
KSU STUDENT KSU STUDENT
PORTALPORTAL

MSE Project Presentation 2.0
Javier Ramos Rodríguez

OUTLINE
Introduction
Architecture Design

Dynamic view
Use Case Specification
Model Representation
Sequence Diagram
Collaboration Diagram

Static View
Class Diagram

Data Model
E-R Diagram
UML Data Model
Tables

OUTLINE

Formal Specification
Alloy Model
USE Model

Inspection Checklist
Project Plan
Test Plan
Conclusion
References

Introduction

Goals of this phase:
High Level description of the system.
Precise.
No Implementation details.
Portable.

The Idea is to use an iterative process
throughout the development to create a less
expensive product. And at the same time
increasing the quality, reusability and modularity.

Introduction
REQUIREMENTS

PLATFORM INDEPENDENT MODEL

IMPLEMENTATION INDEP. MODEL IMPLEMENTATION INDEP. MODEL

IMPL. MODEL IMPL. MODEL IMPL. MODEL IMPL. MODEL

Phase 1

Phase 2

Phase 3

Architecture Design
Dynamic View
Name Register
Objective Register a new user in the application, so he/she can access to the main features.

Priority High

Extends

Includes

Actors User

Pre-conditions

Post-conditions User will get registered in the application.

Main Scenario 1. The user selects “Register” from the user interface.
2. The system receives the request.
3. The system shows the user the register form.
4. User fills the form.
5. System validates the form.
6. The system receives the information and saves it.

Secondary Scenario

Exceptional
Scenario

If there’s an error in the register form the system will tell the user to correct it.

Function Register User

Model Representation
Entity Classes: These types of classes are used to represent entities
that contain data. Usually they will match to tables in the relational model
or entity beans when using the J2EE platform.

Control Classes: These types of classes are used to represent classes
that perform some kind of logic: business logic or controllers. In the view
layer these classes will represent the controllers in the MVC pattern; in
the model these classes will represent the business logic. For example,
in the J2EE platform these classes probably will be session beans.

Boundary Classes: These classes in the view are used to represent the
classes that the user interacts with. These classes will contain all the
forms and all the other UI components. So, these classes are the
boundary between users and the application. For example, in a J2EE
web application these classes will be JSP pages. In the model, this
stereotype is used to represent the boundary between the view and the
model, so it will be used in the class that implements the facade design
pattern.

Entity Control Boundary

Sequence Diagram
Register

 : User
 : MainUI : MainUIController : RegisterUI : RegisterUIController : ModelFacade : UserControl user : AppUser

register
register() showRegForm()

fill form
submit()

validateFields()

[NO fields properly filled]
showRegForm(String error)

correct form

[fields properly filled]

registerUser()
registerUser()

<<create>>

persist(user)
showResults(String results)

showResults(String results)

showResults(String results)

Sequence Diagram

profile : UserProfile : Registered
User

 : WelcomeUI : WelcomeUIController : ModelFacade : EventControl event : Event : EventListUIevents : List : UserControl

browse events
browseEvents()

getEvents(login)
getUserProfile(login)

<<create>>

returnResults(profile)

getEvents(profile)
<<create>>

[repeat]
<<create>>

add(event)

[while ResultSet.isEmpty == true]

query the DB only getting
the event according to the
profile

showResults(events)
showResults(events)

shoeEventList(events)

Browse Events

Collaboration
Diagram : User : MainUI

 : RegisterUI

 : ModelFacade

 : UserControluser : AppUser

12: persist(user)

 : MainUIController

 : RegisterUIController

6: validateFields()

1: register

4: fill form
8: correct form 2: register()

3: showRegForm()

5: submit()

7: showRegForm(String error)
15: showResults(String results)

9: registerUser()

14: showResults(String results)

10: registerUser()

13: showResults(String results)

11: <<create>>

STATIC VIEW
Class Diagram

AppUser

UserControl

checkLogin()
registerUser()

persist()
getUserList()

getUserProfile()
getBlogEntries()
searchUsers()
deleteUser()

updateProfile()

Model

View

ModelFacade

checkLogin()
showResults()
registerUser()
getUserList()

returnResults()
getUserProfile()
searchUsers()

getPublicEvents()
viewPublicEvent()

deleteUser()
updateProfile()
createEvent()
getEvents()

deleteEvent()

MainUIController

checkLogin()
validateInput()
showResults()
checkResults()

register()
showWelcome()

RegisterUIController

submit()
validateFields()
showResults()

MainUI

showLoginForm()

RegisterUI

showRegForm()
showResults()

User

DATA MODEL
E-R Diagram

UML
Data Model

Blog
<<PK>> b_id
visibility
<<FK>> login

Blog Entry
<<PK>> be_id
picture
text
be_date
<<FK>> b_id

0..n

1

Message
<<PK>> m_id
subject
m_text
m_date
<<FK>> m_author

Profile
<<PK>> p_id
h_univ
mayor
country

Course
<<PK>> c_num
c_name

0..n

0..n

Link
<<PK>> l_id
link
l_date
<<FK>> l_author

User
<<PK>> login
password
f_name
l_name
email
street
city
state
about
visbility
name
<<FK>> p_id

1

1

0..1

1

1..n

1..n

1

1

1

0..n

Article
<<PK>> a_id
a_header
a_text
a_date
a_url
<<FK>> a_author
<<FK>> f_id

1

0..1

Event
<<PK>> e_id
e_header
e_text
e_date
<<FK>> e_author
<<FK>> f_id

1

0..n

Filter
<<PK>> f_id
country
language
h_univ
mayor
<<FK>> c_num

0..1 0..1

1

1

1

1

1

11

1

1

0..n

Author
Dest

1..n

1..n

1

0..1

1

1

1

1

1

0..n

1

1

0..1 0..n

0..n

0..n

0..1 0..1

Data Tables
USER: login, password, f_name, l_name, email, street, city, state, visibility, about, p_id

PROFILE: p_id, h_univ, mayor, co_code

BLOG: b_id, visibility, p_id, u_id

BLOG_ENTRY: be_id, picture, text, be_date, b_id

MESSAGE: m_id, subject. m_text, m_date, m_author

MESSAGE_DEST: m_id, login

COURSE: c_num, c_name

ARTICLE: a_id, a_header, a_text, a_url, a_date, a_author, f_id

EVENT: e_id, e_header, e_text, e_date, e_author, f_id

LINK: l_id, link, l_date, l_author

FILTER: f_id, h_univ, mayor, co_code, lan_code, c_num

PROFILE_COURSE: p_id, c_num

PROFILE_LANGUAGE: p_id, lan_code

COUNTRY: co_code, country

LANGUAGE: lan_code, language

Formal Specification
Alloy: Non-Deterministic modeling language based on
Sets and their relations.

Items:
Domains: Here we define the possible values that the sets can
take.
Sets: Unordered collections of objects that take values from the
domains.
Relations: Relationships between sets
Multiplicities: Constrains on the number of objects that
participate in a given relation.
Invariants: Constrains that the model should hold.
Assertions: Are useful to check if a specific invariant holds. If the
Alloy Constraint Analyzer finds a counterexample this means
that the invariant is incorrect.
Operations: Functions that the system can execute. We define
pre, post and frame conditions.

Alloy Model
We will model the User, Blog, Blog Entries, Messages, Events, Articles, Links,
Profile and other attributes.

Associations:
//1)Users can have only one Blog and a Blog correspons to exactly one user
user_blog(~blog_user): static User! -> static Blog!
//2) A blog can have several entries and one entry belongs to one blog
blog_entries(~entry_blog): static Blog! -> BlogEntry

Operation:
op createEvent(e:Event'!, author:User!, f:Filter'!){
e !in Event
f !in Filter
Filter'=Filter+f
Event'=Event+e
e.event_filter' = f
e.event_published'= author
Message'=Message
User'=User
Profile'=Profile
}

USE Model

Formally checks the UML diagrams.
Specifically class diagrams.
Deterministic approach.
OO Environment (not only Sets).

We will use the OCL language to specify
constraints in the UML classes and its
relations.

USE Model
model MSEProject
class User
attributes
login:String

end
association UserBlog between
User[1] role blogUser
Blog[1] role userBlog

End
association MessageDest between
Message[1] role message
User[*] role dest

end
association PublishEvent between
User[1] role eventPublished
Event[*] role publishEvent

end

USE Model

Inspection Checklist
UML Diagrams

Class Diagrams
Sequence Diagrams
Collaboration Diagrams
Class descriptions

Formal Specification
Alloy Model
Use Model

Data Model
E-R Diagram
Tables

Inspection Checklist

Approach:
UML diagrams conform to the UML standards .
UML diagrams correspond to the description in the
Architecture Design document.
The different diagrams are consistent with each other.
The constraints in the Alloy model are well defined.
There a correspondence between the UML model
and the Alloy model.
The USE model describes the behavior described in
the other documents.

Project Plan

Test Plan

Test items: Critical Use Cases

Approach:
Black Box Testing
Unit Tests
Integration Tests
Environmental Test

Conclusions

Build a model that provides a lot of detail but at
the same time is platform independent.
This allows to reuse the model reducing cost
and improving quality.
We create:

Data Model
Business Logic Model

Formal Specification check the correctness of
both specifications.

References

www.uml.org
http://en.wikipedia.org/wiki/Rational_Unified_Pro
cess
www.rational.com
Applying UML and Patterns - An Introduction to
Object-Oriented Analysis and Design and the
Unified Process, Craig Larman
The Rational Unified Process: An Introduction
(2nd Edition), Philippe Kruchten

http://www.uml.org/
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.rational.com/

	KSU STUDENT PORTAL
	OUTLINE
	OUTLINE
	Introduction
	Introduction
	Architecture Design�Dynamic View
	Model Representation
	Sequence Diagram
	Sequence Diagram
	Collaboration�Diagram
	STATIC VIEW�Class Diagram
	DATA MODEL�E-R Diagram
	UML �Data Model
	Data Tables
	Formal Specification
	Alloy Model
	USE Model
	USE Model
	USE Model
	Inspection Checklist
	Inspection Checklist
	Project Plan
	Test Plan
	Conclusions
	References

