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Abstract 

Since the early days of the information era, digital music has been becoming one of the most 
consumed types of media, introducing the need for content-based tools that can search, browse, 
and retrieve music. Here we describe a method that can quantify similarities between musical 
genres in an unsupervised fashion, and computes networks of similarities between different 
musicians or musical styles. The method works by converting each song to its 2D spectrogram, 
and then extracting a large set of 2883 2D numerical content descriptors. The descriptors are 
weighted by their informativeness, and then the similarities between the musical styles are 
measured using the weighted distances between the musical pieces of each pair of musicians or 
genres. The similarities between all pairs provide a similarity matrix, which is visualized by a 
phylogeny. Experiments using 23 well known musicians representing seven musical genres 
show that the algorithm was able to separate the artists into groups that are in agreement with 
their respective musical genres. The analysis was done in an unsupervised fashion, and without 
any human definition or annotation of the musical styles. 
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1 Introduction 
The increasing availability of music databases powered by the rapid advancement in information 
systems, computer networks, and the World Wide Web has reinforced the need for effective 
algorithms that can be used for content-based search, retrieval, and discovery of music. The 
demand for music retrieval software is driven by the needs of music consumers, as music is one 
of the most popular and influential forms of art, and the vast majority of modern music data is 
stored in digital format. The increased accessibility of digital media has led to dramatic changes 
in the music consumption culture compared to the pre-information era, where radio playlists and 
record stores had a dominant role in the music culture, and has been replaced by on-line shopping 
malls (e.g. Amazon, iTunes), search and indexing engines, on-line repositories (e.g., YouTube), 
and social media[1]. Other uses of music information retrieval systems include identification, 
plagiarism detection, unauthorized use of intellectual property, MPAA (Motion Picture 
Association of America) rating, or basic quantitative music research in the sense of the emerging 
field of the digital humanities. 
 

On-line music stores and multimedia streaming services often organize their data in a 
hierarchical fashion by genres, but this type of categorization is based on the subjective 
perception of those who organize the data, and when a more detailed and accurate system of 
music information retrieval is desired it also introduces difficulties in maintaining hundreds of 
categories and sub-categories[2]. Another approach to organizing music data is by user 
recommendation, analysis of purchasing patterns, or user like/dislike social media input to 
predict the preferences of music consumers and make recommendations based on these patterns. 
Recently, substantial research work has been invested in contextual approaches to music, based 



 

on information related to music that is not contained in the audio such as musical scores[3], 
keywords, metadata, playlists, user ranking, and others[4], as opposed to methods based on the 
analysis of the audio content[5,6]. Hybrid methods for music retrieval combine both audio and 
contextual information[7]. 
 

In their most basic form, sounds can be described by their pitch, loudness, and timbre, which 
includes the amplitude envelope, harmonicity and spectral envelope, and can be used for music 
classification and retrieval[8]. Some studies suggested that the musical piece should be 
segmented based on its content to allow more efficient analysis, and experimental results using 
10 melodies showed a good correlation between 40 human participants and music chunking 
algorithms[9]. 
 

The popularity of music has motivated the development of computer music analysis methods in 
the past several decades[10]. In the sense of automatic music analysis using pattern recognition, 
significant efforts have been invested in content-based music retrieval and query by 
example[11,1], as well as related tasks such as cover song detection[12], version identification[13], 
automatic music recommendation[14,15], and sound quality prediction[16]. Methods for content-
based music retrieval include editing distances[17], alignment[18], minimum area between 
polynomial chains[19,20], n-grams[21,22], or hybrid modeling of music descriptors[23]. Semi-
automatic methods for music similarity using textual descriptors labeled manually for each 
musical piece such as “male voice” or “romantic piano” were able to generate playlists 
automatically after the labels for each musical piece were defined[24]. 
 

Numerous studies on automatic music analysis focused on music classification[25,26,27,28,29,30], 
often performed by automatic estimation of the similarity between two musical pieces[31]. 
Classification of music can be accomplished by genre[32,33,34,35,36], emotion[37,38], musical 
instruments[39], composer[40], scene[41], melodic motifs[42], and more[43]. Multipurpose systems 
such as jMIR provide a framework for basic music classification that can be applied to a broad 
range of musical styles[44]. Other directions of research include automatic annotation of music[45], 
and detection of difficult chords[46]. 
 

While in the machine learning domain substantial efforts were focused on classification, in 
music cognition studies methods such as multidimensional scaling (MDS) have been used to 
analyze similarities between musical excerpts and genres[47,48,49,50,51,52,53]. Here we propose an 
unsupervised machine learning approach to music analysis based on complex morphological 
analysis of the audio content reflected by its 2D spectrogram, and use the scheme to measure 
similarities between musicians and musical genres. That is, the goal of the study is not to 
automatically classify musical pieces into a pre-defined set of classes representing musical 
genres, but to automatically deduce links between these classes and provide a network of 
similarities between these classes based on the content of their audio. This approach can be used 
for automatic music discoverability and content-based searching and browsing of music 
databases. 
 
2 Music data 
Numerous music datasets have been compiled and used, also for the purpose of automatic music 
classification competitions[54,55,56,57,58]. However, the primary purpose of most of these datasets 
was music classification such as automatic classification of songs to musical genres, rather than 
automatic analysis of similarities between different musicians and different musical styles. For 
analyzing similarities between musicians we designed a music dataset that includes 23 well-
known musicians representing seven basic popular music genres, which are heavy metal, reggae, 
electronic music, rap, jazz, country, and 60’s Britpop. The musicians are Deep Purple, Iron 
Maiden, and Black Sabbath representing heavy metal, Bob Marley, Toots and the Maytals, and 
Jimmy Cliff representing the reggae genre, Johnny Cash and Merle Haggard representing 



 

country, Eminem, Snoop Dog, and 2Pac representing the rap musical genre, and The Beatles, 
Herman’s Hermits, and The Kinks representing 60’s britpop. Jazz was represented by Miles 
Davis, Louis Armstrong, and Duke Ellington, and the electronic music was represented in the 
dataset by Depeche Mode, Pet Shop Boys, DeVision, New Order, Faithless, and Aphex Twin. 
The criteria for selecting these musicians was the clear and strong association between the 
musicians and the musical genre (e.g., Iron Maiden and heavy metal). 
 

A few exceptions included The Beatles, in which only pieces released before 1965 were used 
due to the significant change in their musical style during the second half of the 60’s, in which 
The Beatles musical style was shifted to different musical genres such as rock and psychedelic 
rock, and included the use of musical instruments such as classical orchestras and string 
ensembles that were not typical for the 60’s britpop sound. Another exception is The Kinks, for 
which only songs released during the 60’s (the band’s more significant era) were used, as the 
band changed its musical style significantly and attempted different genres in the following 
years, where the band received limited public attention before splitting in 1996. The music that 
the band produced during and after the 70’s cannot be considered representative of 60’s Britpop, 
and therefore was not included in the music dataset. 
 

Each musician in the dataset was represented by 95 songs. The audio samples were extracted 
from MP3 files, which were downmixed from stereo to mono with SoX (Sound Exchange)[59] 

“remix” command, and converted to WAV format. The length of each track was normalized to, 
a 60-second segment starting 30 seconds from the beginning of the track to skip a possible intro, 
a few seconds of silence, or music played by a single instrument. That is, each segment used in 
the experiment is a 60-second long segment from 00:30 to 01:30 of the original track. The 
normalization for length is required for the analysis of the spectrogram that will be described in 
Section 3. 
 

Unlike datasets used for assessing the performance of genre classification algorithms, the dataset 
used in this study requires classes with higher similarity between them compared to the other 
classes, so that the ability of the algorithm to identify similarities between musical styles in an 
unsupervised fashion can be tested. For that reason each genre is represented by several different 
musicians who share similar musical styles. The ability of the algorithm to group these 
musicians automatically can be tested by its ability to identify that the musicians that share the 
same musical genres are indeed closer to each other compared to the other musicians in the 
dataset. 
 

In addition to the datasets of the musicians, another dataset included studio tracks separated into 
10 different basic musical genres: Classical music, country, swing, funk, blues, jazz, rock, 
alternative rock, heavy metal, and rap. The tracks used in that dataset were recorded by different 
musicians, in different studios, and at different times, so that the data cannot be biased by 
recording hardware or certain vocals or musical instruments. 
 

Each of the 60-second music samples was transformed using SoX into a 800×512 2D 
monochrome spectrogram, which is a visual representation of the audio and provides precise 
information of the recording[60]. The vertical dimension of the spectrogram corresponds to 
frequency, and the horizontal axis represents the time. The amplitude of a certain frequency at 
a certain time is visualized with shades of gray. Figure 1 shows a 60-second example 
spectrogram created from the song “Ain’t no love in the heart of the city” original version by 
Bobby Bland (1978). 

 



 

Figure 1: A spectrogram created from Bobby Bland’s “Ain’t no love in the heart of the city” 

 
 
Analyzing audio using the spectrogram features has shown to be effective in several different 
tasks related to music analysis[61,62,63,64]. The two-dimensional representation of the data allows 
the application of the numerous mature multi-purpose image analysis algorithms proposed in 
the literature, providing more numerical content descriptors than descriptors extracted directly 
from the audio as will be described in this paper. In this study it allows the processing of the 
audio with the compound hierarchical algorithms that reflect complex morphology as will be 
described in Section 3. 

3 Music analysis algorithm 
The spectrograms were analyzed by the Wndchrm scheme[65,66,67,68], which quantifies numerous 
aspects of the two dimensional visual content. This type of analysis uses quantitative 
measurements of the visual content of the spectrograms such as textures[61], and it has been 
shown that numerical image content descriptors can be used to classify musical pieces into 
genres[63]. 
 

Wndchrm has been demonstrated to be effective in processing and identifying complex image 
morphology such as a broad range of microscopy and radiology images[69,70], as well as 
differences between artistic styles of paintings[71,72,73]. 
In audio analysis, it was used in combination with human “citizen scientists” in the WhaleFM 
project (part of Zooniverse) to analyze similarities between thousands of different whale calls, 
showing that whales have different dialects in different geographic locations[68]. The observation 
was consistent for killer and pilot whales living in different geographical locations such as 
Norway, Iceland, and the Bahamas. In music, the method was applied to analyze the sound of 
popular music albums, and showed that in many cases the method could automatically sort 
albums in a fashion that is in high agreement with their chronological order[74]. 
 

Wndchrm is based on a large set of 2885 2D numerical content descriptors[66] as described 
below: 



 

1. Haralick texture features[75] measuring the energy and entropy of the spectrogram’s 
co-occurrence matrix, and contribute 28 image descriptor values as described in[65]. 
2. Tamura texture features[76] of contrast, directionality and coarseness, such that the 
coarseness 2D numerical content descriptors are the coarseness sum and its three-bin histogram, 
providing six 2D numerical content descriptors of the spectrogram. 
3. Gabor Filters[78], with a convolution kernel of Gaussian harmonic function[79]. Seven 
frequencies (1 through 7) are used, and each frequency adds a 2D numerical content descriptor. 
4. Radon transform features[77], computed for angles 0, 45, 90, 135 degrees, and each 
of the resulting series is then sampled into a 3-bin histogram, providing 12 image features. 
5. Fractal features, based on box counting fractal analysis as thoroughly described in[80]. 
6. Chebyshev statistics[81], computed using a 32-bin histogram of the 400-bin vector 
produced by the 2D Chebyshev transform of the spectrogram. 
7. Multi-scale histograms computed on the pixel intensities of the spectrograms using 
different numbers of bins (3, 5, 7, and 9), as described in[82], providing 3+5+7+9=24 2D 
numerical content descriptors of the spectrogram. 
8. First four moments (mean, standard deviation, skewness, kurtosis) computed on 
stripes of the spectrogram oriented in four different directions (0, 45, 90, 135 degrees). Each set 
of stripes is convolved into a three-bin histogram, providing 4×4×3=48 2D numerical audio 
content descriptors[66]. 
9. Edge features computed on the Prewitt gradient[83] of the spectrogram, including the 
mean, median, variance, and eight-bin histogram of both the edge magnitude and the edge 
direction. Other edge features are the total number of edge pixels (normalized to the size of the 
spectrogram), the direction homogeneity, and the differences between direction histogram bins 
at a certain angle α and α + π, convolved into a four-bin histogram. 
10. High-contrast object statistics computed on all 8-connected 2D segments found in 
the Otsu binary mask of the spectrogram[84]. Computed statistics include the Euler number[85], 
and the minimum, maximum, mean, median, variance, and a 10-bin histogram of both the 
objects areas and distances from the mass center of the spectrogram. 
11. Zernike features are the absolute values of the coefficients of the Zernike polynomial 
approximation of the spectrogram[86], and providing 72 2D numerical audio content descriptors. 
12. Chebyshev-Fourier features[87], implemented as a histogram with 32 bins sampling 
the polynomial coefficients of a Chebyshev–Fourier transform with highest polynomial order 
of N=23. 

The features described above are computed from the original spectrogram, as well as several 
different 2D transforms of the music spectrograms and combinations of compound two-
dimensional spectrogram transforms. The 2D transforms are FFT, Wavelet, Chebyshev 
transform, and a transform of the magnitude component of the edges. Further details about the 
2D audio descriptors computed from 2D transforms of the spectrogram and compound 
spectrogram transforms is available in[65,66,67,88,70,71]. 
 

The numerical content descriptors are computed such that the spectrogram is separated into 16 
tiles, all have the same size of 200×128 pixels. The set of numerical content descriptors 
described above is extracted from each tile independently as was done in[66,70]. When a musical 
piece is assigned to the training or test set, all tiles of that song become part of that set, ensuring 
that tiles created from the same spectrogram will not be separated into both the test and training 
set, and therefore tiles that are part of the same musical piece cannot be matched with each other. 
The separation of each spectrogram to tiles allows analyzing different parts of the spectrogram 
separately rather than the entire spectrogram as a whole, providing more informative numerical 
content descriptors of each song. 



 

The large feature set allows the algorithm to handle the complex nature of music data and reflect 
various aspects of the sound. However, not all of these 2D numerical content descriptors can be 
assumed to provide equally strong signal, and it is also expected that some of these descriptors 
make no or little contribution to the performance of the algorithm. To filter the least informative 
numerical audio descriptors, the values of each of the audio descriptors are normalized to the 
interval [0,1], and then a standard filtering approach is applied such that each 2D content 
descriptor is weighed by its power to distinguish between musical styles measured using its 
Fisher discriminant score[89], described by Equation 1, 

𝑊𝑊𝑓𝑓 =
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  (1) 
where Wf  is the computed Fisher discriminant score of feature f, 𝑇𝑇𝑓𝑓�   is the mean of the values of 
audio descriptor f in the entire training set, N is the number of musicians in the dataset, and 𝑇𝑇𝑓𝑓,𝑐𝑐���� 
and σf,c

2 are the average and the variance of audio feature f among the training set samples of 
musician c. After the Fisher discriminants are computed, the 65% of the audio descriptors that 
have the lowest weights are removed from the analysis, providing a smaller set of 1009 
spectrogram audio features. The optimal number of audio features used was determined 
experimentally as shown in Section 4. 

After the weights of the numerical audio content descriptors described above are determined, 
the distance dx,c between a vector of numerical content descriptors x and a certain musician c is 
measured by Equation 2. 
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 , (2) 
where Tc is the training set of musician c, t is a feature vector from Tc, |x| is the size of the feature 
vector x, xf is the value of audio descriptor f in the vector x, Wf is the weight of descriptor f 
computed by Equation 1, |Tc| is the number of training samples of albums c, and p is the 
exponent, set to -5. The -5 exponent was determined experimentally[87].  
 

The exponent -5 was deduced experimentally based on image data[87] rather than spectrograms 
as was done in this study. However, that exponent has been shown to be optimal in a very broad 
range of image analysis problems ranging from face recognition [87] to the analysis of microcopy 
images[69], The microscopy images contain mostly textures and low-level information rather 
than high-contrast features, and in that sense are more similar to the spectrograms. It was also 
tested with images of just blank textures, that do not contain any clear visible objects[65,90]. It 
was also used for analyzing spectrograms of whale sounds[68]. 
 

Since the spectrogram of each song is divided into 16 tiles, the distance Ds,c between song s to 
musician c is determined by the mean of the distances of the feature vectors x1..16 to any of the 
other feature vectors of musician c in the training set as described by Equation 3. 

𝐷𝐷𝑠𝑠,𝑐𝑐 =
∑ 𝑑𝑑𝑥𝑥,𝑐𝑐𝑥𝑥∈𝑠𝑠

16
 

  (3) 
The distance Ds,c from the given track s (the mean distance of the 16 tiles of the track’s 
spectrogram) can be used to determine the musician to which the track is predicted to belong. 
However, as mentioned in Section 1, the purpose of this study is not to classify songs to 
musicians or genres, but to deduce a network of similarities between the musical styles of 



 

different artists and identify musical genres in an unsupervised fashion. The similarity between 
two musicians c and q, each represented by a set of tracks, is determined by averaging the 
distance Ds,c between all songs of a certain musician q in the test set and all songs of musician c 
in the training set as described by Equation 4. 

𝑀𝑀𝑐𝑐,𝑞𝑞 =
∑ 𝐷𝐷𝑠𝑠,𝑐𝑐𝑠𝑠∈𝑞𝑞

|𝑞𝑞|
 

  (4) 
The same task can be repeated for each pair of musicians in the dataset, providing a matrix that 
its cell values are the dissimilarities between the pairs of artists. That is, the value of the cell c,q 
in the dissimilarity matrix M is the computed distance between musician c and musician q. The 
dissimilarity matrix is then inverted into a matrix of similarities and normalized such that the 
cell Mc,r in any column r is divided by the value of the cell Mr,r. Conceptually, that means that 
the similarity of each musician to all other musicians is divided by the self-similarity of that 
musician, so that the computed similarity of a certain musician to itself is always 1, and the 
computed similarity of that musician to all other values are greater than 0. Then, the similarity 
matrix is visualized using phylogenies by the Phylib package[91,92], used with randomize input 
order of sequences where 97 is the seed, 10 jumbles, and Equal-Daylight arc optimization[92]. 
 

The high-level algorithms of the computing of the feature weights through training and the 
generation of the phylogenies are summarized by Algorithms 1 and 2, respectively. 

 
Algorithm 1. Computing feature weights. 
 

 

For each musician c ∈C 

For each audio sample a ∈c 

 Convert a to spectrogram s 

 For i=1:4 

  For j=1:4 

   tile t  s(i,j) 

Compute feature vector v from t 

Add vector v to matrix V 

   End for 

  End for 

End for 

For each column F of matrix V 

 Wf  Fisher (F) 

 



 

       Algorithm 2. Generating the phylogeny. 

 

4 Experimental results 
The method described in Section 3 was applied to the music datasets described in Section 2. The 
first experiment was based on the dataset of 10 genres such that 40 songs from each of the seven 
genres were used for training and seven songs from each genre for testing. The accuracy by 
which the algorithm was able to associate a song with the genres was ∼71%, which is 
significantly higher than 10% of mere chance accuracy, and therefore shows that the algorithm 
is informative in analyzing music data. The classification accuracy is not a goal in itself, but is 
used as a probe and indication that the algorithm is informative. As discussed in Section 1, the 
purpose of this study is not to classify song to genres or musicians, but to automatically identify 
and analyze the similarities between musical styles in an unsupervised fashion. The phylogeny 
that visualizes the similarities between the genres is displayed by Figure 2. A longer line between 
two genres on the graph reflects higher dissimilarity between these genres, so that genres placed 
on the graph close to each other are genres that are more similar to each other. 
 

As the figure shows, the classical music genre was positioned in the upper part of the phylogeny, 
with significant distance from the 20th century genres. After the classical music the algorithm 
positioned the jazz, swing, funk, blues, and country musical genres that developed during the 
first half of the 20th century. Further down in the phylogeny, the algorithm positioned genres 
developed primarily in the second half of the 20th century such as heavy metal, rap, rock and 
alternative, musical genres that were influenced from the musical styles of the early 20th 
century. The algorithm also placed the rock and alternative genres very close to each other, 
indicating that the algorithm could identify that these two genres are closely related, as widely 
agreed by music experts[93]. The rap genre is also placed at the bottom of the phylogeny with the 
genres of the second half of the 20th century, but it is separated from the heavy metal, rock and 
alternative styles, an indication of the noticeable difference between these styles. 

For each musician c ∈C 

For each audio sample s in class c 

  For each tile t ∈s 

   For each musician r∈C 

    Mc,r  Mc,r+weighted_distance(t,r,W) / 16 

 Mc,r  Mc,r/|c| 

Convert Mc,r to a phylogeny using phylip 



 

 

Figure 2: Automatically generated phylogeny of the 10 genres of music.  
 

The graph generated automatically by the method is in agreement with the human cognition and 
perception of music, as was determined experimentally by humans using multi-dimensional 
scaling[47]. Like the music similarity analysis done by the algorithm, the classical music was 
separated by the human listeners from the other genres, indicating that like the proposed 
computer method, human listeners believed that classical music is substantially different from 
all other tested musical genres. The rap, rock, and heavy metal genres were placed close to each 
other, and the funk, blues, jazz and country were also clustered[47]. Overall, the phylogeny 
generated by the algorithm was similar to the similarity between musical genre annotated by 
humans, as described in[47]. A noticeable difference between the human and the computational 
analysis is the rap genre, which was placed close to the heavy metal, rock and alternative musical 
genres, but was not as close as these other three musical genres are close to each other. The 
human cognition experiment found that rap was perceived by humans to be similar to the heavy 
metal and rock genres, and clustered these three genres together[47]. 
 

In the second and more comprehensive experiment, the dataset of 23 musicians representing 
different musical genres was used. Ten songs from each musician were used for testing, and the 
remaining songs were used for training such that each musician had 85 songs in its training set. 



 

The experiment was repeated 40 times such that in each run different songs were randomly 
allocated to training and test sets, and the similarity matrices of the 40 runs were averaged into 
one similarity matrix that was used to create the phylogeny. 
 

The classification accuracy of songs to the correct musician was ∼81%, which is clearly far 
higher than ∼4.3% of random guessing. However, the purpose of the proposed music analysis 
method is not to classify songs automatically by the musician, but to measure similarities 
between the musical styles of different artists. It should also be noted that the music dataset 
included more than one musician from each genre, so that songs from the same genre can add 
confusion to the automatic classification (e.g., Eminem songs can be associated with Snoop Dog, 
who shares the same genre and similar musical styles). 
 

Figure 3 displays the phylogeny of the musicians in the dataset described in Section 2. Longer 
paths between two musicians indicate that the musical styles of these two musicians are more 
similar compared to pairs of musicians with longer paths between them. As the figure shows, 
the heavy metal bands Deep Purple, Iron Maiden, and Black Sabbath are grouped on a single 
branch, while The Beatles (songs released before or during 1965), Herman’s Hermits, and The 
Kinks are clustered in another branch in the phylogeny. The same is the case with country music, 
reggae, rap, electronic music, and jazz. The musicians that represent each genre are located on 
a single branch in the phylogeny, which differentiates them from the other musical genres. That 
is, the method was able to separate the musicians into musical genres in an unsupervised fashion 
by analyzing the audio, and without using any human annotation of the musicians or other pre-
defined knowledge that is not the content of the audio. 

 

 

Figure 3: Automatically generated phylogeny of the similarities between the musical styles of 
the musicians based on analysis of the spectrograms of their songs. Artists of the same musical 
genres are clustered close to each other, on the same branch of the phylogeny. 



 

 

Each spectrogram is analyzed by extracting a very large and comprehensive set of 2D numerical 
content descriptors described in Section 3. As explained in Section 3, not all of these numerical 
content descriptors are equally informative, and not all of them affect the analysis equally since 
the descriptors are weighted automatically by their informativeness, as evaluated by their Fisher 
discriminant scores[89] described in Section 3. Figure 4 shows the sum of the Fisher discriminant 
scores of each group of features. The effect of each group of features is measured by the sum of 
the Fisher discriminant scores of all bins of that group, which directly reflects the impact of the 
group of features on the computed similarities between the different musicians, as explained in 
Section 3. For instance, the impact of the multi-scale histograms computed from the raw values 
of the spectrogram is the sum of the Fisher discriminant scores of the 24 bins of that feature. 
 



 

 

Figure 4: The fisher discriminant scores of the group of features used for analyzing the 
spectrograms. 

 
 



 

As the graph shows, numerous 2D numerical content descriptors contribute to the analysis. 
These features are computed not merely from the raw pixel values of the 2D spectrograms, but 
also from transforms and multi-order transforms of the spectrograms. In particular, the Zernike 
polynomial features extracted from the Fourier transform of the spectrogram, the Fourier 
transform of the Wavelet (Symlet 5) transform, and the Fourier transform of the Edge magnitude 
transform were assigned with high Fisher discriminant scores and therefore had a high impact 
on the resulting phylogeny. Since these features are extracted from the transforms of the 
spectrograms, their ability to numerically reflect audio content is determined empirically by the 
Fisher discriminant scores. Other features that impacted the analysis are the Haralick texture 
features computed from the raw pixel values of the spectrograms, as well as several transforms 
and multi-order transforms. 
 

The comprehensive analysis of the spectrograms is done using a very large set of numerical 2D 
content descriptors, weighted by their informativeness as described in Section 3. Since the 
feature set is large, many of the content descriptors are not informative, and determining the 
optimal number of features was done empirically by using the classification accuracy as a probe 
for the informativeness of the feature set. Figure 5 shows how the classification accuracy of 
songs to musicians and songs to genres changes as the amount of features used increases. 
 

 

Figure 5: The classification accuracy of songs to musicians and songs to musical genres as a 
function of the amount of features used. Although classification is not the goal of this study, the 
classification accuracy can be used as a probe for adjusting the amount of features such that the 
system is informative. 

 
 

 
As the figure shows, the classification accuracy increases as more features are used, but then 
starts to decrease when using more than 35% of the numerical spectrogram descriptors. 
Achieving high classification accuracy is not the goal of this study, but since the ability to 
correctly classify musical pieces indicates that the system can effectively analyze music, that 
simple measurement can be used as a probe for the informativeness of the system, and 
consequently its ability to cluster music classes by their similarities. 



 

4.1 Comparison of the performance to classical general-purpose audio features 
One of the key aspects of the proposed method is the use of numerical content descriptors 
computed from the spectrograms that were computed from the audio files. jAudio is a signal 
processing library that extracts a comprehensive set of audio features measuring different 
characteristics of the analyzed music sample. These include the area moments, beat histograms, 
zero crossing, spectral properties, harmonic properties, 1D and 2D moments, Mel-Frequency 
Cepstral Coefficients, and more[44], as described in the jAudio on-line documentation at 
http://jaudio.sourceforge.net/jaudio10/features/feature.html. jAudio computes a total number of 
78 features. 

The experiment was done in the same fashion described in Section 3, but the features were 
the 78 jAudio features instead of the spectrogram content descriptors. Repeating the experiment 
described above using the numerical audio content descriptors of jAudio provided the phylogeny 
displayed by Figure 6. 
 



 

 

Figure 6: Automatically generated phylogeny of the similarities between the musical styles of 
the musicians based on analysis of the spectrograms of their songs. 

 
 
 

 
As the graph shows, some of the artists were grouped by the algorithm in a fashion that is in 
agreement with their musical genres. For instance, the rappers were all clustered on a single 
branch, as well as the three reggae musicians, three jazz musicians, and two country singers that 



 

were also grouped together in a separate branch in the phylogeny. However, the method failed 
to separate between the heavy metal bands, the 60’s britpop bands, and the electronic music 
artists who are all positioned together in the upper part of the phylogeny and are not grouped in 
separate branches as the jazz, reggae, rap, and country musicians. These results show that the 
analysis of the spectrograms provides a more accurate analysis of the musical styles compared 
to the comprehensive set of audio descriptors of the jAudio package. The automatic 
classification accuracy of songs to musicians using the jAudio features was ∼47%, which is 
higher than ∼4.3% of random guessing, but also substantially lower than the classification 
accuracy when the spectrograms are used. 
 

A downside of using 2D spectrograms compared to tools such as jAudio that extract numerical 
descriptors directly from the music files is computational complexity. While the generation of 
spectrograms from the audio files is performed very quickly and adds merely a negligible delay 
to the entire process, computing the features from the spectrograms for all 16 tiles requires about 
nine minutes using one core of an Intel Core-i7 processor. However, the algorithm can be 
parallelized with negligible overhead[65], what effectively accelerate the process by using 
multiple cores. The analysis of the music dataset described in Section 2 was performed with a 
computing cluster of 32 Intel Core-i7 cores, and a cluster of 320 AMD Opteron cores. That 
cluster is able to compute 1000 songs in less than 30 minutes. 
 

Another computational bottleneck is the creation of the phylogenies, which can also become a 
computationally intensive task due to its complex grouping of sequences into branches (namely, 
the fitch program, with computational complexity of O(n5)), as well as the intensive creation of 
trees using random bootstrapped data[95]. Generating the phylogeny with the 23 nodes of Figure 
3 takes just several seconds, but the response time increases quickly as the size of the tree grows. 
Creating a phylogeny with 100 nodes requires almost two hours of computing using a single 
worker, but in the case of a large number of nodes the task can be completed in a much shorter 
time using multiple workers[95]. 

5 Conclusions 
While perceiving music is a complex cognitive task that introduces a challenge for computing 
machines, automatic analysis of music has been becoming an increasingly important need for 
music-related information systems. While machines have demonstrated good performance in 
supervised machine learning tasks such as automatic association of a song with its musical 
genre, in this paper we addressed the problem of unsupervised machine learning of music, and 
showed that machines can identify musical genres automatically based on the audio content 
alone, and without using any pre-defined annotation of the musical pieces. The analysis is 
unsupervised in the sense that the system does not have any information on the association of 
the musicians to genres, and in fact does not have information about the existence of genres in 
the dataset. The method computes the similarities between the musicians, and then associates 
the musicians by the computed similarities without using any knowledge about the genre each 
of the musicians is associated with.  
 

The selection of artists who have strong association with a certain musical genre allows to 
evaluate the performance of the system. On the other hand, the same selection also allowed the 
algorithm to make a clear separation between the genres, and did not analyze cross-genre 
musicians that could challenge the algorithm by analyzing musical pieces that do not have a 
strong and clear association to a specific musical genre. 
 

The results show that the very large set of numerical content descriptors extracted from the 
spectrogram transformation of the audio files is more informative for the purpose of 
unsupervised analysis of musical genres compared to using numerical audio descriptors 



 

extracted directly from the audio files. Clearly, the experiments performed in this study are data-
driven, and is based on the contention that the spectrogram contains the same information as the 
original audio file, but structured in a different fashion. 
 

The spectrogram analysis, however, is far more computationally intensive, and requires 
significant computing resources. Fortunately, computing the numerical content descriptors of 
the 2D spectrograms can be parallelized effectively[66], and each core can process a different 
spectrogram file so that a medium-sized computing cluster can process the entire audio dataset 
in less than two hours. 
 

The analysis of unsupervised musical styles can be used for organizing and managing large 
music databases, as well as music discoverability and browsing of musical databases based on 
their audio content and musical styles. Such methods are required to satisfy the growing need 
to manage and navigate efficiently inside large databases of music, which is currently one of the 
most popular and most consumed types of digital data. 
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