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A Mangonel uses the potential energy created by tension in an elastic band, or torsion in a twisted rope.  

²ŜΩƭƭ ōŜ ǇŜǊŦƻǊƳƛƴƎ ǘƘŜ ŎŀƭŎǳƭŀǘƛƻƴǎ ŦƻǊ ǘƘŜ ŦƻǊƳŜǊΣ ǿƘƛŎƘ ƛǎ ǘƘŜ ƳƻǊŜ ŎƻƳƳƻƴ ŀǇǇǊƻŀŎƘ ƛƴ ǊǳōōŜǊ 

band catapults. 

Potential Energy of the Rubber Band  
IƻƻƪŜΩǎ ƭŀw tells us that the force needed to stretch a spring (or in our case, a rubber band) is: 

(1) Ὂ  Ὧὼ 

Where x is how far the spring is stretched, and k ƛǎ ŀ άǎǇǊƛƴƎ Ŏƻƴǎǘŀƴǘέ ǿƘƛŎƘ ƛǎ ǳƴƛǉǳŜ ǘƻ ŜŀŎƘ ǘȅǇŜ ƻŦ 

spring ς we must determine this experimentally.  Thus, we can rearrange our equation to:  

(2) Ὧ   

From this equation we can find out the spring constant k buy stretching our rubber band to x and 

measuring the force F it generates.  Once we have our k value, we can turn our attention to the 

potential energy ὖὉ  stored in the stretched rubber band ς energy that can be converted to work 

by our catapult.  This quantity of energy (measured in Joules) can be calculated by the equation: 

(3) ὖὉ  Ὧὼ 

The resulting potential energy ὖὉ  is the total amount of energy our catapult assembly has 

available to launch its projectile.  Next, we need to consider how the launch actually occurs. 

Rotational Kinetic Energy of the Catapult Launch Arm  
The catapult launch mechanism consists of a launch arm, anchored to a hinge or axle.  The Potential 

Energy of the spring is converted into motion of this arm, which swings around that axle.  The projectile 

itself is put into a basket on the end of the launch arm ς thus our potential energy is converted into 

rotational kinetic energy ὑὉ : 

(4) ὖὉ  ὑὉ  

This, of course, assumes no energy is lost in the conversion; in reality some energy will always be lost ς 

converted to heat by friction, or absorbed by our joint materials.  But this amount is small enough that 

we can ignore it for the purposes of our calculation.  The kinetic energy of rotation can be expressed by 

the equation: 



(5) ὑὉ Ὅ‫  

In this equation, is the angular velocity ς it measures how quickly our catapult arm spins around its ‫ 

axle.  Ὅ is the moment of inertia.  For our launch arm, this is the same as a rod rotating on its end, or: 

(6) Ὅ  άὶ 

In this equation, r is the length (radius) of our launch arm, and m is the mass of the projectile.  We can 

substitute the moment of inertia (equation 6) into our kinetic energy of rotation equation (equation 5), 

and obtain: 

(7) ὑὉ άὶ‫ άὶ‫  

Angular Velocity of the Projectile  
While cupped in the ōŀǎƪŜǘ ŀǘ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ŎŀǘŀǇǳƭǘΩǎ ǘƘǊƻǿ ŀǊƳΣ ǘƘŜ ŀŎŎŜƭŜǊŀǘƛƻƴ ƻŦ ǘƘŜ ƭŀǳƴŎƘ ŀǊƳ 

creates angular velocity ‫Σ ǳƴǘƛƭ ǘƘŜ ƭŀǳƴŎƘ ŀǊƳΩǎ Ƴƻǘƛƻƴ ƛǎ ŀǊǊŜǎǘŜŘ ōȅ ǘƘŜ ǎǘƻǇǇƛƴƎ ōǊŀŎŜΦ  !ǘ ǘƘƛǎ 

point, the projectile is freed to move on its own, and this angular velocity is transferred into linear 

velocity v, tangential to the arc that the projectile was traveling at up to that point. 

Therefore we need to calculate which can bet done by substituting equations (7) and (3) into ,‫ 

equation (4): 

(8) Ὧὼ άὶ‫  

And solving for :‫ 

(9) άὶ‫  Ὧὼ 

(10)  ‫    

(11)  ‫   

Finally, we can convert the angular velocity to linear velocity ὺ with the equation: 

(12)  ὺ ‫ὶ 

Substituting our value of :from equation 12, we obtain ‫ 

(13)  ὺ  ὶ ὶ   ὼ   

Notice that the radius of the launch arm ὶ disappears from our equation as we simplify it.  This suggests 

that the launch velocity of the projectile is not affected by the length of the arm, only by the mass of the 

projectile, the extent to which the spring is pulled back ὼ, and the spring constant Ὧ.  Why does this 

happen?  How does varying the length of the throw arm change the path and velocity of the projectile 



ǿƘƛƭŜ ƛǘ ƛǎ ŎǳǇǇŜŘ ǿƛǘƘƛƴ ǘƘŜ ƭŀǳƴŎƘ ŀǊƳΩǎ ōŀǎƪŜǘΚ  5ƻ ǿŜ ƴŜŜŘ ǘƻ ŎƻƴǎƛŘŜǊ ǘƘŜ ƭŀǳƴŎƘ ŀǊƳΩǎ ƭŜƴƎǘƘ ƛƴ 

designing our catapult?  Why or why not? 

Equations of Ballistic Motion  
Once released from the catapult, the projectile is only affected by gravity, which exerts a constant 

downward force upon it (it also must content with friction from the air molecules around it ς air 

resistance ς ŀƴŘ ŀƴȅ ǿƛƴŘΣ ōǳǘ ǿŜΩƭƭ ƛƎƴƻǊŜ ǘƘŜǎŜ ŦƻǊ ƴƻǿύΦ  ¢ƘǳǎΣ ǿŜ Ŏŀƴ ǳǎŜ bŜǿǘƻƴΩǎ Ŝǉǳŀǘƛƻƴǎ ƻŦ 

ōŀƭƭƛǎǘƛŎ Ƴƻǘƛƻƴ ǘƻ ŎŀƭŎǳƭŀǘŜ ƻǳǊ ǇǊƻƧŜŎǘƛƭŜΩǎ Ǉƻǎƛǘƛƻƴ ŀǘ ŀ ǎŜǘ ǘƛƳŜ ŀŦǘŜǊ ƭŀǳƴŎƘ t: 

(14)  ὼ ὺὸ ÃÏÓ — 

(15)  ώ  ὺὸ ÓÉÎ—  Ὣὸ  

Notice we split the initial velocity into a vertical (y) and horizontal (x) component.  The sine and cosine 

functions allow us to determine how much of our initial velocity contributes to each of these directions, 

given the angle between the direction our projectile was launched and the horizontal is —.  The angle — 

ƛǎ ƻǳǊ ŀƴƎƭŜ ƻŦ ǊŜƭŜŀǎŜΣ ŘŜǘŜǊƳƛƴŜŘ ōȅ ǿƘŜǊŜ ƛƴ ƻǳǊ ƭŀǳƴŎƘ ŀǊƳΩǎ Ǌƻǘŀǘƛƻƴ ƛǘ ǎƭŀƳǎ ƛƴǘƻ ǘƘŜ ǎǘƻǇ ōǊŀŎŜΦ 

Also, we have an extra term in our equation for vertical motion:  Ὣὸ.  This is the downward drag 

exerted by gravity, g (which we typically approximate with 9.8 m/s2).  As the value of time is squared 

(t2), we know the effect of gravity on our projectile will increase over time, pulling it downward.  

Interestingly, we have no such term in our x-position, which means our projectile will continue to fly 

forward at the speed we launch it, until it strikes something (like a castle wall, or the ground).    

Simulating our Projectile Motion in Scratch  
We now have enough information to simulate our ballistic path over time on the computer.  To do this, 

we will utilize the programming environment, Scratch, developed by MIT (available at 

http://scratch.mit.edu).  In addition to providing a drag-and-drop programming interface, Scratch has a 

built-in graphical component ς a stage where Sprites can move and interact, based on the commands 

ȅƻǳ ǇǊƻƎǊŀƳΦ  [ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ ŀ ǇǊƻƧŜŎǘƛƭŜ-shapeŘ ǎǇǊƛǘŜΦ  hǇŜƴ {ŎǊŀǘŎƘΣ ŎƭƛŎƪ ǘƘŜ άŀŘŘ ƴŜǿ ǎǇǊƛǘŜ ŦǊƻƳ 

ŦƛƭŜέ ƛŎƻƴΣ ŀƴŘ ōǊƻǿǎŜ ǘƻ ǘƘŜ ά¢ƘƛƴƎǎέ ŦƻƭŘŜǊΦ  Lƴ ǘƘƛǎ ŦƻƭŘŜǊΣ ȅƻǳ ǎƘƻǳƭŘ ŦƛƴŘ ǎŜǾŜǊŀƭ ōŀƭƭ ǎǇǊƛǘŜǎ ς LΩƳ 

using the beach ball, but any should work. 

http://scratch.mit.edu/


 

Figure 1 - Adding a projectile sprite to Scratch 

bƻǿ ǿŜ ƴŜŜŘ ǘƻ ŎƘŀƴƎŜ ǘƘŜ ōŀƭƭΩǎ Ǉƻǎƛǘƛƻƴ ƻǾŜǊ ǘƛƳŜΣ ŀŎŎƻǊŘƛƴƎ ǘƻ ƻǳǊ Ŝǉǳŀǘƛƻƴǎ ƻŦ ƳƻǘƛƻƴΦ  ¢ƘŜ 

 block offers one possible way of accomplishing this ς we simply need to supply it with an 

x and y position.  We can use equations (14) and (15) to calculate these values, creating variables to 

represent ὼ, ώȟ ὺ, ὸ, and —: 

 

Figure 2 - Adding variables to Scratch 



hƴŎŜ ǿŜΩǾŜ ŎǊŜŀǘŜŘ ǘƘŜ ǾŀǊƛŀōƭŜǎΣ ǿŜ ǳǎŜ ǘƘŜ  blocks to set the values of x and y, calculated 

using equations (14) and (15): 

  

Note that in Scratch, order of operations is implicit in the nesting of blocks ς i.e. in our first equation, 

cos(—) is calculated first, then multiplied by t, and then by v0.  Also notice Scratch does not have a 

άǎǉǳŀǊŜŘέ ōƭƻŎƪΣ ǎƻ ǿŜ ǳǎŜ ǘƘŜ ƳŀǘƘŜƳŀǘƛŎŀƭƭȅ ŜǉǳƛǾŀƭŜƴǘ .  We could have also pre-calculated 

9.8/2 and used that value rather than the operator block . 

Now we need to calculate the value of v0, which can be done with equation (13).  This equation adds 

several more variables to our program: ὼ, Ὧ, and ά.  But we already have a variable ὼ, which is the 

ƘƻǊƛȊƻƴǘŀƭ Ǉƻǎƛǘƛƻƴ ƻŦ ƻǳǊ ǇǊƻƧŜŎǘƛƭŜΗ  {ƻ ƭŜǘΩǎ ǊŜƴŀƳŜ ƻǳǊ ǾŀǊƛŀōƭŜ ὼ from equation (13) to ίὸὶὩὸὧὬ, as it 

ƛǎ ǘƘŜ άǎǘǊŜǘŎƘέ ƻŦ ǘƘŜ ǊǳōōŜǊ ōŀƴŘΦ  ¢ƘŜƴ ǿŜ Ŏŀƴ ŀŘŘ ƻǳǊ ƴŜǿ ǾŀǊƛŀōƭŜǎ ƭƛƪŜ ǿŜ ŘƛŘ ōŜŦƻǊŜΣ ŀƴŘ ǘƘŜƴ 

calculate the value of v0: 

 

Now we need to provide values for the other variables: m, k, stretch and —.  You should obtain m by 

ƳŜŀǎǳǊƛƴƎ ǘƘŜ Ƴŀǎǎ ƻŦ ȅƻǳǊ ǇǊƻƧŜŎǘƛƭŜ όLΩƭƭ ǳǎŜ нΦтƎΣ ƻǊ лΦллнтƪƎΣ ǘƘŜ ǿŜƛƎƘǘ ƻŦ ŀ ǇƛƴƎ-pong ball).  You 

should have obtained your k value experimentalƭȅ ŦǊƻƳ ǎǘǊŜǘŎƘƛƴƎ ǊǳōōŜǊ ōŀƴŘǎ όLΩƭƭ ǳǎŜ оΦмс ƛƴ Ƴȅ 

example).  The values of stretch and — ŘŜǇŜƴŘ ƻƴ ȅƻǳǊ ŘŜǎƛƎƴΦ  CƻǊ ƴƻǿΣ ƭŜǘΩǎ ǳǎŜ млŎƳ όлΦлмƳύ ŦƻǊ 

stretch and τυЈ for —.  

But what about time t?  We want to see our ball move along its trajectory, which means we actually 

want to be changing the value of t as our program is running, and move our ball each time.  We can 

accomplish this with a repeat loop  which repeats any instructions contained within it 

multiple times (the number specified after the wƻǊŘ άǊŜǇŜŀǘέύΦ  ¢ƘǳǎΣ ǿŜ Ŏŀƴ ŎŀƭŎǳƭŀǘŜ ƻǳǊ Ȅ ŀƴŘ ȅΣ ƳƻǾŜ 

the ball to that position, and change our time t by a set value inside the repeat bock, and it will be 

repeated over and over.  The amount of time we change t by is known as our simulation time step.  The 

ǎƳŀƭƭŜǊ ǘƘŜ ǘƛƳŜǎǘŜǇΣ ǘƘŜ ƳƻǊŜ ŘŜǘŀƛƭŜŘ ƻǳǊ ǎƛƳǳƭŀǘƛƻƴ ǿƛƭƭ ōŜ όŀƴŘ ǘƘŜ ƭƻƴƎŜǊ ƛǘ ǿƛƭƭ ǘŀƪŜ ǘƻ ǊǳƴύΦ  LΩƭƭ ǳǎŜ 

a time step of 0.01s (1/100 of a second) in my simulation: 



 

¢ƘǳǎΣ ƛƴ Ƴȅ ŜȄŀƳǇƭŜΣ ǿŜΩƭƭ Ǌǳƴ мллл ƛǘŜǊŀǘƛƻƴǎ ƻŦ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴΣ ǿƛǘƘ ŀ ǘƛƳŜǎtep of 0.01 (each iteration 

will calculate and position the ball 0.01s later than the last iteration).   

Note: if your ball moves too fast, you can add a block within the repeat loop.  This will 

make each iteration pause for a fraction of a second, slowing down the simulation. 

Your current Scratch program should look something like this, and you can run it by clicking the green 

flag in the corner: 

 

Figure 3 - Simulation of catapult projectile motion in Scratch 



Improving the Visualization  
²ƘŜƴ ȅƻǳ Ǌǳƴ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴΣ ȅƻǳΩƭƭ ƭƛƪŜƭȅ ƴƻǘƛŎŜ ŀ ŦŜǿ ǘƘƛƴƎǎΦ  CƛǊǎǘΣ ȅƻǳǊ ōŀƭƭ ǿƻƴΩǘ ƳƻǾŜ ǾŜǊȅ ŦŀǊ ŀǘ ŀƭƭΦ  

This is because the  is moving to position (x,y) measured in pixels on the screen (which 

are very small).  Your calculations are calculating the position in meters ς so a single meter of distance 

corresponds to a single pixel on the screen!  This is very small, and makes it hard to see the motion of 

ƻǳǊ ōŀƭƭΦ  {ŜŎƻƴŘΣ ȅƻǳǊ ōŀƭƭ ǎǘŀǊǘǎ ƛƴ ǘƘŜ ŎŜƴǘŜǊ ƻŦ ǘƘŜ ǎŎǊŜŜƴΦ  [ƛƪŜƭȅ ǿŜΩƭƭ ǿŀƴǘ ǘo actually have it start 

somewhere near the bottom-right corner, so we can see the full path of motion.   

We can accomplish both of these goals by transforming ƻǳǊ ŎƻƻǊŘƛƴŀǘŜ ǎȅǎǘŜƳΦ  ²Ŝ Ŏŀƴ ǎƘƛŦǘ ǘƘŜ ōŀƭƭΩǎ 

position to the corner by translating it, or subǘǊŀŎǘƛƴƎ ŀ Ŏƻƴǎǘŀƴǘ ǾŀƭǳŜ ŦǊƻƳ Ȅ ŀƴŘ ȅ όLΩƭƭ ǳǎŜ нлл ŀƴŘ мрл 

ǇƛȄŜƭǎύΦ  CǳǊǘƘŜǊΣ ǿŜ Ŏŀƴ άȊƻƻƳ ƛƴέ ƻƴ ƻǳǊ ƳƻǾƛƴƎ ōŀƭƭ ōȅ scaling the calculated value of x and y.  Instead 

of 1 pixel = 1 meter, we can use a bigger ratio, like 100 pixels = 1 meter (or 1 pixel = 1 cm).  Thus, we 

take our calculated x & y and multiply them by 100.  Combining these two transformations gives us: 

 

²Ŝ ǿƛƭƭ ŀƭǎƻ ǿŀƴǘ ǘƻ ǎŜǘ ƻǳǊ ōŀƭƭΩǎ ƛƴƛǘƛŀƭ Ǉƻǎƛǘƛƻƴ ǘƻ όлΣлύ ς which in our new coordinate system, is (-200,-

мрлύ ǇƛȄŜƭǎΦ  ²ŜΩƭƭ Řƻ ǘƘƛǎ ŀǘ ǘƘŜ ǘƻǇ ƻŦ ƻǳǊ ǎǇǊƛǘŜΩǎ ǎŎǊƛǇǘ ǿƛǘƘΥ 

  

  Now if we run the simulation, we can see the ball much more clearly.  But it would also be nice to plot 

the movement of the ball in such a way that we can see the full range of movement.  Scratch includes a 

άǇŜƴέ ǘƘŀǘ ǿŜ Ŏŀƴ ǳǎŜ ǘƻ ŘǊŀǿ ǘƘŜ Ƴƻǘƛƻƴ ƻŦ ǘƘŜ ǎǇǊƛǘŜ ƻƴǘƻ ǘƘŜ ōŀŎƪƎǊƻǳƴŘ ς commands for using it 

ŀǊŜ ƛƴ ǘƘŜ άǇŜƴέ ƳŜƴǳΦ  Lƴ ǇŀǊǘƛŎǳƭŀǊΣ ǿŜΩƭƭ ōŜ ƛƴǘŜǊŜǎǘŜŘ ƛƴ ǘƘŜ  and  blocks, which tell 

Scratch to start and stop drawing.  If we place a  before our repeat loop, and a  after it, 

ǿŜΩƭƭ ƎǊŀǇƘ ǘƘŜ ōŀƭƭ ǎǇǊƛǘŜΩǎ Ƴƻǘƛƻƴ ŀǎ ƛǘ ƳƻǾŜǎ ŀŎǊƻǎǎ ǘƘŜ ǎŎǊŜŜƴ όǿŜ ƴŜŜŘ ǘƻ ǇƛŎƪ ǳǇ ƻǳǊ ǇŜƴ ŀŦǘŜǊ ǿŜ 

finish, or the next time we run the simulation it will draw a line back to the beginning. 



 

Figure 4 - Plotting the projectile path in Scratch 

Adding a Grid  
Now we can see the path of the ball, but it would be even better if it was a proper graph, with lines 

denoting units of measure.  There are actually a couple of ways to do this in Scratch ς we could create 

an image of a graph grid, with axes and labels, and use it as a background, or we can tell Scratch to draw 

them for us. 

LΩƭƭ ǿŀƭƪ ȅƻǳ ǘƘǊƻǳƎƘ ǘƘŜ ƭŀǘǘŜǊ ς ǿŜΩƭƭ ǎǘŀǊǘ ōȅ ŎǊŜŀǘƛƴƎ ŀƴƻǘƘŜǊ ǎǇǊƛǘŜΦ  ²Ƙŀǘ ƛǘ ƭƻƻƪǎ ƭƛƪŜ ǿƻƴΩǘ ƳŀǘǘŜǊΤ 

we just need it to draw for us.  In fact, we can make our first step hiding the sprite with the  block.  

²ŜΩƭƭ ŀƭǎƻ ǿŀƴǘ ǘƻ ŎƭŜŀǊ ŀƴȅ ǇŜƴ ŘǊŀǿƛƴƎǎ ƻƴ ǘƘŜ ǎŎǊŜŜƴ ǿƛǘƘ Σ ŀƴŘ ŎƘŀƴƎŜ ǘƘŜ ǇŜƴΩǎ ŎƻƭƻǊ ǎƻ ƛǘ ƛǎƴΩǘ 

ǘƘŜ ǎŀƳŜ ŀǎ ƻǳǊ ǇǊƻƧŜŎǘƛƭŜΩǎ ǇŀǘƘ ǿƛǘƘ . 

bƻǿ ǿŜΩǊŜ ǊŜŀŘȅ ǘƻ ŘǊŀǿ ŀ ƎǊƛŘΦ  ²ŜΩƭƭ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ǾŜǊǘƛŎŀƭ ƭƛƴŜǎ ς ƭŜǘΩǎ ǎŀȅ ǿŜ ǿŀƴǘ ŀ ǾŜǊǘƛŎŀƭ ƭƛƴŜ 

every ten pixels from 0 to 400 pixels.  Each of these lines will correspond to a 10 centimeters (remember 

we scaled our pixels to 1pixel = 1cm).  We can draw a single line by moving our pen to the start of the 

line, putting it down, and then moving to the end, and then picking it up: 

 

We want to repeat this for each vertical line.  We could enter the same command 41 times, or... we 

could use a repeat block to repeat the command that many times: 



 

Note that we use the variable x to remember where the last line was placed ς every time we repeat our 

commands, we move the next line over by 10 pixels.  The resulting screen will look like this: 

 

Figure 5 - Vertical grid lines in Scratch 

²ŜΩƭƭ ǿŀƴǘ ǘƻ Řƻ ǘƘŜ ǎŀƳŜ ǘƘƛƴƎ ŦƻǊ ƻǳǊ ƘƻǊƛȊƻƴǘŀƭ ƭƛƴŜǎΥ 

 

And the resulting grid will look like: 



 

Figure 6 - Vertical and horizontal grid lines in Scratch. 

We can further refine our grid by darkening every ten lines ς corresponding to each meter.  To do this, 

we want to make our pen thicker (which makes the line darker).  This can be done with the 

 block.  A pen size of 2 will draw lines 2 pixels thick.  We can then draw the centimeter 

lines using the same strategy we did before, but 100 pixels apart: 

 

Our refined grid looks like this: 



 

Figure 7 - Grid lines with darkened meter marks 

Now, we would also like to have labels on our graph ς ōǳǘ {ŎǊŀǘŎƘ ŘƻŜǎƴΩǘ ƘŀǾŜ ŀƴ Ŝŀǎȅ ŦŜŀǘǳǊŜ ŦƻǊ 

writing text onto the screen (we could draw it with the pen, or use sprites for our letters, but both take 

some serious work).  An easier way would be to turn what we just drew into an image, and add our 

labels to that image, and then use the edited image as a background on the stage.  We can do this by 

right-ŎƭƛŎƪƛƴƎ ǘƘŜ ǎǘŀƎŜ ŀƴŘ ŎƘƻƻǎƛƴƎ άǎŀǾŜ ŀ ǇƛŎǘǳǊŜ ƻŦ ǘƘŜ ǎǘŀƎŜέΦ 

 

Figure 8 - Saving the Scratch stage as an image 



 

 

We can then open the image file in an image editor and add labels and any other details we would like 

to have: 

  

Figure 9 - The graph with labels added using Paint 

Then switch back to Scratch, select ǘƘŜ {ǘŀƎŜΣ ŎƘƻƻǎŜ ƛǘǎ άōŀŎƪƎǊƻǳƴŘέ ǘŀōΣ ŀƴŘ ƛƳǇƻǊǘ ǘƘŜ ǇƛŎǘǳǊŜ ȅƻǳ 

just saved: 

 

Figure 10 - Importing the labeled grid as a background 



And now we have a background with a scale!  One final tweak we may want to make ς our projectile is 

quite large.  We can use the  block to make it fit better within our grid. 

Finding an Optimal Design  
Now that we have a complete simulation, we can discover how well different catapult designs might 

work by tweaking the release angle theta, the extension of the rubber band stretch, and the mass of the 

projectile m.  And while our arm length r fell out of our projectile equations, it still has a role to play in 

how much stretch we can achieve. 

.ǳǘ ōŜŦƻǊŜ ǿŜ Ŏŀƴ ŦƛƴŘ ŀƴ ƻǇǘƛƳŀƭ ŘŜǎƛƎƴΣ ǿŜ ƴŜŜŘ ǘƻ ŦƛǊǎǘ ƛŘŜƴǘƛŦȅ ǿƘŀǘ ǿŜ ƳŜŀƴ ōȅ άƻǇǘƛƳŀƭΦέ  Lǎ ŀƴ 

optimal catapult one that throws our projectile the farthest, or one that does the most damage when it 

ƘƛǘǎΚ  LŦ ǿŜ ǿŜǊŜ ŘƻƛƴƎ ǇǳƳǇƪƛƴ ŎƘǳŎƪƛƴΩΣ ŘƛǎǘŀƴŎŜ ƛǎ ǘƘŜ ƎƻŀƭΦ  .ǳǘ ƛŦ ǿŜΩǊŜ ǇƻǳƴŘƛƴƎ ƻƴ ǘƘŜ ǿŀƭƭǎ ƻŦ ŀ 

castle under siege, damage would be.  Different goals often require very different design decisions. 

[ŜǘΩǎ ǎŀȅ ǿŜ ŀǊŜ ƎƻƛƴƎ ŦƻǊ ƻǇǘƛƳŀƭ ŘƛǎǘŀƴŎŜ ς in that case we want to maximize the x values we can 

achieve.  We could just start plugging new numbers in for each of our values, run our simulation, and 

then try another value.  But as engineers, we want to be systematic about how we test.  For example, 

we might start with an angle of 0 degrees (launch is completely horizontal) and try every full degree 

ǳƴǘƛƭ ǿŜ ǊŜŀŎƘ флΦ  5ƻƛƴƎ ǘƘƛǎ ōȅ ƘŀƴŘ ǿƻǳƭŘ ōŜ ǉǳƛǘŜ ŜȄƘŀǳǎǘƛǾŜΦ  .ǳǘ ǿŜΩǾŜ ŀƭǊŜŀŘȅ ǎŜŜƴ ŀ ōƭƻŎƪ ǘƘŀǘ 

can help us repeat a task - Φ  [ŜǘΩǎ ǘǊȅ ǳǎƛƴƎ ǘƘŀǘ ōƭƻŎƪ ǘƻ ǎƻƭǾŜ ǘƘƛǎ ǉǳŜǎǘƛƻƴΦ  ²ŜΩŘ ǿŀƴǘ ǘƻΥ 

1. Start with an angle of 0 

2. Run our simulation 

3. Increase the angle by 1 degree 

4. Jump back to step 2 and repeat 

What we just wrote is an algorithm ς a step-by-step process for solving a problem.  We can express this 

using Scratch blocks: 

 

For clarity, I omitted the actual simulation algorithm (the purple block is a stand-in for it).  But if we 

were to incorporate our new algorithm into our simulation code, it would look like:  



 

Figure 11 - Running the projectile simulation to create a graph 

And our graph would look like: 

 

Figure 12 - The graph generated by the projectile simulation 



There are a couple of things to notice about our graph ς first, our graph continues even after our height 

Ŧŀƭƭǎ ǘƻ л όƛΦŜΦ ǿŜΩǾŜ Ƙƛǘ ǘƘŜ ƎǊƻǳƴŘύΦ  LǘΩǎ ƴƻǘ ŀ ƘǳƎŜ ƛǎǎǳŜΣ ōǳǘ ƛǘΩǎ ƳŜǎǎȅΦ  {ŜŎƻƴŘΣ ƛǘ ƛǎ ǾŜǊȅ ƘŀǊŘ ǘƻ ǘŜƭƭ 

one launch from another ς perhaps we can find some way of making each line more distinct.  Finally, 

this graph suggests that our maximal distance, given the stretch and mass, would fall close to 3.6 m.  But 

what is the angle that we used to reach that?  [ŜǘΩǎ ǘŀŎƪƭŜ ǘƘŜǎŜ ƛǎǎǳŜǎ ƻƴŜ ŀǘ ŀ ǘƛƳŜΦ 

CƛǊǎǘΣ ǘƻ ŀǾƻƛŘ ŘǊŀǿƛƴƎ ŀŦǘŜǊ ǿŜΩǾŜ Ƙƛǘ ǘƘŜ ƎǊƻǳƴŘΣ ǿŜ ƴŜŜŘ ǘƻ ǎǘƻǇ ǊŜǇŜŀǘƛƴƎ ƻǳǊ ǎƛƳǳƭŀǘƛƻƴ ƻƴŎŜ ǿŜΩǾŜ 

reached the ground.  This happens when our y = 0.  However, y = 0 when we first launch, and unless our 

timestep is sufficiently small, it might actually go from y = 0.1 to y = -0.4, and never actually equal 0!  We 

can get around both of these issues by checking if y < 0 ς which will only happen after the projectile hits 

the ground.  In Scratch, this is the Boolean comparison . We can use this as the test of a 

conditional statement, like a .  This block repeats the instructions within it until the 

test (the diamond-ǎƘŀǇŜŘ ōƭƻŎƪύ ƛǎ άǘǊǳŜέΦ  .ȅ ŎƻƳōƛƴƛƴƎ ƛǘ ǿƛǘƘ ƻǳǊ .ƻƻƭŜŀƴ ǘŜǎǘΣ ŀƴŘ ǎǳōǎǘƛǘǳǘƛƴƎ ƛǘ ŦƻǊ 

our regular repeat we can run our simulation until the projectile hits the ground: 

 

Also, note it was necessary to reset y to 0 before the simulation loop ς otherwise our y is still negative 

ŦǊƻƳ ǘƘŜ ƭŀǎǘ ǎƛƳǳƭŀǘƛƻƴΗ  ¢ƘŜ ǊŜǎǳƭǘƛƴƎ ƎǊŀǇƘ ƛǎ ƳǳŎƘ ƴŜŀǘŜǊΣ ŀƴŘ ƛǘ Ǌǳƴǎ ŦŀǎǘŜǊΣ ŀǎ ǿŜ ŀǊŜƴΩǘ ōƻǘƘŜǊƛƴƎ 

to simulate any time after the projectile hits the ground: 



 

Figure 13 - The graph produced by the simulation when considering impact with the ground 

Second, to distinguish the graph lines, we can use a slightly different pen color each time with a 

 block.  This can be added to the simulation where we put the pen down, and 

then each simulation run will use a slightly different shade of color. 

Third, what we are really asking for here is the value of theta when the distance traveled is maximized.  

Remember, we end our  block right after the projectile strikes the ground.  This 

means that at that point, our x is at the distance that projectile traveled.  So before we do our next 

simulation, we can test if this is the maximal distance.  An algorithm for doing this might be: 

1. Set the ƳŀȄƛƳŀƭ ŘƛǎǘŀƴŎŜ ǘƻ л όŀǎ ǿŜ ƘŀǾŜƴΩǘ Ǌǳƴ ŀƴȅ ǎƛƳǳƭŀǘƛƻƴǎ ȅŜǘ 

2. Set theta to 0 

3. Run the simulation 

4. LŦ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴΩǎ Ȅ ƛǎ ƎǊŜŀǘŜǊ ǘƘŀƴ ǘƘŜ ƳŀȄƛƳŀƭ ŘƛǎǘŀƴŎŜΣ ǎŜǘ ǘƘŜ ƳŀȄƛƳŀƭ ŘƛǎǘŀƴŎŜ ǘƻ Ȅ ŀƴŘ ǎŀǾŜ 

ǘƘŜǘŀ ŀǎ ƻǳǊ άƛŘŜŀƭέ ǘƘŜǘŀ 

5. Increase theta by 1 

6. Repeat steps 3-6 until theta is 90 degrees 

Notice this algorithm incorporates our earlier algorithms ς the one for changing theta, and the one for 

running the simulation.  To use it in scratch, we need two new variables: maximal distance and ideal 

theta, and we need a conditional  block.  The  block only runs the code inside of 

itself if the test in the diamond-shaped socket is true (i.e. x > maximal distance).  The Scratch version will 

look like this: 



 

Note ς again for clarity I have omitted the full simulation algorithm and used the purple block as a 

placeholder.  Our final algorithm therefore looks something like this: 

 

Figure 14 - The final sprite script for graphing the simulation and finding an optimal launch angle 


