATE 
 

I- Function Point Analysis : 
A function point analysis is a method of calculation lines of code using function points. A 
function point is a rough estimate of a unit of delivered functionality of a software 
project. To calculate the number of function points for a software project all the user 
inputs, user outputs, user inquiries, number of files and number of external interfaces are 
counted and divided into three categories: low, average and high. 
 
 

• Number of user inputs  
Each user input that provides distinct application oriented data to the software is 
counted.  

o Drag a component 
o Delete a component 
o Change properties of a component  
o Display data of a component 
o Insert a pipe 
o Save/Open Graph 
o Save/Load Library 
o Create a station 
o Remove a station 
o Unfold a station 
o Fold a station 
o Undo/Redo action 
o Copy/Cut/Paste a component 
o Zoom in/Zoom out. 
o Optimize 
o Start Simulation 
o Stop Simulation 
o Start Replay 
o Stop replay 

 
 

• Number of user outputs  
Each user output that provides application oriented information to the user is 
counted. In this context "output" refers to reports, screens, error messages, etc. 
Each user input has a corresponding output. In addition some error messages can 
occur: 

o Bad station selection 



o Bad library file 
o Bad graph file 
o No optimization file 
o No simulation file 
o Graph not saved 

 
 

• Number of user inquiries  
An inquiry is defined as an on-line input that results in the generation of some 
immediate software response in the form of an on-line output. There are no 
inquiries in this software. 

 
 

• Number of internal files  
Each logical file generated by the program is counted.  Here there are 4 types of 
files: 

o Graph files. 
o Library files. 
o Optimizer files. 
o Simulator files. 

 
 

• Number of external interfaces file 
The external interface file is an internal logical file for another application. 

o Optimizer files 
o Simulator files 

 
 
Each of these five major components is rated as low, average or high depending on the 
number of files referenced and the number of data elements. 
A score is attributed to each rating level. 
 
External Input:  
Number of data elements: 19 
Number of file referenced: 2 
Rating: High 
Score: 6 
 
External Output:  
Number of data elements: 25 
Number of file referenced: 0 
Rating: Ave 
Score: 5 
 
External Inquiries:  
Number of data elements: 0 



Number of file referenced: 0 
Rating: N/A 
Score: 0 
 
Internal files:  
Number of data elements: 4 
Number of user data referenced: 4 
Rating: Low 
Score: 7 
 
External Files:  
Number of data elements: 2 
Number of user data referenced: 4 
Rating: Low 
Score: 5 
 
 
The following table gives the formula to compute the total unadjusted function point. 

 
 
Total Unadjusted Function Points: 6x6+5x5+7x15+5x10 = 216 
 
Total Function Points = Total Unadjusted Function Points x [0.65 + 0.01 x SUM(Fi)]   

where SUM(Fi) counts the technical complexity. It is generated by giving a rate on a 

scale of 0 to 5 for each of the following questions. The higher the rate the more important 

the function is. 

 

  Scale 

1 Does the system require reliable backup and recovery?  0 

2 Are data communications required? 5 

3 Are there distributed processing functions?  5 



4 Is performance critical?  3 

5 Will the system run in an existing, heavily utilized operational 

environment?  

2 

6 Does the system require on-line data entry?  0 

7 Does the on-line data entry require the input transaction to be built over 

multiple screens or operations?  

0 

8 Are the files updated online?  3 

9 Are the input, outputs, files or inquiries complex? 4 

10 Is the internal processing complex?  5 

11 Is the code designed to be reusable?  2 

12 Are conversions and installation included in the design?  0 

13 Is the system designed for multiple installations in different 

organizations?  

0 

14 Is the application designed to facilitate change and ease of use by the 

user?  

0 

 Total value adjustment factor 29 

 

Total function points = 216 * [0.65 + 0.01 * 29] = 203.04 

 

We select the language factor for applications written in JAVA to be 40. 

The language factor here is an assumed value. It is expected that the language factor for 
3rd generation language to lie between 20 and 60. since no code is automatically 
generated by an IDE but there will be some code reused, the language factor is assumed 
to be average. 
 

Therefore the estimated source lines of code =  

Total Function points * language factor = 203.04 x 40 = 8121 LOC  

 



II- Cost Analysis Using COCOMO  
The COCOMO model is a good measure for estimating the number of person-months 

and the time required to develop software. The Virtual Pipeline Simulation Testbed can 
be considered as an organic mode process (in-house, flexible with less-complex 
development). The basic effort and schedule estimating formula is: 

 
Effort = 3.2 EAF (Size) 1.05; 
Time = 2.5 (Effort) 0.38; 

 
Where: 
 Effort = number of staff-months 

EAF = Effort Adjustment Factor (cf. Table) 
Size = number of delivered source instructions (in thousands of lines of code) 

 
The following table gives the value of the efforts multipliers. The product of those 15 
factors will give the value of the EAF for the given project. 
 
 

Cost 
Driver 

Description Rating 

Very 
Low

Low Nominal High Very 
High

Extra 
High

Product               
RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 - 
DATA Database size - 0.94 1.00 1.08 1.16 - 
CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65 
Computer               
TIME Execution time constraint - - 1.00 1.11 1.30 1.66 
STOR Main storage constraint - - 1.00 1.06 1.21 1.56 
VIRT Virtual machine volatility - 0.87 1.00 1.15 1.30 - 
TURN Computer turnaround time - 0.87 1.00 1.07 1.15 - 
Personnel               
ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 - 
AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 - 
PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 - 
VEXP Virtual machine experience 1.21 1.10 1.00 0.90 - - 
LEXP Language experience 1.14 1.07 1.00 0.95 - - 
Project               
MODP Modern programming practices 1.24 1.10 1.00 0.91 0.82 - 



TOOL Software Tools 1.24 1.10 1.00 0.91 0.83 - 
SCED Development Schedule 1.23 1.08 1.00 1.04 1.10 - 

 
Table 2-1. Software Development Effort Multipliers (EAF) 

 
 

• EAF = 0.75 x 0.94 x 1.15 x 1.00 x 1.00 x 0.87 x 0.87 x 0.71 x 0.82 x 0.70 x 0.90 x 
0.95 x 0.82 x 0.91 x 1.10 = 0.17 

 
• KLOC = 8 (8,000 SLOC) (Estimation) 

 
• E = 3.2 x 0.17 x 81.05 = 4.82 staff-month 

 
• Time = 2.5 x 4.820.38 = 4.54 months 

 
Analysis: 
1 staff-month = 152 hours 
=> Total Time = 3326 Hours 
 
 
 
 
 
 
 
 
 
 
 

 
References: 

• “Software Cost Estimation: Metrics and Models”.  Kim Johnson  
http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm. 

• “An Introduction to Function Point Analysis”, http://www.qpmg.com/fp-intro.htm 
• David Longstreet, “Fundamentals of Function Point Analysis”, 

http://www.ifpug.com/fpafund.htm 

http://www.qpmg.com/fp-intro.htm


 

CHAPTER 5: Architecture Elaboration Plan 

  The purpose of this document, as required by the MSE portfolio requirement, is to 
define the activities and actions that must be accomplished prior to the Architecture 
Presentation.  

The activities and actions to be accomplished prior to the architecture presentation are 
listed below: 

• Software Requirement Specification.  
• Software Quality Assurance plan  
• The Engineering Notebook  
• The vision document  
• The Cost Estimation 
• The Project plan 
• The Implementation Plan   

The artifacts that will undergo formal technical inspection are: 
• Object model 
• The requirement specification  

 
The Formal Technical Inspection will follow an IEEE standard formal checklist and will 
be led by two MSE students and one student involved in the project: 

1.      Padmaja Havaldar 
2.      Sudarshan Kodwani 
3.  Liubo Chen 

The inspectors will provide a well-documented report on the result of their inspection. 

 

 
References: 
http://www.cis.ksu.edu/~sdeloach/748/protected/slides/748-4-formal-inspections.pdf  



CHAPTER 6: Software Quality Assurance Plan 

 

1. Purpose 
The software item covered by this SQAP is the ‘Virtual Pipeline Simulation Testbed’.  
The system is used to simulate the pressure ad the flow in the components of a real 
pipeline system.  This SQAP covers the entire life cycle of the software. 
 
 
2. Management 

2.1 Organization 
A committee of three professors will supervise the project. Only one developer will 
implement the project. The committee consists of: 

• Dr. Virgil Wallentine (Major Professor) 
• Dr. Masaaki Mizuno  
• Dr. Daniel Andresen.   

The developer is Walamitien Oyenan. 
The committee will approve the design and requirements and will be responsible for 
monitoring implementation progress. 
 

  2.2 Tasks 
The following tasks will be completed for the project: 

• Requirements Specification 
• Cost Estimation 
• Project Planning 
• Formal Specification & Verification 
• Test Planning 
• Design Documentation 
• Project Presentations 
• Inspections 
• Implementation 
• Testing & Verification 
• Documentation 
• Project Evaluation 

 
 



  2.3 Roles and Responsibilities 
 The developer will be responsible for all the tasks described above. He will be 
under the supervision of the major professor and will report to all the committee members 
in the form of three presentations. 
 
 
3. Documentation 

3.1 Purpose 
To ensure the quality of the Virtual Pipeline Simulation Testbed, as a minimum, 

the Software Quality Assurance will use the Software Design Document (SDD), the 
Software Requirement Specification (SRS), the Test Plan, the Formal Specification and 
the User Documentation for verifying and validating the product.  
 

  3.2 Minimum documentation requirements 
3.2.1 Software requirements specification 

            The SRS lists the requirements of a system and it should correctly describe the 
system requirements. It specifies the functionality and performance of the project in 
terms of speed, reliability etc. It describes how the system interacts with the people using 
it and specifies the design constraints and standards to be followed. 
 

3.2.2 Software Test Plan   

The purpose of this document will be to develop and record formal procedures for 
the verification and validation of the pipeline simulation software. 
          

3.2.3 Formal Software Specification 

         A section of the software will be formally specified using a formal specification 
tool. 
              

3.2.4 Software design document 

            This document describes the overall structure of the software. It will contain an 
object model constructed using rational rose. The object model will describe the various 
classes used in the project.  
 

3.2.5 User Documentation 

          The user documentation will consist of a user manual, which will identify the 
features of the software and their functions. It will also describe all error messages and 



program limitations and constraints. The user documentation will also contain source 
code. 
  
4. Standards, practices, conventions, and metric 

4.1 Purpose 
This section identifies the standards, practices, conventions, and metrics to be 

used in the virtual pipeline simulation system and states how the compliance will be 
monitored and assured. 
 

4.2 Content 
The MSE project portfolio will serve as a guideline in developing the documents. 

         
4.2.1 Documentation Standards 

 The Software Requirements Specifications (SRS) and SQA Plan (SQA) will be based 

upon IEEE Software Engineering Standards. 

          
4.2.2 Coding Standards 

         The source code will follow the guidelines in the Java coding standards. 
 

4.2.3 Metrics 

         The COCOMO model will be used to estimate the effort and time needed for the 
development of the software. 
 
 
5. Reviews and Audits 

5.1 Purpose 
This section defines the technical and managerial reviews to be performed, and states 

how they are to be accomplished. 
 



5.2 Minimum Requirements 
A number of reviews will be done during the design, development, and testing of the 

project.  They will be under the supervision of the committee.  The following reviews 
will be conducted: 

• Software Requirements Review 
• Preliminary Design Review 
• Formal Technical Inspection 

 
In addition, there will be three formal presentations at the end of each phase of 
development as describe on the project plan. 
 
6. Testing and Verification 

To insure that the Virtual pipeline system meets the required quality, some tests have 
to be performed during the development process. The system must satisfy the standard 
functional requirements for the gasoline pump system stated in the SRS. The system 
should also satisfy the others criteria as stated in the SRS: performance, accuracy, 
reusability, maintainability and portability. 
 
7. Problem reporting and corrective action 

All problems that cannot be resolved by the developer will be reported to the major 
professor.  The committee will provide reviews on all current work and corrective 
measures for changes will be taken. The errors and problems encountered during the 
development of the project will be documented. 

 
8. Tools, techniques, and methodologies 

The project will use the JGraph3.0 library along with Swing to build the Pipeline 
Editor (GUI). Rational Rose will be used to visually design the software being developed. 
Alloy or OCL will be used as a formal specification tool. 
 
 
 
 
 
References  
“IEEE guide for software quality assurance planning” IEEE Std-730.1-1995 
Pressman, Roger S. "Software Engineering: A Practitioner's Approach". Fifth Edition, 
Mc GrawHill, NY, June, 2001. 

http://infocenter.mimos.my/documents/IEEEstd1.pdf


CHAPTER 7: Architecture Design 
 

1. System Design Description 
This document contains the complete architectural design of the GUI and the 

Optimizer of the Virtual Pipeline Simulation Testbed. The GUI is built as an extension of 
the JGraph and Swing packages. In order to have a better understanding of the design, 
this document will briefly describe the design and features of JGraph before explaining in 
details the design of the GUI and the Optimizer.  The complete design of JGraph can be 
found online (cf. references). 

There are 3 main packages in this architecture:  
• Jgraph 
• Editor 
• Optimizer 

The design of each package will be explained separately in the rest of this document. 
 
 

2. JGraph design 
The implementation of JGraph is entirely based on the source code of the JTree class. 

However, it is not an extension of JTree; it is a modification of JTree's source code. The 
components for trees and lists are mostly used to display data structures, whereas this 
graph component is typically also used to modify a graph, and handle these modifications 
in an application-dependent way. 
 
 2.1 - Features 

The main features of JGraph are:  
 

• Inheritance: JTree's implementation of pluggable look and feel support and 
serialization is used without changes. The UI-delegate implements the current 
look and feel, and serialization is based on the Serializable interface, and 
XMLEncoder and XMLDecoder classes for long-term serialization.  

 
• Modification: The existing implementation of in-place editing and rendering was 

modified to work with multiple cell types. 
• Extension: JGraph's marquee selection and stepping-into groups extend JTree's 

selection model.  
 

• Enhancement: JGraph is enhanced with datatransfer, attributes and history, 
which are Swing standards not used in JTree.  

 
• Implementation: The layering, grouping, handles, cloning, zoom, ports and grid 

are new features, which are standards-compliant with respect to architecture, and 
coding conventions.  

 



 
2.2 - The Model 

The model provides the data for the graph, consisting of the cells, which may be 
vertices, edges or ports, and the connectivity information, which is defined using ports 
that make up an edge's source or target. This connectivity information is referred to as the 
graph structure. (The geometric pattern is not considered part of this graph structure.)  
 

 
 

Figure 1. A graph with two vertices and ports, and one edge in between 
 
 
 

 
 

Figure 2. Representation of the graph in the DefaultGraphModel 
 
 
2.3 - The View 

The view in JGraph is somewhat different from other classes in Swing that carry 
the term view in their names. The difference is that JGraph's view is stateful, which 
means it contains information that is solely stored in the view. The GraphLayoutCache 
object and the CellView instances make up the view of a graph, which has an internal 
representation of the graph's model.  

 
 

Figure 3. GraphLayoutCache and GraphModel 
 
 



The GraphLayoutCache object holds the cell views, namely one for each cell in 
the model. The graph view also has a reference to a hash table, which is used to provide a 
mapping from cells to cell views. 
 
 
2.4 - The control 

The control defines the mapping from user events to methods of the graph- and 
selection model and the view. It is implemented in a platform-dependent way in the UI-
delegate, and basically deals with in-place editing, cell handling, and updating the 
display. As the only object that is exchanged when the look and feel changes, the UI-
delegate also specifies the look and feel specific part of the rendering.  

 
In JGraph, the graph model, selection model and graph view may dispatch events. 

The events dispatched by the model may be categorized into: 
• Change notification 
• History support 

 
 

 
 

Figure 4. JGraph's event model 

The GraphModelListener interface is used to update the view and repaint the 
graph, and the UndoableEditListener interface to update the history. These listeners may 
be registered or removed using the respective methods on the model.  
 

The selection model dispatches GraphSelectionEvents to the GraphSelectionListeners 
that have been registered with it, for example to update the display with the current 
selection. The view's event model is based on the Observer and Observable class to 
repaint the graph, and also provides undo-support, which uses the graph model's 
implementation.  
 
 



3. Pipeline Editor Design 
Most of the classes of the Pipeline Editor extend the classes of JGraph in order to 

provide a custom graph needed to draw the pipeline network. Only a few classes directly 
extend some Swing classes. The features implemented by the pipeline editor are 
described in the Software Requirement Specification document. 
 
 
3.1 - Class diagram 

Following is the class diagram of the pipeline editor: 

MyGraph
selectPipe : boolean
actionMap : ActionMap

getAction()
isCellEditable()
insert()
createVertexView()
createPortView()
createEdgeView()
getArchivableState()
setArchivableState()

MyModel

acceptSource()
acceptTarget()

MyPortView
portIcon : ImageIcon

getBound()
getRenderer()

Editor
optimizer
graph
graphUndoManager

ungroup()
group()
isGroup()
undo()
redo()
property()
open()
save()
openLib()
saveLib()
valueChanged()
keyPressed()
createMenuBar()
createToolbar()

MyGraphTransferHandler

importDataImpl()
doImport()

ButtonTransferHandler
type : String

getType()
createTransferable()
getSourceActions()

MyCell
dataCell : DataCell

getDataCell()
setDataCell()

CompressorCell

JointView

paint()

PipeView

paint()

CompressorView

paint()

JointCell
pipeCell

DataCell

MyMarqueeHandler
graph : MyGraph

connect()
isForceMarqueeEvent()
mousePressed()
mouseDragged()
mouseReleased()
getSourceportAt()
getTargetPortAt()
mouseMoved()
createPopupMenu()

MyUserObject
properties : Map

valueChanged()
getProperty()
setProperty()
getProperties()
setProperties()
clone()
showPropertyDialog()

DataRenderer
dataPanel : JPanel

getRendererComponent()
installAttributes()

JGraphDefaultGraphModel PortView MarqueeHandler

DefaultGraphCell

GraphTransferHandler

VertexView

VertexRenderer

Mediator
graph : MyGraph
optimizer : optimizerClient
simulator : SimulatorClient

optimize()
simulate()
stopSimulation()
Replay()
updateData()

OptimizerClient

run()
isDone()
setFilename()
setTime()
setJobs()

SimulatorClient

run()
isDone()
setCommand()
getCommand()
setFilename()
getStatus()
setStatus()

 
 

Figure 5: Class Diagram of the Pipeline Editor 
 
3.2 - Class description 

This section describes each class of the pipeline editor and its function. For the 
classes extending JGraph classes, only the purpose of the extension is explained. To 



understand the whole function of the class, it is necessary to refer to the extended class in 
the JGraph package. 
 
Class Editor extends JPanel: 
This is the main class representing the main panel of the application. It has the graph 
panel (instance of JGraph) and the toolbars. 
 
Class MyGraph extends JGraph: 
Provide a custom graph model.  
Contains all the necessary methods to create and insert custom components in the graph. 
 
Class MyMarqueeTransferHandler extends MarqueeTransferHander: 
Provide a custom mouse handler for the graph.  
Provide custom edges used to represent pipes. 
Create popup dialogs. 
 
Class MyModel extends GraphModel: 
Define the criteria to accept the connection edge (pipe) and cell (component) 
 
Class MyPortView extends Port view: 
Define a custom representation of ports. 
 
Class MyGraphTransferHandler extends GraphTransferHandler: 
Provide drag and drop support for the graph. 
 
Class ButtonTransferHandler extends TransferHandler: 
Transfer Handler for dragging the buttons from the toolbar. 
 
Class DataCell extends DefaultGraphCell: 
Define a cell use to display data from the simulation. 
This cell is a JPanel. 
 
Class DataRenderer extends VertexRenderer: 
Use to render the DataCell as a JPanel containing information to be displayed. 
 
Class MyCell extends DefaultGraphCell: 
Abstract class for all the custom cells representing the components. 
Each MyCell object has a reference to a DataCell. 
 
Class CompressorCell extends MyCell: 
Represent a component cell. The component is a compressor.  
Each component cell has a DataCell and a MyUserObject to holds information about the 
cell. 
There is similar class for each component (Pipe, Joint, Split …). 
 
Class CompressorView extends VertexView: 



Define the shape of the component. 
There is similar class for each component (Pipe, Joint, Split …). 
 
Class MyUserObject extends Object: 
Holds the property of the associated object (component) in a map for future reference. 
Display the property dialog for each component. 
 
Class SaveServer: 
Server to save the user file on the server side. 
Receive the file via socket and save it. 
 
Class SaveClient: 
Send the file to be saved to the server via socket. 
 
Class Optimizer: 
Create JobComponent objects from component cells taken from the graph. 
Each component cell has a corresponding JobCcomponent. 
Holds a reference to BranchBound class to start the optimization. 
 
 
4. Optimizer Design 
 
Problem: Given a set of jobs with execution time and computation time and a set of 
machines, find the optimal job distribution among those machines. That is, find the 
distribution that minimizes the differences in the load of each machine.  
 
4.1 - Depth-First Branch and Bound 

Each job j has a computation weight Wj and a communication time Cj (sum of 
each communication time with all neighbors). 
 
The objective is to minimize the load on the busiest machine. 
 
At each node, we consider a cost function for the busiest machine only (worst-case 
estimate). 
 
A vertex in the tree represents a partial/complete allocation of jobs on machines. 
The root of the search tree is the empty allocation. 
A vertex at level k in the tree represents an assignment of jobs {J1,…,Jk}. 
 

a) Cost function 
The cost function f(x) is defined by: 

f(x) = g(x) + h(x) ; 
where:  

g(x) : actual cost for the current allocation. 
h(x) : load contribution on the busiest machine of the next job to be allocated. 

We have:  



• g(x) = ∑(Wj+Cj) for all j allocated to the busiest machine. 
 Note: Cj consider only the communication with neighbors already allocated. 
 

• h(x) = min(Wi, Ci) , i being the next job to be allocated. 
The heuristic function h(x) is explained as follows: 

*If job i is eventually assigned on the busiest machine, its contribution to this 
node’s load is just its weight. 

*If job i is eventually allocated on some other machine, its contribution to the 
node’s load is its communication time. 
At each step, we want the take the case that minimize h(x). 

 
b) Pseudo Algorithm: 

   minCost = infinity,  
   root = empty allocation,  
   cost(root) = 0 
    stack = allJobs 
While stack not empty do 
 node = dequeue stack 
 if node isLeaf, update minCost 
 else  
   compute cost(node) 
   if cost(node) > minCost then prune node 
              else generate job allocation of all children of node 
   end if 
           end if 
end while 
return minCost 
 

The following figure shows an execution of the Branch and Bound algorithm with 
3 tasks (T1, T2, T3) and 2 processors (N1, N2) without and with pruning (Fig 7, 8). 
 



 
Fig. 6: Example with 3 tasks(T1, T2, T3) and 2 processors (N1, N2) without pruning 
 
 

 
Figure 7: Example with 3 tasks (T1, T2, T3) and 2 processors (N1, N2) with pruning 
 
 



c) Shared Version 
In the shared version, the sequential algorithm is started. When there are enough nodes, 
the nodes are distributed among workers. Each worker can the start its own branch and 
bound algorithm. Every time a new bound is reached, it is compared to the shared bound 
and updated if necessary. At the end, the shared bound, which is the minimal found, will 
be associated to a solution object (containing the minimal allocation). This solution 
Object will be returned. 
  
 
4.2 - Class Diagram 
 



BranchBound
minCost : Solution
active : Stack
node : Node

findSolution()
startSolution()

Solution
value : int
allocation : Vector

getValue()
getAllocation()

Node
allocated : Vector
remaining : Vector
allocation : Vector
load : Vector
leaf : boolean

getLoad()
getCost()
setLoad()
setCost()
setAllocation()
getAllocation()
isLeaf()
getLoadForMachine()
setLoadForMachine()
getAllocationForMachine()

Machine
numProcessors : int
name : String
id : int
speed : int

getPower()
getNumProcessor()
getSpeed()

SharedBound
value : float
solution : Solution

getValue()
setValue()
getSolution()
setSolution()

Optimizer
graph : JGraph
workers : Vector
allJobs : Vector
allMachines : Vector

optimize()
createPipe()
createJoint()
createCompressor()

Worker
solution : Solution
stack : Vector
numMachine : int
numJobs : int

addNode()

CompareJob

compare()

Pipe
diameter (0.6m) : double
length (100000.0m) : double
theta (0.0) : double
nodes (51) : int
gasType (1) : int
hin (200.0) : double
tin (298.15) : double
p_1 : double
p_nodes : double
number (3) : int
index : int[3]
value : double[3]
p : double[51]
t : double[51]
m : double[51]

Compressor
gasType (1) : int
ps : double
ts : double
ms : double
pd : double
td : double
md : double
power (1000.0) : double
speed (14000.0 : double
efficiency (75.0) : double
head (20.0) : double
fuel (1.0) : double
number(4) : int
index : int[4]
value : double[4]

Joint

JobComponent
machineID : int
componentType : int
componentID : int
neighborsIn : Vector
neighborsOut : Vector

getMachineId()
getcomponentType()
getComponentId()
getNeighborsIn()
getNeighborsOut()

 
Figure 9: Class Diagram of the Optimizer 



4.3 - Class Description 
 
Class BranchBound 
Implement the branch and bound algorithm. 
Holds a reference to the current solution found. 
 
Class Solution 
Represent a solution to the Branch and Bound algorithm. 
Contains the minimal allocation found. 
 
Class Node 
Holds the current allocation. The allocation can be partial (non-leaf node) or complete 
(leaf node). 
For a non leaf node, jobs non allocated yet are stored inside the node. 
An allocation is an array of machine with their corresponding jobs. 
 
Class Machine 
Holds all the information about a machine. 
Store all the jobs allocated to this machine so far. 
 
Class JobComponent 
Abstract class representing a job. Sub classes of this class are component objects (pipe, 
compressor, joint…) . 
 
Class Pipe extend JobComponent 
Holds all the properties and initial values of a pipe. 
There is a similar class for all components (Compressor, Joint, split…). 
 
Class Worker extends Thread 
Worker objects are threads searching a part of the tree.  
They exchange new bounds via a shared memory (class SharedBound). 
Holds a stack of nodes representing their part of the tree. 
 
Class SharedBound 
Holds the minimal bound found so far by the Worker objects. 
Also holds the allocation (Solution object) corresponding to this bound. 
 
Class CompareJob 
Used to specify how jobs should be compared. 
When the jobs are sorted, it helps reducing the number of nodes visited to reach the 
solution. 
Jobs are compared by number of neighbors and by weight. 
   



 
References:  

• Gaudenz Alder, Design and Implementation of the JGraph Swing Component  
http://www.jgraph.com/documentation.shtml 
 

• Dar-Tzen et al., Assignement and Scheduling Communicating Periodic Tasks in 
Distributed Real-Time Systems, IEEE Transactions on Parallel and Distributed 
Systems, 1997 

http://www.jgraph.com/documentation.shtml


CHAPTER 8: Formal Requirement Specification 
 
Introduction  

This document specifies the protocol between the GUI on the client side and the 
simulator on the server side.  
 
Specification 

The GUI needs to be able to listen to the simulator in order to get the data from the 
simulation. When the user wants to start a simulation, he needs to pass a filename to the 
simulator. If this filename is not valid, an error code is returned. If it is a valid filename 
(the file exists and has the proper format), then the GUI is ready to accept data from the 
server.  As long as there is some data available, the server continues to send them. At any 
time, the user can interrupt the simulation. A message is then sent to the simulator. The 
protocol will make sure that there is no loss of data due to interruption. The server can 
also send an end message when the simulation reaches the end. At the end (either by 
interruption, or normal termination), both the server and the GUI should be ready to start 
the protocol again. 
 
Verification 

The protocol is specified using Promela and checked with Spin. We want to check 
that the protocol has no deadlock. We also want to be able to verify that there are no 
unexpected messages. (E.g. a data message when expecting an end message). 
Following are the FSMs used to derive the Spin Model: 
 



init
wait

data_ex

Recv_
done

Send_
done

Send file

Recv reject

Recv accept
Recv done

Send done

Send done

Recv done

Recv data

Recv data
 

Figure 1: FSM for the GUI 
 

 
Figure 2: FSM for the Simulator 

 
 



 
SPIN Model: 
 
 
/*   Protocol GUI -  Simulator 
 *   Virtual Pipeline Simulation Testbed 
 * 
 *   Walamitien OYENAN 
 */ 
 
#define idle 0 
#define wait 1 
#define check 2 
#define data_ex 3 
#define recv_done 4 
#define send_done 5 
 
 
#define MAX 4 
 
int datasent = 0; 
mtype = {file, reject, accept, data, done} 
 
chan socket1 = [MAX] of {mtype} 
chan socket2 = [MAX] of {mtype} 
 
 
  
proctype gui (chan send, recv) { 
  int state = idle; 
 
end: 
  do 
    :: atomic { state == idle ->  
     send ! file; 
     state = wait; 
      } 
    :: atomic { recv ? reject -> 
        assert (state == wait); 
        state = idle 
      } 
    :: atomic { recv ? accept -> 
        assert (state == wait); 
        state = data_ex; 
           
      } 



    :: atomic { recv ? data -> 
        assert (state == data_ex || state == send_done); 
        skip; 
      } 
    :: atomic { recv ? done -> 
         assert (state == data_ex || state == send_done); 
     if  
          :: state == data_ex -> 
           state = recv_done; 
          :: state == send_done -> 
           state = idle; 
        fi 
      } 
    :: atomic { state == data_ex -> 
        send ! done; 
        state = send_done; 
      } 
     
    :: atomic { state == recv_done -> 
            send ! done; 
            state = idle; 
      } 
  od 
} 
 
 
proctype simulator(chan send, recv) 
{ 
  int state = idle; 
 
end: 
  do 
    :: atomic { state == idle ->  
     recv ? file; 
     state = check; 
      } 
    :: atomic { state == check ->  
     send ! reject; 
        state = idle 
      } 
    :: atomic { state == check -> 
     send ! accept; 
        state = data_ex; 
           
      } 
    



    :: atomic { recv ? done -> 
       assert (state == data_ex || state == send_done); 
 if  
       :: state == data_ex -> 
  state = recv_done; 
       :: state == send_done -> 
  state = idle; 
    fi 
      } 
    :: atomic { state == data_ex -> 
        if 
   :: datasent < MAX -> 
     send ! data; 
     datasent++ 
   :: else -> 
     send ! done; 
     state = send_done; 
 fi 
      } 
       
      :: atomic { state == recv_done -> 
   send ! done; 
   state = idle; 
      } 
     
  od 
} 
 
 
init { 
  atomic { 
    run gui(socket1,socket2); 
    run simulator(socket2, socket1); 
  } 
} 
 
 
SPIN Output: 
 
(Spin Version 3.4.16 -- 2 June 2002) 
 + Partial Order Reduction 
 
Full statespace search for: 
 never-claim          - (not selected) 
 assertion violations + 
 cycle checks        - (disabled by -DSAFETY) 



 invalid endstates + 
 
State-vector 56 byte, depth reached 53, errors: 0 
     162 states, stored 
     152 states, matched 
     314 transitions (= stored+matched) 
     330 atomic steps 
hash conflicts: 0 (resolved) 
(max size 2^19 states) 
 
2.542 memory usage (Mbyte) 
 
 
 
 
Reference: 
“Spin Online References”, http://spinroot.com/spin/Man/index.html 



CHAPTER 9: Test Plan 
 
 
1. Introduction 

The Software Test Plan (STP) describes the plans for testing the software. The 
purpose of the test plan is to ensure that the intended functionalities are implemented 
properly. To fulfill this objective, a series of test will be executed during the 
implementation. 
 
 
2. Scope  

This plan will address only those items and elements that are related to the GUI and 
the Optimizer of the Virtual pipeline Simulation Testbed.  The primary focus of this plan 
is to ensure that the GUI provides the appropriate functionalities and that the optimizer 
produces an optimal solution. 
The project will have three levels of testing, Unit, System/Integration and Acceptance. 
Unit testing focuses verification effort on the major functions, and integration testing 
tests the program structures built with unit-tested modules. The details for each level are 
address in the approach section and will be further defined in the level specific plans.  
 

3. Test Item 
These are the items to be tested: 

• Pipeline Editor 
• Optimizer 

 

4. Features to be Tested 

• Pipeline Editor functions 
• Optimizer performance 
• Communication GUI – Optimizer 
• Communication GUI - Simulator 

 

 
5. Approach 

5.1. Unit Testing 
There will be mainly two units: the GUI unit and the Optimizer unit. All the 

classes will be tested in the unit they refer to. Classes belonging to both units 
(JobComponent and subclasses) will be tested only in the GUI unit. 

 



5.2. Integration testing 
Once the individual units have passed unit testing those units may then be used in 

integration testing.  During integration testing, the units will be incorporated together 
and tested, adding one unit at a time.  Integration testing will put together the GUI 
unit and the Optimizer unit. 

 
 
6. Test Cases 

6.1. Unit Tests 
 

Pipeline Editor–  
• Given a network, all operations as define in the Software Requirement 

Specification should produce the expected result. 
• Drawing a network should meet all the requirements as defined in the 

Software Requirement Specification document. 
 
Optimizer –  

• Given a set of jobs and machines, it should produce the correct output.  
• Will have the capability to produce an optimal solution with at least 

1000 jobs.  

6.2.  Integration Tests 
GUI-Optimizer: Given a network, the GUI and the Optimizer should be able to 

communicate effectively and produce the expected file as output.  
 
 
7. Pass/Fail Criteria 

The system will pass if the functionality and performance requirements are met. 
 
 
6. Suspension Criteria 

Suspension Criteria: If any of the tests selected by the member do not give the expected 
result, then the testing will be suspended until the bug is fixed. 
 
 
8. Deliverables 

• Test Plan. 
• Test Case Specification. 
• Test input and test output data. 

 
 
9. Responsibilities 

The developer is responsible for all the testing activities.  



 
10. Schedule 

Unit Testing – each unit will be tested during implementation. 
Integration Testing – as the program units are integrated together, the program 

will be tested. 
 
 
11. Approval 

Approved by Committee Members. 
 
 
 
 
 
 
 
 
 
 
 
Reference: 
“IEEE Standard for Software Test Documentation”, IEEE Std 829-1998 
 
 

http://students.cs.tamu.edu/zdalal/606/Plans/ieee829.pdf


CHAPTER 10: Implementation Plan 

The Implementation plan will define the tasks to be completed during 
implementation. The tasks are as following: 

User Manual   

The Manual will describe all the features of the software (Pipeline Editor and Optimizer).   
It will also describe in detail how to use the pipeline editor. The completion criteria for 
this task would be when all the features and their use have been successfully described.  

Architecture Design 

The architecture design will be revised every time a change occurs. These changes will 
be documented along with the component design. 

Source Code  

The source code will be documented using the javadoc documentation. This source code 
will comply with the architecture design. 

Assessment Evaluation  

This assessment evaluation will contain a report of the tests done on the software and the 
results of these tests in the form of a test log.  

Project evaluation:  

The project evaluation document will review the process adopted for the implementation 
of this project and the effectiveness of the methodologies used. The completed software 
will be reviewed to check if it complies with the initial overview of the project. The 
product will also be reviewed to check the quality of the product. 

The implementation of the software will be considered completed when  

• The critical functions of the GUI will be implemented   
• The optimizer will successfully compute the optimal distribution  
• The GUI will successfully display the result of the simulation  

Other documents: 

Formal Technical Inspection reports. 

  



CHAPTER 11: Formal Technical Inspection 
 

Introduction  
  This document provides a formal checklist for the requirement specification 
document of the software. The purpose of this document is to ensure the quality of the 
software requirements. The checklist will be evaluated by three students and their report 
will be documented. 
  

Items to be inspected 
The Software Requirements Specification document (version 2.0) will be inspected. 

 
Participants 

• Padmaja Havaldar 
• Sudershan Kodwani 
• Liubo Chen 

 
Criteria 
Input:  The Inspectors should review the SRS document and evaluate if Yes/No/Partial 
and suggest comments if needed. 
 
Output: The inspectors’ reports. 
 
Formal Technical Inspection Check List 

Compatibility  

• Do the interface requirements enable compatibility of external interfaces 
(hardware and software)?  

Completeness  

• Does SRS include all user requirements (as defined in the concept phase)?  
• Do the functional requirements cover all abnormal situations?  
• Have the temporal aspects of all functions been considered?  
• Does SRS define those requirements for which future changes are anticipated?  
• Are all normal environmental variables included?  
• Are the environmental conditions specified for all operating modes (e.g., normal, 

abnormal, disturbed)?  

Consistency  

• Is there any internal inconsistency between the software requirements?  
• Is the SRS free of contradictions?  



• Does SRS use standard terminology and definitions throughout?  
• Is SRS compatible with the operational environment of the hardware and 

software?  
• Has the impact on the environment on the software been specified?  
• Has the impact of software on the system and environment been specified?  

Correctness  

• Does the SRS conform to SRS standards?  
• Are algorithms and regulations supported by scientific or other appropriate 

literature?  
• Does SRS reference desired development standards?  
• Does the SRS identify external interfaces in terms of input and output 

mathematical variables?  
• What is the rationale for each requirement? Is it adequate?  
• Is there justification for the design/implementation constraints?  

Feasibility  

• Will the design, operation, and maintenance of software be feasible?  
• Are the specified models, numerical techniques, and algorithms appropriate for 

the problem to be solved?  

Modifiability  

• Are requirements organized so as to allow for modifications (e.g., with adequate 
structure and cross referencing)?  

• Is each unique requirement defined more than once? Are there any redundant 
statements?  

• Is there a set of rules for maintaining the SRS for the rest of the software 
lifecycle?  

Traceability  

• Is there traceability from the next higher level spec (e.g., system 
concept/requirements and user needs as defined in concept phase, and system 
design)?  

• Does the SRS show explicitly complete coverage of requirements defined by client?  
• Is SRS traceable forward through successive development phases (e.g., into the 

design, code, and test documentation)?  

Understandability  

• Does every requirement have only one interpretation?  
• Are the functional requirements in modular form with each function explicitly 

identified?  



• Is there a glossary of terms?  
• Is formal or semiformal language used?  
• Is the language ambiguous?  
• Does the SRS contain only necessary implementation details and no unnecessary 

details? Is it over specified?  
• Are the requirements clear and specific enough to be the basis for detailed design 

specs and functional test cases?  
• Does the SRS differentiate between program requirements and other information 

provided?  

Maintainability 

• Does the documentation follow MSE portfolio standard 
• Is the documentation clear and unambiguous 

Verifiability/Testability  

• Are the requirements verifiable (i.e., can the software be checked to see whether 
requirements have been fulfilled)?  

• Is there a verification procedure defined for each requirement in the SRS?  

Clarity 

• Are all of the decisions, dependencies, and assumptions for this design 
documented?  

• Are names indicative of their meaning?  
• Is each concept defined only once, with one clear meaning?  
• Is each statement written as clearly as possible?  

Functionality 

• Does the design implement the specification and requirements?  

Reliability  

• Are abnormal conditions considered?  
• Are the defect conditions/codes/messages specified completely and meaningfully? 

 

 

References 

IEEE Std 1028-1998, “IEEE Standard for Software Reviews and Audits”.  1998 Edition, IEEE, 1983. 

“Software Formal Inspections”, Software Assurance Technology Center (SATC), 1997, 
http://satc.gsfc.nasa.gov/fi/fipage.html 

Weiss, Alan R.  and Kerry Kimbrough, “Fundamentals of Software Inspections, Version 2.1”.  1995.  
http://www2.ics.hawaii.edu/~johnson/FTR/Weiss/weiss-intro 

http://satc.gsfc.nasa.gov/fi/fipage.html
http://www2.ics.hawaii.edu/%7Ejohnson/FTR/Weiss/weiss-intro


CHAPTER 12: USER MANUAL 
 
 

I - System Overview 
The Pipeline Editor is a feature-rich graphical user interface designed to provide 

pipeline designers with a graphical view of their pipeline systems and simulation data. 
This allows for quick pipeline design and data generation. The software integrates an 
optimizer, which goal is to optimize the time of the simulation. As the simulation is done 
among several distributed machines, the optimizer will attribute each component of the 
pipeline system to a particular machine in order to minimize the overall time needed to 
compute the simulation data. The Pipeline Editor can be started from any computers. 
Once started, it will connect to the optimizer and the simulator server. 
 
 

II - System Requirements 
• The execution of the software requires Java Web Start 1.2. It is a tool that allows 

user to access the application from any computer using an Internet browser.  
• The user should also have access to the C drive in order to write some data in the 

temporary folder.  
• To start the application, Netscape Navigator or Internet Explorer (or any other 

browser) is needed. For the first time, an internet connection is needed. After the 
application has been downloaded, the user will have the choice to integrate the 
application in the desktop in order to be able to run it offline.  

 
 

III - Installation and Execution 
No particular installation steps are needed. In case the computer does not have 

Java web Start installed, it will needed to be installed. Visit 
http://java.sun.com/products/javawebstart/download.html to install the latest version of 
Java Web Start. 
To execute the software, go to 
http://www.cis.ksu.edu/~oyenan/MyWeb/project/project.htm and click on Pipeline Editor 
or directly point your browser to this address:  
http://www.cis.ksu.edu/~oyenan/MyWeb/project/project.jnlp. The application should start 
downloading. A security-warning window will appear. Accept to launch the application. 
The application will then start.  
 



 

IV - Getting Started 
The application consists of one main window with two toolbars and one menu 

bar. The vertical toolbar has some buttons representing the pipeline components. The 
horizontal toolbar contains all the buttons for editing and simulating. The menu bar offers 
the functionality of the horizontal toolbar in addition to some other functions later 
described. 
 

 4.1 Horizontal Toolbar Description 

 
 

 
Figure 1: The horizontal toolbar 

 
 
Following is the description of each button of the horizontal toolbar:  

• Create a new graph ( ) 
• Open a graph: ( ) Open a graph file (.vps extension) 
• Save the current graph ( ) 
• Undo : ( )undo the last action 
• Redo: ( )Redo the last action 
• Copy:  ( ) Copy the selected item(s) 
• Paste : ( ) Paste a copied or cut item(s) 
• Cut : ( )Cut the selected item(s)  
• Zoom actual size: ( ) Return the normal scale of the graph 
• Zoom in: ( )Zoom in the graph 
• Zoom out: ( )Zoom out the graph 
• Simulate: ( ) Start the simulation 
• Stop : ( ) Stop the simulation 
• Optimize: ( ) Start the optimizer 
• Replay: ( ) Start the replay session 
• Stop : ( ) Stop the replay session 

 
   

4.2 Vertical toolbar description 

 
<= Figure 2: The component toolbar 
 
The component toolbar is the toolbar with all the components needed to draw the pipeline 
system. Following is the description of its buttons: 



• Selection Tool: ( )  
Used to select any components in the graph. It is always selected by default 
except when the pipe tool is selected. Use this button to cancel the pipe tool 
selection.  

 

• Insert Pipe tool:  
Use this tool to insert a pipe between two components. When the tool is selected, 
the cursor becomes a cross. Rolling over a component port will then cause this 
port to be highlighted. This indicates the possibility of connecting a pipe to this 
port. You can then drag the cursor to another port to have a pipe. 
To come back to a mode where components can be moved, you have to select the 
selection tool. 

• Show/Hide Connectors:  
Set the ports of all components in the graph to be visible or hidden. When the 
ports are visible, a pipe can be directly drawn without selecting the pipe tool. This 
avoids selecting the pipe tool every time a pipe needs to be drawn. When over a 
port, the hand cursor will appear, indicating that it is ready to draw a pipe. You 
can then just drag the hand to another port and a pipe will be drawn. 
If it becomes difficult to grab a component and move it (because the component is 
too small), you can just hide the ports. This way, you can click anywhere on the 
component and move it. 
 

• Pipeline Components: You can insert a component by either clicking on the 
component or dragging its toolbar button into the drawing space. Clicking on the 
component will drop the component at a default location. Following is a list of all 
the pipelines component found in the Pipeline Editor: 

 

 Delivery point: Represent a delivery point. 
 

 Receipt point: Represent a receipt point. 
 

 Compressor: Component composed of a compressor and a driver. 
Type of this component can be set up by right-clicking on the component. 
 

 Joint: Component used to connect two pipes together. 
 

 Valve: Used to connect two pipes. Can have two states: open or close. 
The state of the valve can be change on the right-click menu. 
 

  Split: Represents a 2-way splitting junction.  
 

 Split:  Represents a 3-way splitting junction. 



 

 Junction:  Represents a 2-way combining junction. 
 

 Junction: Represents a 3-way combining junction. 
 

 Storage: Component representing a storage. 
 

 Regulator: Component representing a regulator. 
 

 Orifice: Component representing a orifice meter. 
 
 

V - FEATURES 

 5.1 Change component properties 

The properties of each component in the graph can be updated by right-clicking 
on the component and selecting ‘Edit Properties’. A property window will open and let 
you change the values. 
For the compressor, it is also possible to change the type of driver and compressor. For 
that, right click on a compressor and select ‘set type’.  
The state of a valve (open/close) can also be set. Right-click on the valve and select 
‘Change State’. 
 

 5.2 Name a component 

For reference purpose, it is possible to give a name to each component in the 
graph. Even though this name appears on the property panel, it has no physical meaning 
and is not mandatory. To change/define the name of a component, double-click on the 
component. A box will appear and you can type the name inside. You can also right click 
on the component and select ‘rename’.  
 

5.3 Station view ( ) 

a- Create Station 
It is possible to create a station with some selected cells. When the cells are 

selected, right-click anywhere on an empty space of the graph and select ‘create station’ 
on the menu. A station will be created. A station can only have one pipe entering and one 
pipe exiting and should not have any pipe with its source or target out of the station. If 
this situation happens, a station cannot be created and an error message will occur. 
 



b- Unfold Station 
Once a station is created, it is possible to view the component inside it. Right 

click on the station and selection ‘Unfold station’. When a station is unfold, component 
are visible but cannot be moved individually.  
When a station is unfolded, you can access and manipulate components inside the station 
without having to destroy the station. A first click on the component will select the 
unfolded station (dashed rectangle enclosing all components) and a second click will 
select the component inside the station. Once the component is selected, you can 
manipulate it as it was out of the station. Be aware that if the station is already selected, a 
click on a component inside will directly select the component.   
 

c- Fold Station 
You can fold back the station by doing a right-click on one of the component of 

the station and select ‘fold station’ in the menu. If you right-click on an empty space 
inside an unfold station, you will not be able to have the fold option. 
 
 d- Destroy Station 

It is possible to destroy the station by doing a right click on the station and 
selecting ‘destroy station’. All the components will therefore be out of the station and 
will be able to be moved separately. 
 

5.4 Create/Insert Library 

Any group of components can be saved as a library and retrieved later. Select all 
the components to be part of the library. Then go to File->Save As Library. The library 
will be saved. 
To insert a saved library, go to File->Open Library, and then select a valid library name. 
The library will then be inserted into the current graph. All library names have a .lib 
extension. Even if the original library name was created without this extension, it will be 
added automatically. For example, if you save your library as ‘myLibrary’, when opening 
it, you need to choose the file ‘myLibrary.lib’. 
 

5.5 Save/Open 

At any time, the graph can be saved. Just click on the save icon or go to File-> Save and 
choose a name. 
To open a graph, click on the open icon or go to File ->Open and choose the name of the 
graph to open. Make sure to have saved all previous work before opening a new graph. 
All graph files should have a .vps extension. Even if the original library name was 
created without this extension, it will be added automatically. For example, if you save 
your graph as ‘myGraph’, when opening it, you need to choose the file ‘myGraph.vps’. 
 



5.6 Cut/paste/copy 

To cut or copy, select the component(s). To select a component, just click on the 
component. To select a group of components, drag the mouse to draw a selection square 
enclosing all the desired components. Selected components will be highlighted in green. 
Once the components are selected, click on the cut or copy icon. If there are some items 
previously cut or copy, you can paste them and they will appear on the graph.  
 

5.7 Remove 

To remove a component, select the component and click remove. If a group of 
components is selected, all the components will be removed. When a component is 
removed, all the pipes connected to it are also removed. Notice that data cells cannot be 
removed. They are always associated with a component. They can just be hidden. 
 

5.8 Zoom 

 By clicking on the zoom icons, it is possible to do a zoom in, zoom out or to come 
back to the actual size of the graph.  
 

5.9 Optimize 

 When the graph is completed and is ready for simulation, you need to first run the 
optimizer by clicking on the optimizer icon or by going to Tool->Optimize. 
An error message will appear if the current graph has not been saved. 
The parameters of the optimizer can be defined by going to Tool->Set optimizer 
parameters. There, you can specify the time to wait before interrupting the optimization. 
Usually, for a medium network, a time of 5 minutes will give some satisfying results. 
When the optimizer is running, you can query its state to determine whether or not it is 
done. For that, go to Tool –>Check Optimizer State. 
When the optimizer is done, it is advised to save the graph again. By doing that, the new 
information creates by the optimizer will be saved and you will not have to optimize the 
graph next time you open the file.  
Be aware that components inside stations will be optimized separately, just as any other 
components.  
 

5.10 Simulate 

 Once the optimizer is done, the simulation can be executed. Click on the 
simulation icon or go to Tool -> Start Simulation. When opening a file that has already 
been optimize, it is not necessary to optimize the graph again. The simulator will run and 
after some time, you will see the first results coming.  



At any time, the simulation can be stopped by clicking on the stop button. Once the 
simulation is stopped, it can only restart from the beginning. To review data previously 
simulated, you can use the replay option. 
 

5.11 View simulation data 

 For each component expect pipes, it is possible to have a summary view of the 
data from the simulation. Right click on the component and select ’show data’. The data 
show the pressure, temperature and mass flow of the component.  
When a data cell is visible, you can hide it by right clicking on the component associated 
to it and select ‘Hide data’. Summary data are always linked to a component. Therefore, 
it is easy to know which component they refer. 
For all components, it is also possible to display all the data. For a pipe, right-click on it 
and select ‘display data’. For any other components, right-click on the data cell (it has to 
be visible) and select ‘display data’. A window will appear with all the simulation data. 
Notice that simulation data cannot be modified. 
 

5.12 Replay 

 After each simulation, it is possible to review all the data generated during the 
simulation. Click on the play icon in the toolbar and the replay function will be started. If 
there are no simulation data available, an error message will appear. 
At any time, the replay can be stopped by clicking on the stop button. 
 

5.13 Bend pipes 

 With Shift-click on a pipe (maintain shit and click on the pipe), it is possible to 
add a bending point to the pipe. This function is just provided for a better display and has 
no real physical meaning. Once a bending point is created, you can bend the pipe by 
dragging the bending point. To remove the bending point, do a Shift-click on the point. 
 
 

VI – FAQ 
 
Q: When I click on the link, the application does not start. 
A: If the browser asks you to open the file, which means you do not have Java Web Start 
installed on your computer. Go to 
http://java.sun.com/products/javawebstart/download.html and install the latest version of 
Java Web Start. 
If you have Java Web Start, verify that you have permission to write on the C: drive of 
your machine. 
 



Q: The program crashes when I run the optimizer or the simulator. 
A: The server is not running. Contact the administrator. 
 
Q: When I want to move a component, it starts drawing a pipe. 
A: Either the Pipe tool is selected (cross cursor) or you are over a port. For small 
components, an easy way to move them is to hide the ports. This way, you will never be 
over a port. 
 
Q: I do not see any data coming when I run the simulator. 
A: You did not save the graph after having run the optimizer. When optimizing, a 
mapping is done between cells from the graph and components from the simulator. If the 
graph is not saved, the mapping is lost and the simulator cannot map the data with the 
cells in the graph. The solution is to restart the optimization. 
 
 
 
 
 
 



CHAPTER 13: Technical Manual 

 
 

I- Purpose 
 The goal of this document is to provide a general description of how to modify or 
update certain functions of the pipeline editor. It also provides a description of the 
function of some elements. For more information about the classes and methods, refer 
to the Design document and the API document available online. 

 
 

II - Description 
Following is a general description for:  

• Adding and modifying components. 
• Mouse click handling and popup menu 
• Mapping cell-jobComponent 

 

 2.1 Adding and modifying components 

 The main class to insert and modify components is the class MyGraph. This class 
defines all the properties for the components (by creating UserObject objects). Each 
component (compressor, joint, valve…) has a userObject that hold its properties. For this 
reason, the display of the properties dialog box is done by the class MyUserObject. 
Here are all the steps to add a new component: 

1- Define a new cell class for the component (similar to CompressorCell class). 
2- Define a view for the component (similar to CompressorView class). In the 

view, the paint method for the new component has to be specified. 
3- In the MyGraph class, associate the cell with the view (method 

createVertexView() ). 
4- Define the properties of the new component by adding a method in MyGraph 

that return an UserObject holding the properties of the component.  
5- Define a property dialog for the component in the class MyUserObject 

(optional). 
6- In MyGraph class, add the component cell in the insert() method to allow the 

new cell to be inserted in the graph. 
7- In the Editor class, add a new button to the toolbar corresponding to this new 

component.  
8- Create a new class extending JobComponent to have a job component 

associated to this new component. The new job component should use the 

http://www.cis.ksu.edu/%7Eoyenan/MyWeb/Project/sources/CompressorCell.java
http://www.cis.ksu.edu/%7Eoyenan/MyWeb/Project/sources/CompressorView.java
http://www.cis.ksu.edu/%7Eoyenan/MyWeb/Project/sources/MyGraph.java
http://www.cis.ksu.edu/%7Eoyenan/MyWeb/Project/sources/MyUserObject.java


cell’s userObject in order to initialize its fields (see Compressor.java). The 
execution time of the new job component is also defined in this class. 

9- In Mediator.createJob(), associate the new component cell to the new job 
component created. This method also defines the local and remote 
communication time for all the components. 

 
 
 Example: Let’s add a new compressor that face the opposite direction of the 

current one (like this ). We are going to call this component compressor2.  
 

1- Define Class Compressor2Cell: 
 
public class Compressor2Cell extends MyCell  { 
    public CombineCell(Object userObject) { 
      super(userObject); 
    } 
  } 
 
 

2- Define Class Compressor2View 
 
public class Compressor2View extends VertexView { 
    static Compressor2Renderer renderer = new Compressor2Renderer(); 
     
public Compressor2View(Object cell, JGraph graph, CellMapper cm) { 
  super(cell, graph, cm); 
    } 
    public CellViewRenderer getRenderer() { 
      return renderer; 
    } 
 
    public static class Compressor2Renderer extends VertexRenderer { 
 public void paint(Graphics g) { 
  int b = borderWidth; 
  Graphics2D g2 = (Graphics2D) g; 
  Dimension d = getSize(); 
  boolean tmp = selected; 
  int[] xPoints = {b-1,b-1,d.width-b,d.width-b}; 
  int[] yPoints = { d.height*3/8,d.height*1/8, b-1,d.height/2 }; 
  int[] xPoints2 = {b-1,b-1,d.width-b,d.width-b}; 
  int[] yPoints2 = {d.height*9/16,d.height,d.height,d.height*9/16}; 
  if (super.isOpaque()) { 
   g.setColor(super.getBackground()); 
   g.fillPolygon(xPoints, yPoints, xPoints.length); 
   g.fillPolygon(xPoints2, yPoints2, xPoints2.length); 
   g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16 ); 

http://www.cis.ksu.edu/%7Eoyenan/MyWeb/Project/sources/Mediator.java


  } 
  try { 
   setBorder(null); 
   setOpaque(false); 
   selected = false; 
   super.paint(g); 
  } finally { 
   selected = tmp; 
  } 
  if (bordercolor != null) { 
   g.setColor(bordercolor); 
   g2.setStroke(new BasicStroke(b)); 
   g.drawPolygon(xPoints, yPoints, xPoints.length); 
   g.drawPolygon(xPoints2, yPoints2, xPoints2.length); 
   g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16 ); 
 
  } 
  if (selected) { 
   g2.setStroke(GraphConstants.SELECTION_STROKE); 
   g.setColor(graph.getHighlightColor()); 
   g.drawPolygon(xPoints, yPoints, xPoints.length); 
   g.drawPolygon(xPoints2, yPoints2, xPoints2.length); 
   g.drawLine(d.width/2,d.height*7/16,d.width/2, d.height*9/16 ); 
  }}}} 
  
Notes:  

• The class Compressor2View also defines the renderer for this class. This could 
have been done in a separate class called Compressor2Renderer. 

• The paint method defines 3 types of view: opaque, non-opaque and selected. 
When the component is opaque, it is filled with the proper color. When it is not 
opaque, only the perimeter is drawn (with the borderColor). We also need to 
define how the component is viewed when it is selected. In this case, using the 
predefined selection stroke (green dash line), we are just drawing the perimeter. 
We could have drawn the enclosing rectangle instead.  

• Each component has a size (rectangle) defined when it is created. It will be 
painted inside this rectangle (its dimension are d.width and d.height). 

 
 

3- Associate the cell with the view: Class MyGraph.createView() 
 protected VertexView createVertexView(Object v, CellMapper cm) { 
   if (v instanceof JointCell) 
    return new JointView(v, this, cm); 
   else if (v instanceof CompressorCell) 
    return new CompressorView(v, this, cm); 
   else if … 
   …  



   else if (v instanceof Compressor2Cell) 
    return new Compressor2View(v, this, cm); 
   return super.createVertexView(v, cm); 
 } 
 
 

4- Define the properties: MyGraph.createUserObject(). Let’s say that 
Compressor2 has 3 properties: Temperature, Pressure and Mass with a default 
value of respectively 10.1, 20.2, 30.3 

 private MyUserObject compressor2UserObject(){ 
  String s; 
   MyUserObject userObject = new MyUserObject("compressor2"); 
   s =new String("10.1"); 
  userObject.putProperty("Pressure", s); 
   s =new String("20.2"); 
   userObject.putProperty("Temperature", s); 
   s =new String("30.3"); 
   userObject.putProperty("Mass", s); 
  return userObject; 
 
} 
Notes:  

• The properties and the values are of type String. Therefore, when reading the 
value, it has to be cast in the proper type (generally double or int). 

 
 

5- Define the property dialog 
A default propertyDialog (displaying the properties) and dataDialog (displaying 

the data) will be created. A default property dialog is created for each userObject. There 
is no need to create one unless the dialogs have to display different information than the 
properties stored in the userObject. To create a custom property dialog, go to 
MyUserObject class and define the new dialog box.   
protected void showCompressor2Property(final MyGraph graph, final Object cell) { 
 // create JDialog compressor2Dialog 
 //populate the dialog box 
 // compressorDialog.show() 
} 
 
Add a call to this dialog box in MyMarqueeHandler.createPopupMenu(). 
public JPopupMenu createPopupMenu(final Point pt, final Object cell) { 
 JPopupMenu menu = new JPopupMenu(); 
 … 
 if (cell instanceof Compressor2Cell) { 
  menu.add(new AbstractAction("Edit Compressor2") {   
      public void actionPerformed(ActionEvent e) {  



 ((MyUserObject)(((DefaultGraphCell)cell).getUserObject())).showCompressor2P
roperty(graph,cell);        } 
  }); 
 … 
 
Note: 

• If a special dialog is created, the default one has to be canceled. 
 
 

6- Insert the component: MyGraph.insert(). Let’s create the part of code to insert 
a component of type COMPRESSOR2 (this type will be define in the next 
step). 

 
public void insert(String type, Point point) { 
Hashtable attributes = new Hashtable(); 
     int u = GraphConstants.PERCENT; 
  Map mapPort; 
    // Construct Vertex with no Label 
    DefaultGraphCell vertex = new DefaultGraphCell(); 
    DataCell data = new DataCell(); 
… 
 
// *************Insert a compressor2***************** 
   if (type.equals("COMPRESSOR2")){ 
    MyUserObject userObject = compressor2UserObject(); 
      vertex = new Compresso2rCell(userObject); 
      data.setUserObject(userObject); 
     // Default Size for the new Vertex 
     size = new Dimension(50,75); 
 
     // Add a Port 
  mapPort = GraphConstants.createMap(); 
  GraphConstants.setOffset(mapPort,new Point(0, (int) (u / 4))); 
  DefaultPort port = new DefaultPort("left"); 
  vertex.add(port); 
  attributes.put(port,mapPort); 
 
  mapPort = GraphConstants.createMap(); 
  GraphConstants.setOffset(mapPort,new Point(u, (int) (u / 4))); 
  port = new DefaultPort("right"); 
  vertex.add(port); 
     attributes.put(port,mapPort); 
 
     ((CompressorCell)vertex).setDataCell(data); 
 
 } 



Notes: 
• A vertex is created with a compressor2UserObject. Recall that this userObject 

holds all the properties for the component. This vertex has a data Object (to 
display summary data) and a size (size of the enclosing rectangle; used in step 2). 

• Depending on the component, we have to define a certain number of ports and 
their position. The position is relative to u. This variable can be seen as the width 
or length of the enclosing if used respectively in the x-coordinate or the y-
coordinate. In our case, the port will be at 1/4th from the top of the enclosing 
rectangle. 

• Each port has a fixed name as defined in the naming conventions (Section 3). 
 
 

7- Add a new toolbar button 
public JToolBar createToolBar2() { 
    JToolBar toolbar = new JToolBar(SwingConstants.VERTICAL); 
    toolbar.setFloatable(false); 
// InsertCompressor2 
    URL comp2Url = getClass().getClassLoader().getResource("gif/comp2.gif"); 
    ImageIcon comp2Icon = new ImageIcon(comp2Url); 
    compressor = toolbar.add(new AbstractAction("Comp", comp2Icon) { 
      public void actionPerformed(ActionEvent e) { 
    graph.insert("COMPRESSOR2",new Point(10, 20)); 
      } 
    }); 
        compressor2.setToolTipText("Compressor2"); 
… 
MouseMotionListener ml = new MouseMotionAdapter() { 
            public void mouseDragged(MouseEvent e) { 
                JComponent c = (JComponent)e.getSource(); 
                TransferHandler th = c.getTransferHandler(); 
                th.exportAsDrag(c, e, TransferHandler.COPY); 
            } 
        }; 
        compressor2.setTransferHandler(new 
ButtonTransferHandler("COMPRESSOR2")); 
        compressor2.addMouseMotionListener(ml); 
… 
 
Notes: 

• You should have an image icon for the new component (in this example 
comp2.gif). Images are 24 x 24. 

• The action when the button is pressed is to insert compressor2 into the graph. The 
type specified when calling graph.insert() should match the type used in MyGraph 
class (step 6). 

• The MouseMotionListener is used to handle Drag & Drop. Each button in the 
toolbar has to be notified when a drag gesture is started. 



 
 

8- Create a JobComponent for the new component. Recall that compressor2 has 
3 properties: pressure, temperature, mass. 

public class Compressor2 extends JobComponent implements Serializable{ 
private double pressure, temperature, mass; 
public Compressor2(MyUserObject userObject){ 
  super(1); 
  componentId = c++; 
  gasType = new 
Integer((String)(userObject.getProperty("gasType"))).intValue(); 
  number = new 
Integer((String)(userObject.getProperty("number"))).intValue(); 
  String indexVal = (String)(userObject.getProperty("index")); 
  String valueVal = (String)(userObject.getProperty("value")); 
 
Notes: 

• The execution time is defined in the constructor. It is the parameter of the 
superclass constructor. In this case, the execution time is 1. 

• The initialization of the fields comes from the userObject. As the property values 
are Strings, a casting in the proper type is necessary. 

• Get and set methods have to be defined for each field. 
 
 

9- Associate the component cell to the job component: class Mediator 
private Vector createJobs(){ 
hash = new Hashtable(); 
for (Iterator iter = cells.iterator(); iter.hasNext();){ 
 JobComponent j = null; 
 DefaultGraphCell o = (DefaultGraphCell)(iter.next()); 
 if (o instanceof CompressorCell) 
   j = createComp2Node(o); 
 else if (o instanceof Compressor2Cell)   // o is a compressor2 
  j = createComp2Node(o); 
 else if … 
 … 
 if (j != null){ 
  hash.put(o,j); 
} 
 
private JobComponent createComp2Node(DefaultGraphCell cell){ 
 MyUserObject userObject = (MyUserObject)(cell.getUserObject()); 
 return new Compressor2(userObject); 
} 
 

Note: 



• The jobComponent is created from the userObject of the cell stored in the 
hashtable for future reference.  

 
 
 

 2.2 Mouse click handling and popup menu 

 All the mouse events are handled in the class MyMarqueeHandler. The popup 
menus are also created in this class. Every time a click occurs, this class detects the cell 
on which the click has occurred and initiates the proper action (see example step 5). 
This class also handles the pipes creation. The userObject for the pipes are defined in the 
class MyMarqueeHandler (as opposed to MyGraph for all other components).  
The decision of whether or not some components should accept pipes sources or targets is 
taken in the class MyModel. 
 
Example : Accept source only from the left of compressor2. 
public class MyModel extends DefaultGraphModel { 
public boolean acceptsSource(Object edge, Object port) { 
 if ((((DefaultPort)port).getParent() instanceof Compressor2Cell)){ 
   if (((DefaultPort)port).getUserObject().toString().equals("right")) 
    return false; 
   else return true; 
 } 
 … 
… 
} 
  

 2.3 Mapping cells and jobComponents 

 In order to optimize or simulate the graph, a mapping has to be done between 
cells from the graph and Job Component used by the optimizer and the simulator. This 
mapping is done by the Mediator class. This class holds 2 static hashtables: one for the 
mapping cell–JobComponent and another one for the mapping JobComponent-Cell. This 
class is the link between the graph and the optimizer and the simulator. This is in the 
mediator class that data of the simulation are updated inside each cell. 
 
 

III- Naming Conventions 
There is some naming conventions for the files and variable names used by the 
application. 
 



 3.1 File names 

The graph files are saved with the extension ‘.vps’. Those files are saved on the client 
machine and just contain information for rebuilding the graph. An vps file is the 
serialization of the view and the model of the graph. An example of file would be 
‘test.vps’. 
The optimizer files use the extension ‘.opt’. They use the basename of the graph file 
saved by the user. For instance, if a user save a graph under ‘test.vps’, the optimizer file 
will be named ‘test.opt’. For this reason, the user is prompted to save the graph before 
optimizing. Optimizer files are saved on the server side. They are used by the simulator. 
An opt file is a serialized vector containing all the JobComponents created from the graph 
cells. Those JobComponents contain information generated from the optimizer about the 
machine on which they should be executed. 
The simulator files use the extension ‘.sim’. The file name is created by adding the 
timestamp of the simulation to the basename of the graph file saved by the user. For 
instance, the 5th set of data produced by the simulator will be saved under ‘test5.sim’. The 
initial file is named ‘test0.sim’. It is the same data as the original file received from the 
optimizer. Simulator files are the serialization of a vector containing the JobComponents. 
Each JobComponent in this file has been updated with new values coming from the 
simulation.   
 

 3.2 Variable names 

The only variable names that are fixed are the name of the ports and the name of the data 
edges (edges linking a cell with its data). For components having 2 ports, the left port will 
be called ‘left’ and the right port ‘right’.  
Example: 
DefaultPort port = new DefaultPort("left"); 
  
For components with more than one left port, the names of the left ports should contain 
the string ‘left’ (no matter what the name is, i.e topLeft). Same for components with more 
than one right port. This naming convention helps to easily identify the ports. 
The data edge name is ‘data’. Knowing this name helps making the distinction between a 
data edge and a pipe (which is also an edge).  
Example:  
DefaultEdge edge = new DefaultEdge("data"); 
 
 

IV- Communications 
 The GUI, on the client side, has to communicate with the optimizer and the 
simulator on the server side. 
 



 4.1 GUI-Optimizer 

 The protocol of this communication is very simple. The GUI communicates via 
the OptimizerClient class. First, the OptimizerClient opens a connection to the server on 
port 3333. Then it sends a list of jobs (a vector). After, it sends a mapping 
(id,JobComponent), then the file name and finally a time. The time is the optimizer time, 
input from the user. The default time is 2 minutes. The file name is the name under which 
the graph has been saved. It is needed to save the optimizer file under the same name. 
The mapping (id, JobComponent) is needed by the Branch and Bound algorithm in order 
to find the JobComponent from any given job id. The list of jobs is a vector of all jobs 
components created from the cell of the graph. The vector is created by the method 
Mediator.createJobs().   
On the other side, the optimizer (the server), receives those objects and starts the 
computation. Whenever an error occurs, it sends a message (REJECT) to the 
OptimizerClient that notifies the GUI. If all the information has been received properly, it 
sends an ACCEPT message. When it is done, it creates a file that will be used by the 
simulator and send a DONE message.  
 

 4.2 GUI-Simulator 

 The protocol of this communication has been specified in the Formal 
Specification document. The communication is done via the SimulatorClient that 
connects to the simulator server on port 4000. The optimizerClient receives commands 
from the GUI and passes them to the simulator that executes the proper action. The 
commands are: Stop, sendFile, Replay.  
To start the simulation, the GUI initiates a sendFile command. The OptimizerClient then 
transfers the optimizer filename (test.opt) to the simulator.  
For a replay, it sends the filename of the simulator initialization file (test0.sim).  
In both cases, the simulator reply by an ACCEPT if the file exists or REJECT if not. If 
the file is accepted, the simulator start sending data either by computing them for a 
simulation command or by taking them from the file previously stored in the case of a 
replay command. The OptimizerClient receives the data and notifies the Mediator that 
updates the display. As each JobComponent is mapped to a graph cell, the data are 
fetched from the JobComponent and updated in the corresponding cell’s userObject. For 
a simulation, each time a new set of data is transferred to the client, a new file is created. 
Those files are used for the replay and follow the naming convention defined earlier.  
At any time, the user can stop the simulation or the replay. A stop message is then sent to 
the simulator, which, upon reception of this message, stops sending data and returns to an 
idle state.  
 
 

V- Java Web Start 
 Java Web Start is used to access the application from any browsers. When using 
Web Start, the application can be untrusted and run in a sandbox. However, due to the 



sockets access to the optimizer and the simulator, the code has to be signed in order to 
use the client network. To be able to start, the application must come in a jar file and with 
and jnlp file. The jnlp defines the name, path, description, and main class of the 
application. It also defines the type of permission is required. For the meaning of all the 
tags and their possible values, refer to the developer guide of Web Start at: 
http://java.sun.com/products/javawebstart/1.2/docs/developersguide.html#filecontents.  
Following is the jnlp file used for the application: 
<jnlp spec="0.2 1.0" 
      codebase="http://www.cis.ksu.edu/~oyenan/MyWeb/Project/" 
      href="project.jnlp"> 
   <information>  
      <title>Pipeline Editor</title>  
      <vendor>KSU CIS</vendor> 
      <homepage href="http://java.sun.com/products/javawebstart/demos.html"/> 
      <description>A Pipeline editor test</description> 
      <description kind="short">Pipeline editor Description</description> 
      <icon href="gif/pipeline.gif"/> 
      <offline-allowed/>  
   </information>  
   <security> 
     <all-permissions/> 
   </security> 
   <resources> 
      <j2se version="1.4+" href="http://java.sun.com/products/autodl/j2se"/> 
      <j2se version="1.4+"/> 
      <jar href="project.jar" main="true" download="eager"/> 
   </resources> 
   <application-desc main-class="Editor"/> 
</jnlp> 
 
Following are the step to provide a signed jar file.  

• jar cmf MyManifest project.jar *.class gif optimizer org 
This will put all the class file in the jar. It will also put the following directories: 

o \gif: directory containing all the icons 
o \optimizer: classes for the optimizer package 
o \org: JGraph classes 

The file MyManifest simply specify which of those classes contain the main method. 
• keytool –genkey –keystore myKeys –alias jdc 

This generate a key stored in the file myKeys. A password will be asked to generate the 
key. This file is available and the password is ‘pipeline’. If using the file myKeys,  this 
step is not necessary (as the key has already been generated). 

• jarsigner –keystore myKeys project.jar jdc 
This will sign the jar file with the key contained in the file myKeys. The password used 
when creating the file will be asked. If using the provided file, it is going to be “pipeline”. 
 
 

http://java.sun.com/products/javawebstart/1.2/docs/developersguide.html#filecontents


References: 
 

• IEEE STD 830-1998, “IEEE Recommended Practice for Software 
Requirements Specifications”. 1998 Edition, IEEE, 1998. 

• Software Requirement, Dr. Scott Deloach’s CIS748 lecture notes, 
http://www.cis.ksu.edu/~sdeloach/748. 

• Kim Johnson, “Software Cost Estimation: Metrics and Models”, 
http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm. 

• “An Introduction to Function Point Analysis”, http://www.qpmg.com/fp-
intro.htm 

• David Longstreet, “Fundamentals of Function Point Analysis”, 
http://www.ifpug.com/fpafund.htm 

• Formal Inspection, Scott Deloach’s CIS748 lecture notes, 
http://www.cis.ksu.edu/~sdeloach/748/protected/slides/748-4-formal-
inspections.pdf  

• “IEEE guide for software quality assurance planning” -730.1-1995 
• Pressman, Roger S. "Software Engineering: A Practitioner's Approach". Fifth 

Edition, Mc GrawHill, NY, June, 2001. 
• Gaudenz Alder, “Design and Implementation of the JGraph Swing 

Component”, http://www.jgraph.com/documentation.shtml 
• Dar-Tzen et al., “Assignement and Scheduling Communicating Periodic Tasks 

in Distributed Real-Time Systems”, IEEE Transactions on Parallel and 
Distributed Systems, 1997. 

• “IEEE Standard for Software Test Documentation”, IEEE Std 829-1998 
•  “IEEE Standard for Software Reviews and Audits”, IEEE Std 1028-1998, 

1998 Edition. 

• “Software Formal Inspections”, Software Assurance Technology Center 
(SATC), 1997, http://satc.gsfc.nasa.gov/fi/fipage.html 

• Weiss, Alan R. and Kerry Kimbrough, “Fundamentals of Software 
Inspections, Version 2.1”.  1995.  
http://www2.ics.hawaii.edu/~johnson/FTR/Weiss/weiss-intro 

http://www.dcc.ufmg.br/%7Erodolfo/es-1-03/IEEE-Std-830-1998.pdf
http://www.dcc.ufmg.br/%7Erodolfo/es-1-03/IEEE-Std-830-1998.pdf
http://www.cis.ksu.edu/%7Esdeloach/748
http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm
http://www.qpmg.com/fp-intro.htm
http://www.qpmg.com/fp-intro.htm
http://www.jgraph.com/documentation.shtml
http://students.cs.tamu.edu/zdalal/606/Plans/ieee829.pdf
http://standards.ieee.org/reading/ieee/std_public/description/se/1028-1997_desc.html
http://satc.gsfc.nasa.gov/fi/fipage.html
http://www2.ics.hawaii.edu/%7Ejohnson/FTR/Weiss/weiss-intro


 

Acknowledgements: 
• Committee Members: 

o Dr Virgil Wallentine 

o Dr. Daniel Andresen 

o Dr. Masaaki Mizuno 

 


	1. Purpose
	    2. Goals
	3. Constraints
	CHAPTER 2: Software Requirement Specification
	1. Introduction
	1.1Purpose
	1.2 Scope
	1.3 Overview

	2. Overall description
	2.1 Product perspective
	2.2 User interface: Pipeline Editor 
	2.3 Hardware interfaces
	2.4 Software interfaces 
	2.5 Communications interfaces
	2.6 Product functions
	2.7  User characteristics

	3. Specific requirements
	3.1 External interface requirements
	3.2 Functional requirements
	3.2.1 Pipeline Editor
	a. List of components
	b. Draw a component
	c. Delete a component
	d. Edit a component
	e. Move a component
	f. Undo/Redo an action
	g. Copy/Cut/Paste a component
	h. Zoom in/Zoom out
	i. Optimize
	j. Simulate
	k. Insert a checkpoint
	l. Playback

	3.2.2 Optimizer
	3.2.3 Simulator

	3.3. Performance requirements
	3.4. Software system attributes
	a. Accuracy
	b. Reusability
	c. Maintainability
	d. Portability


	CHAPTER 3: PROJECT PLAN
	CHAPTER 4: COST ESTIMATE
	I- Function Point Analysis :
	II- Cost Analysis Using COCOMO 

	CHAPTER 5: Architecture Elaboration Plan
	CHAPTER 6: Software Quality Assurance Plan
	1. Purpose
	2. Management
	2.1 Organization
	  2.2 Tasks
	  2.3 Roles and Responsibilities

	3. Documentation
	3.1 Purpose
	  3.2 Minimum documentation requirements
	3.2.1 Software requirements specification
	3.2.2 Software Test Plan  
	3.2.3 Formal Software Specification
	3.2.4 Software design document
	3.2.5 User Documentation


	4. Standards, practices, conventions, and metric
	4.1 Purpose
	4.2 Content
	4.2.1 Documentation Standards
	4.2.2 Coding Standards
	4.2.3 Metrics


	5. Reviews and Audits
	5.1 Purpose
	5.2 Minimum Requirements

	6. Testing and Verification
	7. Problem reporting and corrective action
	8. Tools, techniques, and methodologies
	CHAPTER 7: Architecture Design
	1. System Design Description
	2. JGraph design
	3. Pipeline Editor Design
	4. Optimizer Design


	CHAPTER 8: Formal Requirement Specification
	Introduction 
	Specification
	Verification

	CHAPTER 9: Test Plan
	1. Introduction
	2. Scope 
	5. Approach
	6. Test Cases
	7. Pass/Fail Criteria
	8. Deliverables
	9. Responsibilities
	10. Schedule
	11. Approval

	CHAPTER 10: Implementation Plan
	User Manual  
	Architecture Design
	Source Code 
	Assessment Evaluation 
	Project evaluation: 
	Other documents:

	CHAPTER 11: Formal Technical Inspection
	Introduction 
	Items to be inspected
	Participants
	Criteria
	Formal Technical Inspection Check List

	CHAPTER 12: USER MANUAL
	I - System Overview
	II - System Requirements
	III - Installation and Execution
	IV - Getting Started
	 4.1 Horizontal Toolbar Description
	4.2 Vertical toolbar description

	V - FEATURES
	 5.1 Change component properties
	 5.2 Name a component
	5.3 Station view ()
	5.4 Create/Insert Library
	5.5 Save/Open
	5.6 Cut/paste/copy
	5.7 Remove
	5.8 Zoom
	5.9 Optimize
	5.10 Simulate
	5.11 View simulation data
	5.12 Replay
	5.13 Bend pipes

	VI – FAQ

	CHAPTER 13: Technical Manual
	I- Purpose
	II - Description
	 2.1 Adding and modifying components
	 2.2 Mouse click handling and popup menu
	 2.3 Mapping cells and jobComponents

	III- Naming Conventions
	 3.1 File names
	 3.2 Variable names

	IV- Communications
	 4.1 GUI-Optimizer
	 4.2 GUI-Simulator

	V- Java Web Start

	References:
	Acknowledgements:

