
O-MaSE: A Customizable Approach to

Developing Multiagent Development Processes

Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby,
Walamitien H. Oyenan, and Jorge Valenzuela

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

{jgarciao,sdeloach,robby,oyenan,jvalenzu}@cis.ksu.edu

Abstract. This paper describes the Organization-based Multiagent
System Engineering (O-MaSE) Process Framework, which helps process
engineers define custom multiagent systems development processes.
O-MaSE builds off the MaSE methodology and is adapted from the
OPEN Process Framework (OPF). OPF implements a Method Engineer-
ing approach to process construction. The goal of O-MaSE is to allow
designers to create customized agent-oriented software development pro-
cesses. O-MaSE consists of three basic structures: (1) a metamodel, (2)
a set of methods fragments, and (3) a set of guidelines. The O-MaSE
metamodel defines the key concepts needed to design and implement
multiagent systems. The method fragments are operations or tasks that
are executed to produce a set of work products, which may include mod-
els, documents, or code. The guidelines define how the method fragments
are related to one another. The paper also shows two O-MaSE process
examples.

1 Introduction

The software industry is facing new challenges. Businesses today are demand-
ing applications that can operate autonomously, can adapt in response to dy-
namic environments, and can interact with other applications in order to provide
comprehensive solutions. Multiagent system (MAS) technology is a promising
approach to these new requirements [13]. Its central notion - the intelligent
agent - encapsulates all the characteristics (i.e., autonomy, proactive, reactivity,
and interactivity) required to fulfill the requirements demanded by these new
applications.

In order to develop these autonomous and adaptive systems, novel approaches
are needed. In the last several years, many new processes for developing MAS
have been proposed [1]; unfortunately, none of these processes have gained
widespread industrial acceptance. Reasons for this lack of acceptance include
the variety of approaches upon which these processes are based (i.e., object-
oriented, requirements engineering, and knowledge engineering) and the lack of
Computer Aided Software Engineering (CASE) tools that support the process
of software design. There have been some approaches suggested for increasing
the change of industry acceptance. For instance, Odell et al. suggest presenting

M. Luck and L. Padgham (Eds.): AOSE 2007, LNCS 4951, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J.C. Garcia-Ojeda et al.

new techniques as an incremental extension of known and trusted methods [14],
while Bernon et al. suggest the integration of existing agent-oriented processes
into one highly defined process [3]. Although these suggestions may be helpful
in gaining industrial acceptance of agent-oriented techniques, we believe that
a more promising way is to provide more flexibility in the approaches offered.
The main problem with these approaches is that they do not provide assistance
to process engineers on how to extend or tailor these processes. In this vein,
Henderson-Sellers suggests the use of method engineering using a well-defined
and accepted metamodel in order to allow users to construct and to customize
their own processes that fit their particular approaches to systems development
[11]. Henderson-Sellers argues that by defining method fragments based on a
common underlying metamodel, new custom processes can be created that sup-
port user defined goals and preferences.

The goal of this paper is to present an overview of the Organization-based
Multiagent System Engineering (O-MaSE) Process Framework. The goal of the
O-MaSE Process Framework is to allow process engineers to construct custom
agent-oriented processes using a set of method fragments, all of which are based
on a common metamodel. To achieve this, we define O-MaSE in terms of a
metamodel, a set of method fragments, and a set of guidelines. The O-MaSE
metamodel defines a set of analysis, design, and implementation concepts and
a set of constraints between them. The method fragments define how a set of
analysis and design products may be created and used within O-MaSE. Finally,
guidelines define how the method fragment may be combined to create valid
O-MaSE processes, which we refer to as O-MaSE compliant processes.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground material on O-MaSE. Section 3 presents a brief overview of the O-MaSE
Process Framework as defined by the proposed metamodel, method fragments,
and guidelines. Section 4 presents examples of two O-MaSE-compliant processes
that can be used for developing a simulated cooperative robotic system. Finally,
Section 5 concludes and describes future work.

2 Background

One of the major problems faced by agent-oriented software engineering is the
failure to achieve a strong industry acceptance. One of the reasons hindering
this acceptance is a lack of an accepted process-oriented methodology for devel-
oping agent-based systems. An interesting solution to this problem is the use
of approaches that allow us to customize processes based on different types of
applications and development environments. One technique that provides such
an approach for the construction of tailored methods is Method Engineering [5].

Method Engineering is an approach by which process engineers construct pro-
cesses (i.e., methodologies) from a set of method fragments instead of trying to
modify a single monolithic, “one-size-fits-all” process. These fragments are gen-
erally identified by analyzing these “one-size-fits-all” processes and extracting
useful tasks and techniques. The fragments are then redefined in terms of a

O-MaSE 3

common metamodel and are stored in a repository for later use. To create a
new process, a process engineer selects appropriate method fragments from the
repository and assembles them into a complete process based on project require-
ments [5]. However, the application of Method Engineering in the development
of agent-oriented applications is non-trivial. Specifically, there is no consensus
on the common elements of multiagent systems. Thus, it is has been suggested
that prior to developing a set of method fragments, a well-defined metamodel of
common agent-oriented that are typical of most varieties of MAS (e.g., adaptive,
competitive, self-organizing, etc.) should be developed [4].

Fortunately, we can leverage the OPEN Process Framework (OPF), which
provides an industry-standard approach for applying Method Engineering to
the production of custom processes [9]. The OPF uses an integrated metamodel-
based framework that allows designers to select method fragments from a repos-
itory and to construct a custom process using identified construction and tailor-
ing guidelines. This metamodel-based framework is supported by a three-layer
schema as shown in Fig. 1. The M2 layer includes the OPF metamodel, which
is a generic process metamodel defining the types of method fragments that
can be used in M1. Thus a process (such as OPEN) can be created in M1 by
instantiating method fragments from the M2 metamodel.

Fig. 1. OPEN Process Framework (adapted from [12])

The OPF metamodel consists of Stages, Work Units (Activities, Tasks, and
Techniques), Producers, Work Products, and Languages. A Stage is defined as
a “formally identified and managed duration within the process or a point in
time at which some achievement is recognized” [9, pp. 55]. Stages are used to
organize Work Units, which are defined as operations that are carried out by a
Producer. There are three kinds of Work Units in OPF: Activities, Tasks, and
Techniques. Activities are a collection of Tasks. Tasks are small jobs performed
by one or more Producers. Techniques are detailed approaches to carrying out

4 J.C. Garcia-Ojeda et al.

various Tasks. Producers use Techniques to create, evaluate, iterate, and main-
tain Work Products. Work Products are pieces of information or physical entities
produced (i.e., application, document, model, diagram, or code) and serve as the
inputs to and the outputs of Work Units. Work Products are documented in ap-
propriate Languages. The M1 layer serves as a repository of method fragments
instantiated from the M2 metamodel. A set of rules governing the relationship
between these concepts (i.e., a process-specific metamodel and a set of reusable
method fragments) is also defined in M1. Basically, the process engineer uses the
guidelines to extend, to instantiate, and to tailor the predefined method frag-
ments for creating a custom process in the M1 layer. These custom processes are
then instantiated at the M0 level on specific projects; the actual custom process
as enacted on a specific project is termed a process instance.

Alternatively, the FIPA (Foundation for Physical Agents) Technical Commit-
tee (TC) methodology group is working on defining reusable method fragments
in order to allow designers to specify custom agent-oriented processes [17]. Al-
though this approach is quite similar to OPF (they are both based on method en-
gineering), its metamodel is derived from the Object Management Group (OMG)
Software Process Engineering Metamodel (SPEM). SPEM is based on three basic
process elements that encapsulate the main features of any development process:
Activities, Process Roles, and Work Products. Development processes are assem-
bled from a set of SPEM Activities, which represent tasks that must be done. An
Activity is essentially equivalent to an OPF Work Unit and is performed by one
or more Process Roles (which corresponds to OPF Producers). Process Roles
carry out the Activities in order to produce Work Products (the same term is
used here by SPEM and OPF). A detailed description of this metamodel and
a comparison with other method fragment proposals can be found in [6]. The
next section focuses on using Method Engineering and the OPF metamodel to
specify O-MaSE.

3 O-MaSE Process Framework

The O-MaSE Process Framework as shown in Fig. 2, is analogous to the OPF
from Fig. 1. In fact, we use the OPF metamodel in level M2. Level M1 con-
tains the definition of O-MaSE in the form of the O-MaSE metamodel, method
fragments, and guidelines. In the remainder of the section, we present the three
components of the O-MaSE contained in the M1. We first describe the O-MaSE
metamodel followed by a description of the method fragments obtained. Finally,
we discuss the guidelines that govern the construction of O-MaSE compliant
processes.

3.1 Metamodel

The O-MaSE metamodel defines the main concepts we use to define multiagent
systems. It encapsulates the rules (grammar) of the notation and depicts those
graphically using object-oriented concepts such as classes and relationships [9].

O-MaSE 5

Fig. 2. O-MaSE Process Framework (adapted from [12])

The O-MaSE metamodel is based on an organizational approach [7, 8]. As shown
in Fig. 3, the Organization is composed of five entities: Goals, Roles, Agents, Do-
main Model, and Policies. A Goal defines the overall function of the organization
and a Role defines a position within an organization whose behavior is expected
to achieve a particular goal or set of goals.

Fig. 3. O-MaSE Metamodel (adapted from [8])

Agents are human or artificial (hardware or software) entities that perceive
their environment and can perform actions upon it. In order to perceive and
to act in an environment, agents possess Capabilities, which define the per-
cepts/actions the agents have at their disposal. Capabilities can be soft (i.e.,
algorithms or plans) or hard (i.e., hardware related actions). Plans capture al-
gorithms that agents use to carry out specific tasks, while Actions allows agents
to perceive or sense objects in the environment. This environment is modeled

6 J.C. Garcia-Ojeda et al.

using the Domain Model, which defines the types of objects in the environment
and the relations between them. Each organization is governed by rules, which
are formally captured as Policies. A Policy describes how an organization may
or not may behave in a particular situation.

3.2 Method Fragments

As mentioned above, the OPF metamodel defines Stages, Work Units, Work
Products, Producers, and Languages, which are used to construct tailorable
processes. In our work, the initial set of method fragments are derived from an
extended version of the MaSE methodology [5]. O-MaSE assumes an iterative
cycle across all phases with the intent that successive iterations will add detail
to the models until a complete design is produced. This nicely fits the OPF’s
Iterative, Incremental, Parallel Life Cycle model. Our current work focuses on
analysis and design. In O-MaSE, we have identified three main activities: (1)
requirements engineering, (2) analysis, and (3) design. As shown in Table 1, we
decompose each Activity into a set of Tasks and identify a set of Techniques
that can be used to accomplish each Task. We also show the different Work
Products, and Producers related to the associated Work Units. Due to the page
limitations, we cannot discuss each of these separately . However, to illustrate our
basic approach, we describe the details of the requirements engineering activity.

In the Requirement Engineering activity, we seek to translate systems re-
quirement into system level goals by defining two tasks: Model Goals and Goal
Refinement. The first focuses on transforming system requirements into a sys-
tem level goal tree while the second refines the relationships and attributes for
the goals. The goal tree is captured as a Goal Model for Dynamic Systems
(GMoDS) [7]. The Goal Modeler must be able to: (1) use AND/OR Decomposi-
tion and Attribute-Precede-Trigger Analysis (APT) techniques, (2) understand
the System Description (SD) or Systems Requirement Specification (SRS), and
(3) interact with domain experts and customers. The result of these two tasks
are an AND/OR Goal Tree and GMoDS tree.

3.3 Guidelines

Guidelines are used to describe how the method fragments can be combined in
order to obtain O-MaSE compliant processes. These guidelines are specified in
terms of a set of constraints related to Work Units and Work Products, which are
specified as Work Unit preconditions and postconditions. We formally specify
these guidelines as a tuple Input, Output, Precondition, Postcondition where
Input is a set of Work Products that may be used in performing a work unit,
Output is a set of Work Products that may be produced from the Work Unit,
Precondition specifies valid Work Product/Producer states, and Postcondition
specifies the Work Product State (see Table 1) that is guaranteed to be true after
successfully performing a work unit (if the precondition was true). To formally
specify pre and postconditions, we use first order predicate logic statements
defined over the Work Products (WP) and Producers (P), the Work Products
states, and the iteration (n) and version (m) of the Work Products.

O-MaSE 7

Table 1. O-MaSE Method Fragments

Work Units
Activity Task Technique Work

Products
Producer

Requirements
Engineering

Model Goals AND/OR
Decomposition

AND/OR Goal
Tree

Goal Modeler

Goal
Refinement

Attribute-
Precedes-
Triggers
Analysis

Refined GMoDS Goal Modeler

Analysis

Model
Organizational
Interfaces

Organizational
Modeling

Organization
Model

Organizational
Modeler

Model Roles Role Modeling Role Model Role Modeler
Define Roles Role

Description
Role
Description
Document

Role Modeler

Model Domain Traditional
UML notation

Domain Model Domain Expert

Design

Model Agent
Classes

Agent Modeling Agent Class
Model

Agent Class Mod-
eler

Model Protocols Protocol
Modeling

Protocol Model Protocol Modeler

Model Plans Plan
Specification

Agent Plan
Model

Plan Modeler

Model Policies Policy
Specification

Policy Model Policy Modeler

Model
Capabilities

Capability Mod-
eling

Capability
Model

Capability Mod-
eler

Model Actions Action
Modeling

Action Model Action Modeler

Model Services Service
Modeling

Service Model Service Modeler

Table 2. Work Product States

No. State Definition

1 inProcess() True if the work product is in process

2 completed() True if the work product has been finished

3 exists() exists() = inProcess() ∨ completed()

4 previousIteration() True if the work product’s iteration is any previous one

5 available() True if producer specified is available to perform

Figs. 4–8 illustrate a set of guidelines for a few of the Tasks defined in Table 1.
Fig. 4 defines the Model Goals task. Inputs to the task may include the Systems
Description (SD), the Systems Requirement Specification (SRS), the Role De-
scription Document (RD), or a previous version of the Goal Model (GM). Actu-
ally, only one of these inputs is required, although as many as are available may
be used. The inputs are used by the Goal Model Producer (GMP) to identify
goals. As a result of this task, the Work Product GM is obtained.

Fig. 5 depicts the task Goal Refinement. Generally, this task only requires as
input a GM from the Model Goals task and produces a refined GMoDS model.

Fig. 6 shows the task Model Agent Classes, which requires as input a Refined
Goal Model (RG), an Organization Model (OM), or a Role Model (RM). As out-
put an Agent Class Model (AM) is obtained. In the task, the Agent Class Modeler

8 J.C. Garcia-Ojeda et al.

TASK NAME: Model Goals

Input Output Precondition Postcondition

SD, SRS,
RD, GM

GM ((exists(〈SD, n, m〉) ∨
exists(〈SRS, n, m〉) ∨
previousIteration(〈GM〉)) ∧
available(GMP)

completed(〈GM, n, m〉)

Fig. 4. Model Goals Task Constraints

TASK NAME: Goal Refinement

Input Output Precondition Postcondition

GM RG completed(〈GM, n, m〉) ∧
available(GMP)

exists(〈RG, n, m〉)

Fig. 5. Goal Refinement Task Constraints

TASK NAME: Model Agent Classes

Input Output Precondition Postcondition

RG, RM,
OM, AC,
CM, PrM

AC (exists(〈RG, n, m〉) ∨
exists(〈RM, n, m〉) ∨
exists(〈OM, n, m〉) ∨
exists(〈SM, n, m〉) ∨
previousIteration(〈AM〉)) ∧
available(ACM)

completed(〈AC, n, m〉)

Fig. 6. Model Agent Classes Task Constraints

TASK NAME: Model Plans

Input Output Precondition Postcondition

RG, RM,
AC, PrM,
AM, CM

PlM ((exists(〈RG, n, m〉) ∧
exists(〈AC, n, m〉)) ∨
exists(〈PrM, n, m〉) ∨
exists(〈AM, n, m〉) ∨
previousIteration(〈P lM〉)) ∧
available(PlP)

completed(〈P lM, n, m〉)

Fig. 7. Model Plans Task Constraints

TASK NAME: Model Protocols

Input Output Precondition Postcondition

RM, AC,
DM, OM,
AM

PrM ((exists(〈RM,n, m〉) ∧
exists(〈AC,n, m〉)) ∨
previousIteration(〈PrM〉)) ∧
available(PrP)

completed(〈PrM, n, m〉)

Fig. 8. Model Protocols Task Constraints

O-MaSE 9

(ACM) identifies the types of agents in the system. A Capability Model (CM)
may provide useful insight into the process however, the CM is not sufficient nor
mandatory and thus is an optional input (and is not part of the Precondition).
The Protocol Model (PrM) may be useful in identifying relationships between
agents and thus, it is also optional.

The Model Plan task is defined in Fig. 7. The inputs can include a RG, RM,
or an AC, which allow the Plan Modeler (PlM) to define plans used by agents
to satisfy organization goals. In addition, a PrM, Action Model (AM), and CM
are required as input because such plans may require the interaction with other
entities using some defined protocol.

Finally, the Model Protocols task is defined in Fig. 8. To document a PrM,
the Protocol Modeler (PrP) requires the RM and the AC or a previous iteration
of the PrM. The Domain Model (DM), OM, and AM are optional inputs.

4 WMD Search Example

Next, we present two examples of applying the O-MaSE to derive custom pro-
cesses. We combine O-MaSE method fragments to create a custom process for a
Weapon of Mass Destruction (WMD) system in which agents detect and identify
WMD in a given area. There are three types of WMD that can be identified: ra-
dioactive, chemical, and biological. Once a suspicious object is found, it must be
tested to determine the concentration of radioactivity and nerve agents (chem-
ical and biological). If the object is indeed a WMD, it is removed. The mission
is successful when the area has been entirely searched and all the WMD have
been removed. In the subsequent subsections, we present two custom processes
for the WMD Search application.

Fig. 9. Basic O-MaSE Process

10 J.C. Garcia-Ojeda et al.

Fig. 10. AND/OR Goal Model

4.1 Basic O-MaSE Process

The first process we derive is appropriate for a small agent-oriented project in
which reactive agents achieve goals that have been assigned at design time. Es-
sentially, the only products required for this type of system are the system goals,
agent classes, agent plans, and inter-agent protocols. This type of process leads
to a rigid MAS but is very easy and fast to develop. This process may also
be suitable for prototyping, where a simple and rapid process is needed. Fig. 9
shows the result of applying O-MaSE guidelines to the creation of our custom
process. (Tasks are represented by rounded rectangles while Work Products are
represented by rectangles.) The Work Products associated with the products
identified above are included, along with the Tasks required to produce them.
(We do not show the Producers to simplify the figure, but we assume the appro-
priate Producers are available.) Connections between Tasks and Work Products
are drawn and the preconditions and postconditions of each Task are verified.
Each Task will be discussed below:

Model Goals/Goal Refinement. From the System Description, the Goal
Modeler defines a set of system level goals in the form of an AND/OR goal tree.
The AND/OR tree is refined into a GMoDS goal tree as shown in Fig. 10. The
syntax uses standard UML class notation with the keyword “Goal”. The aggre-
gation notation is used to denote AND refined goals (conjunction), whereas the
generalization notation is used to denote OR refined goals (disjunction). GMoDS
models include the notion of goal precedence and goal triggering [7]. A precedes
determines which goals must be achieved while a trigger relation signifies that a
new goal may be instantiated when a specific event occurs during the pursuit of
the another goal. Fig. 10 captures a goal-based view of the system operation.

O-MaSE 11

Fig. 11. Agent Class Model

Fig. 12. Protocol Model

Fig. 13. Plan Model

Model Agent Class. The purpose of this task is to identify the type of agents
in the organization and to document them in an Agent Class Model (Fig. 11).
In our example, agents are defined based on the goals they can achieve and the

12 J.C. Garcia-Ojeda et al.

capabilities they possess as specified by the “achieves” and “possesses” keywords
in each agent class (denoted by the “Agent” keyword). Protocols between agent
classes are identified by arrows from the initiating agent class to the receiv-
ing agent class. The details of these protocols are specified later in the Model
Protocols task.

Model Protocol. The Model Protocol task defines the interactions between
agents. For example, Fig. 12 captures the WMD detected protocol where
WMD Agent 1, (who is pursuing the Check for Radioactive Weapon goal) de-
tects a WMD and notifies WMD Agent 3 (who is pursuing the Remove WMD
goal). The notification is done by sending a detected message with the location
as parameter. Upon reception of this message, an acknowledgment is returned.

Model Plan. The Model Plan task defines plans that agents can follow to satisfy
the organization’s goals. To model this, we use finite state automata to capture
both internal behavior and message passing between agents. Fig. 13 shows the
Radioactive Detect P lan possessed by WMD Agent 2 to achieve the Check
For Radioactive Weapon goal. The plan uses the goal parameter, location, as
input. Notice that, a plan produced in this task should correspond to all related
protocols.

4.2 Extended O-MaSE Process

To produce a more robust system that adapts to changes and internal failures,
it is necessary to have a process that can produce additional information such as
roles and policies. Roles define behavior that can be assigned to various agents

Fig. 14. Extended O-MaSE Process

O-MaSE 13

Fig. 15. Role Model

while policies guide and constrain overall system behavior. To accommodate
such a system, additional Tasks must be introduced into the process to produce
a Role Model and a Policy Model. This type of process will allow designer to
produce a flexible, adaptive, and autonomous system. Fig. 14 shows the custom
process for this example.

Model Roles. The Model Roles task identifies the roles in the organization and
their interactions. Role Modelers focus on defining roles that accomplish one or
more goals For example, each role in the Role Model shown in Fig. 15 achieves
specific goals from Fig. 10; to do this, each role also requires specific capabilities.

Model Policies. The Model Policy task defines a set of rules that describe how
an organization may or may not behave in particular situations [10]. For example,
a policy “An agent may only play one role at a time” can be translated as

∀a1, a2 : agent, r : role|a1.plays(r1) ∧ a1.plays(r2) =⇒ r1 = r2.

5 Conclusions and Future Work

In this paper we have presented the O-MaSE Process Framework1, which
allows users to construct custom agent-oriented processes from a set of stan-
dard methods fragments. The main advantages of our approach is that: (1) all
O-MaSE fragments are based on a common metamodel that ensures the method
fragments can be combined in a coherent fashion, (2) each method fragment
uses only concepts defined in the metamodel to produce work products that can
be used as input to other method fragments; and, (3) the associated guidelines
constrain how method fragments may be combined in order to assemble cus-
tom O-MaSE compliant processes that produce an appropriate set of products
without producing unnecessary products.

Although we believe the O-MaSE is headed in the right direction with this
approach [11], there is a considerable additional work that must be done in or-
der to create a process amenable to industrial application. First, although the
O-MaSE metamodel covers the most basic MAS concepts (i.e., agents, interac-
tion, organization, and interactions), there are other agent-oriented methods and

1 This work was supported by grants from the US National Science Foundation
(0347545) and the US Air Force Office of Scientific Research (FA9550-06-1-0058).

14 J.C. Garcia-Ojeda et al.

metamodels that deserve further study in order to capture all the main concepts
associated with other MAS approaches [2]. We are currently studying several
metamodels to determine how to integrate their novel concepts into the O-MaSE
metamodel. Second, we are currently working on how to include software metrics
into O-MaSE. The aim of these metrics is to predict MAS performance at the
analysis and design level [15]. Third, we are continuing to formalize our process
guidelines in order to avoid ambiguities between the metamodel and the method
fragments used to assembly the agent-oriented applications.2

Finally, we are integrating our working into agentTool III (aT3)3, which is
an analysis and design tool that supports the use of O-MaSE and exists as a
plugin for the Eclipse platform4. Eventually, we envision adding a module to aT3
that allows process designers to create and to use custom O-MaSE compliant
processes. Future plans for aT3 also include code generation for various platforms
and integration with the Bogor model checking framework for verification and
providing predictive metrics [16].

References

1. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers, Dordrecht (2004)

2. Bernon, C., Cossentino, M., Pavón, J.: Agent Oriented Software Engineering. The
Knowledge Engineering Review 20, 99–116 (2005)

3. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some
multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE
2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

4. Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., et al.
(eds.) Software Engineering for Multi-Agent Systems IV. LNCS, vol. 3194, pp.
126–142. Springer, Heidelberg (2005)

5. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Devel-
opment Methods and Tools. Jnl of Information and Software Technology 38(4),
275–280 (1996)

6. Cossentino, M., Gaglio, S., Henderson-Sellers, B., Seidita, V.: A metamodelling-
based approach for method fragment comparison. In: Proceedings of the 11th In-
ternational Workshop on Exploring Modeling Methods in Systems Analysis and
Design (EMMSAD 2006), Luxembourg (June 2006)

7. DeLoach, S.A., Oyenan, W.H.: An Organizational Model and Dynamic Goal Model
for Autonomous, Adaptive Systems. Technical Report No. MACR-TR-2006-01.
Kansas State University (March 2006)

8. DeLoach, S.A., Valenzuela Jorge, L.: An Agent-Environment Interaction Model.
In: Padgham, L., Zambonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, Springer,
Heidelberg (2007)

2 A detailed description of the current set of O-MaSE Tasks, Techniques, Work Prod-
ucts, and Producers can be found at http://macr.cis.ksu.edu/O-MaSE/

3 See http://agenttool.projects.cis.ksu.edu/
4 See http://www.eclipse.org/

O-MaSE 15

9. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley, Harlow-England (2002)

10. Harmon, S.J., DeLoach, S.A., Robby: Guidance and Law Policies in Multiagent
Systems. Multiagent & Cooperative Robotics Laboratory Technical Report No.
MACR-TR-2007-02. Kansas State University (March 2007)

11. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea
Group Inc. (2005)

12. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1-
4), 341–362 (2002)

13. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing), AgentLink (2005)

14. Odell, J., Parunak, V.D., Bauer, B.: Representing Agent Interactions Protocols in
UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 121–140. Springer, Heidelberg (2001)

15. Robby, DeLoach, S.A., Kolesnikov, V.A.: Using Design Metrics for Predicting Sys-
tem Flexibility. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and ETAPS 2006.
LNCS, vol. 3922, pp. 184–198. Springer, Heidelberg (2006)

16. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: A Flexible Framework for Creating Soft-
ware Model Checkers. In: Proceedings of the Testing: Academic & industrial Con-
ference on Practice and Research Techniques, pp. 3–22. IEEE Comp. Society,
Washington

17. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proceedings of the 7th Workshop from Objects to Agents (WOA 2006),
Catania, Italy, pp. 130–137 (2006)

	O-MaSE: A Customizable Approach to Developing Multiagent Development Processes
	Introduction
	Background
	O-MaSE Process Framework
	Metamodel
	Method Fragments
	Guidelines

	WMD Search Example
	Basic O-MaSE Process
	Extended O-MaSE Process

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

