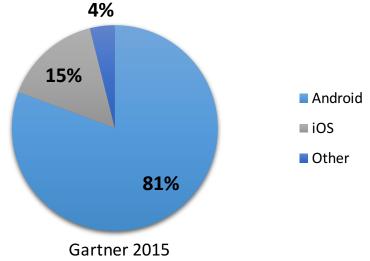
Experimental Study with Real-world Data for Android App Security Analysis using Machine Learning

Sankardas Roy, <u>Jordan DeLoach</u>, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath, Hongmin Li, Nicolais Guevara

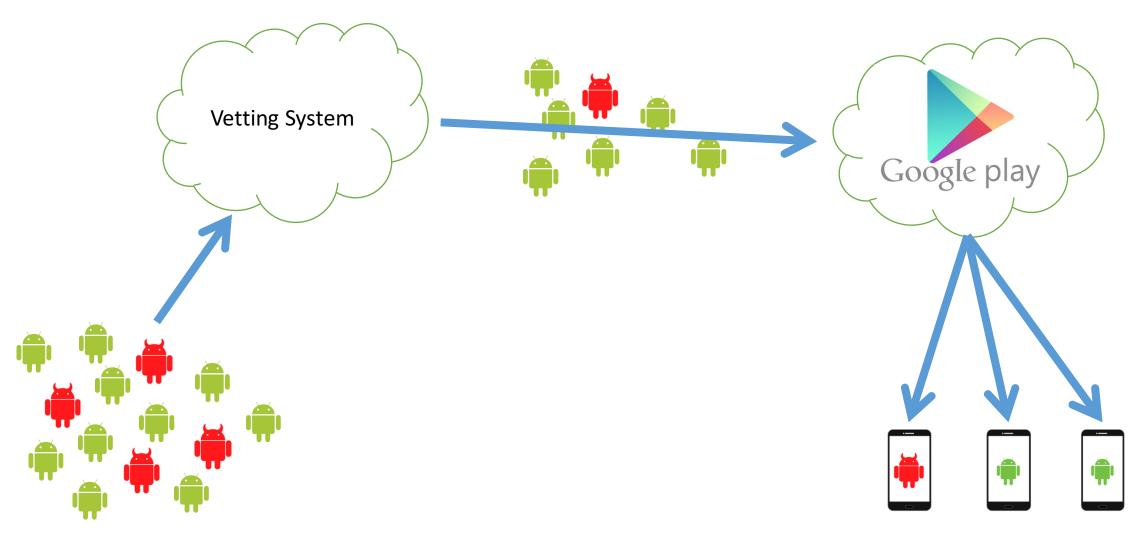
Motivations

- Android dominates market share world wide
- Smart phones wide variety of uses make them also vulnerable to a wide variety of malicious attacks
- Common Malware Behavior:
 - Leaking personal data
 - GPS tracking
 - SMS messages to premium numbers

2014 Smart phone Sales



Vetting Process



A Machine Learning Approach

- Machine learning could be an effective approach to help detect malware
- Doing machine learning is hard
- Doing <u>standardized</u> machine learning is even harder

Impacting Factors of an ML Approach

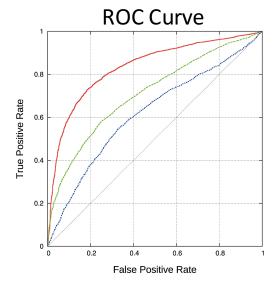
Research Questions

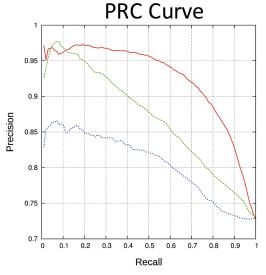
- Evaluation Strategy
 - What is the best performance metric?
- Input Data
 - Does the age of the malware in dataset mislead performance?
 - Does data imbalance affect the performance?
 - Does quality of ground truth affect the performance?
 - Does presence of adware in the dataset affect the performance?
- Algorithm Design
 - Are more features always better?

Experimental Framework

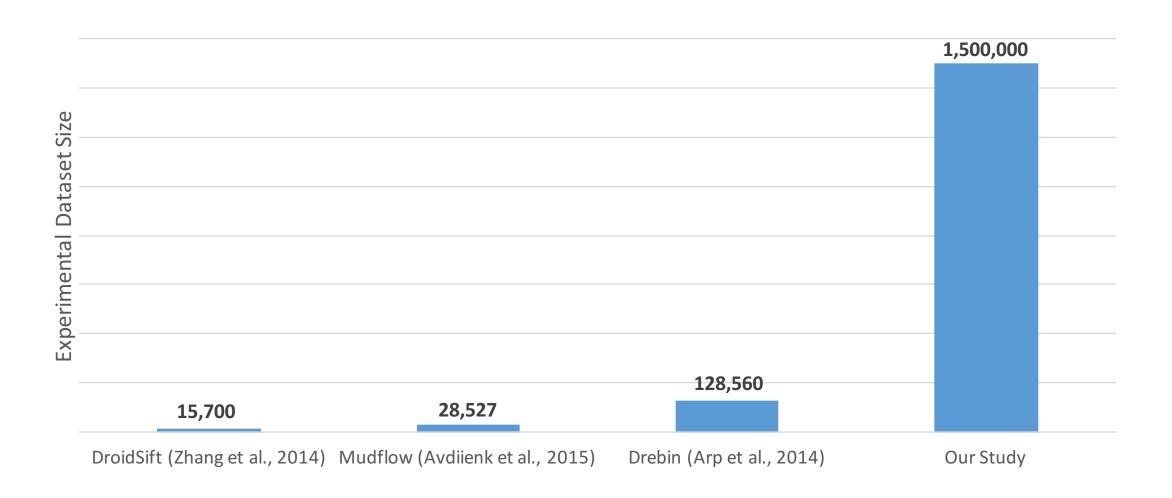
- Classifier: k Nearest Neighbor (k=1)
- Feature Set: 471 features
 - Contains permissions, intent strings, and critical APIs
- Train/Test Split: 5-fold Cross-validation
- Evaluation Metrics
 - True Positive Rate (TPR)
 - False Positive Rate (FPR)
 - Receiver Operator Characteristic Curve (auROC)
 - Precision Recall Curve (auPRC)

True	TP	Precision	TP
Positive %	TP + FN		TP + FP
False	FP	Recall	TP
Positive %	$\overline{FP + TN}$	NECAII	$\overline{TP + FN}$

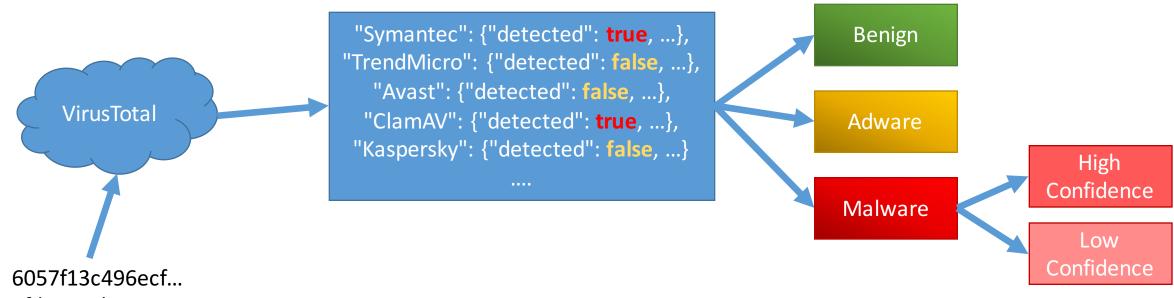




Experimental Datasets



Experimental Ground Truth Preparation



7fd777ceb9e79...

Ae2851284f7cd...

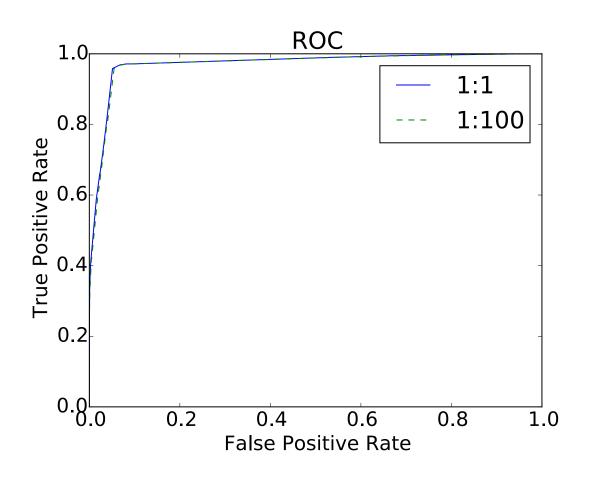
4392e1ebd58d...

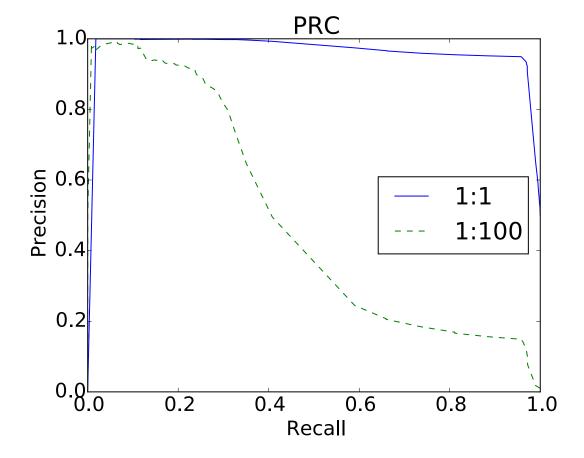
• • • •

RQ1: Evaluation Strategy - ROC or PRC?

- General ML theory has found in highly unbalanced datasets, auPRC to be the best metric (*Davis et al., 2006*).
- Most common for Android ML malware solutions is auROC
- Hypothesis: For largely imbalanced datasets, auPRC provides better insight into classifier performance
- Experiment: Compare classifier performance on a 1:1 and 1:100 malware to benign ratio datasets

ROC vs PRC





RQ1: Evaluation Strategy - ROC or PRC?

- Observations: While TPR, FPR, and auROC remain nearly constant, we see a dramatic drop in auPRC.
- Conclusions: auPRC is a better metric for comparing largely imbalanced datasets in the Android space

RQ2: Dataset Age

- The Genome dataset was collected by NCSU with apps from 2010/2011.
- Hypothesis: Using Genome, or other dated datasets, leads to misleading results.
 - The classifier learns *old versus new* as opposed to *malicious versus benign*.

RQ2: Experimental Setup

Genome Trial

• Malicious: 1,260 Genome Apps

 Benign: 63K benign apps from the Play Store

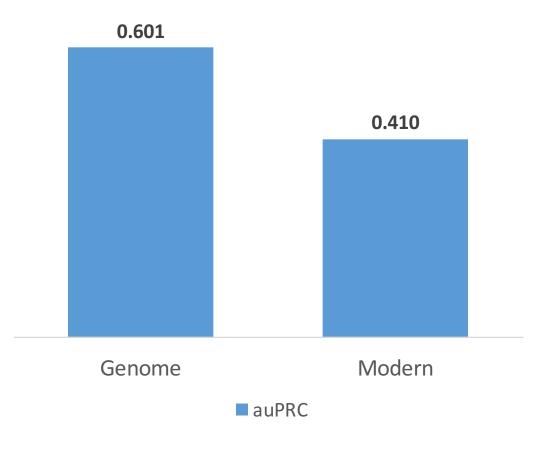
Modern Malware Trial

 Malicious: 1,260 Modern Malware from Arbor/VirusShare

Benign: Same 63K benign apps

RQ2: Dataset Age - Conclusions

- Observations: We see a dramatic drop in auPRC.
- Conclusion: In reality, modern malware is much more diverse and difficult to learn from.

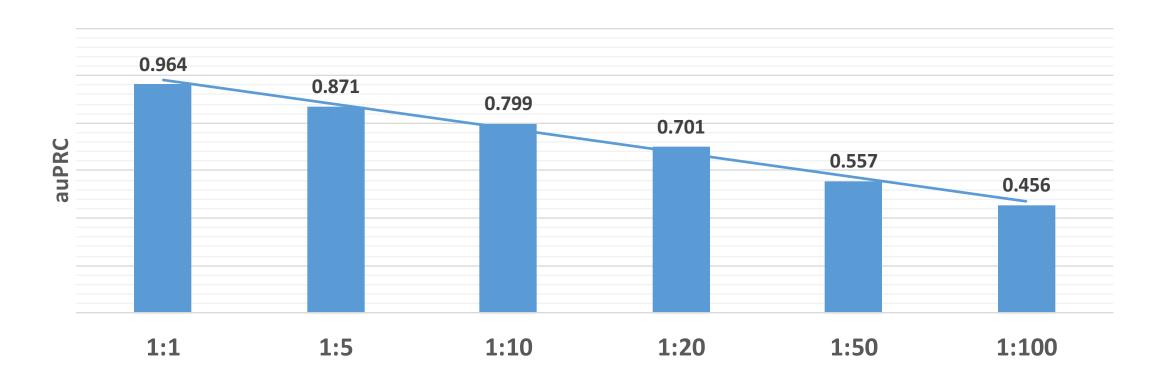


RQ3: Dataset Imbalance

- Most apps submitted to a vetting system are benign
 - Realistic ratio is around 1:100
 - Many peer works use ratios varying from 1:4 to 1:22.
- Hypothesis: As the ratio of imbalance between malicious and benign apps gets larger, the problem becomes more difficult.

RQ3: Dataset Imbalance

- Observations: auPRC substantially declines as realistic imbalances are approached.
- **Conclusion:** In the Android ML space, consideration of class imbalance is critical for crafting real-world solutions.

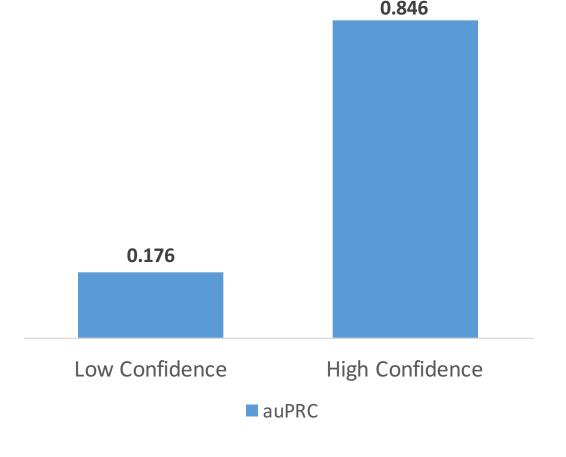


RQ4: Ground Truth Labeling Quality

- Classifier performance directly derives from accuracy of ground truth
- The more accurate the ground truth, the more accurate the classifier
- **Hypothesis**: If we train our classifier off of higher confidence malware, we will have higher accuracy.

RQ4: Ground Truth Labeling Quality

- Observations: When training over low confidence malware, true positives decreased, but false positives skyrocketed.
- Conclusions: Training with high confidence malware is critical to discerning malicious patterns.

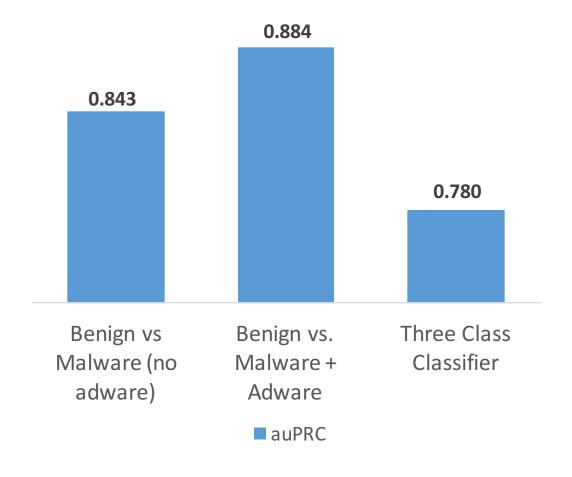


RQ5: Adware - Motivations

- Adware are a special category of apps that exist in some grey area between malicious and benign apps.
- We seek to understand where adware belong in the scheme when attempting to classify apps.
- Hypothesis: The inclusion of adware will decrease accuracy as the problem becomes more complicated with multiple classes.

RQ5: Adware - Conclusions

- Observations: We see that performance is worst when we attempt to distinguish malware from adware in the three class classifier.
- Conclusions: Adware noticeably impacts performance. As adware are prevalent in the real world, they cannot be combined nor neglected.

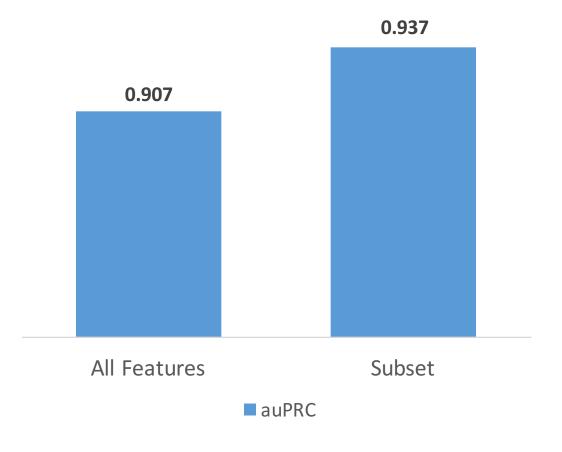


RQ6: Feature Selection - Motivations

- Many approaches use a large amount of features as part of their ML algorithm
 - Drebin uses a dataset-specific-sized feature set that numbered over a million from 180K apps
 - DroidSIFT uses 1,183 API dependency graph-based features
- Hypothesis: More features does not always mean better. Reducing can improve computational performance as well as increase classifier performance

RQ6: Feature Selection - DroidSIFT

- Used DroidSIFT's rich, graphbased feature vectors
- Selected a subset of 192
 features using mutual
 information from the base 1,183
 features



RQ6: Feature Selection - Drebin

	All Features (1.37 million)	Subset (2,246)
TPR	98.2%	98.2%
FPR	1.5%	0.1%
auROC	0.911	0.982
auPRC	0.990	0.994

RQ6: Feature Selection - Conclusions

- More doesn't always mean better
 - Not all features are discriminative
- Computational performance gains are made by reducing amount of features extracted by orders of magnitude
 - Pays off both when extracting features and when training the model
- Classifier performance gains are made by reducing the noise and confounding features in the dataset

Contributions

- Identified 6 Research Questions and derived best practices from these
 - RQ1 auPRC is a better measurement of classifier accuracy
 - RQ2 Old data misleads performance. Genome should be used with care.
 - RQ3 Data imbalance affects performance
 - RQ4 Ground Truth is vital to accurate classifier performance
 - RQ5 Adware decreases performance
 - RQ6 More doesn't mean better for features
- Proposed an experimental framework for Android machine learning experimentation based upon our findings

Jordan DeLoach: jdeloach@ksu.edu

Backup Slides

RQ4: Full Stats

	High Confidence Malware	Low Confidence Malware
TPR	97.8%	65.0%
FPR	5.1%	28.7%
auPRC	0.846	0.176

RQ5: Full Stats

	Benign vs Malware (no adware)	Benign vs. Malware + Adware	Three Class Classifier
True Positive Rate	79.6%	80.6%	76.2%
False Positive Rate	18.8%	15.7%	11.9%
auPRC	0.843	0.884	0.780

RQ6: DroidSIFT

	All Features (1183)	Subset (192)
TPR	90.6%	95.6%
FPR	18.8%	22.1%
auROC	0.932	0.955
auPRC	0.907	0.937

RQ6: Drebin

	All Features (1.37 million)	Subset (2,246)
TPR	98.2%	98.2%
FPR	1.5%	0.1%
auROC	0.911	0.982
auPRC	0.990	0.994

PRC vs. ROC – FPR vs. Precision

- According to the metric definition of FPR, a large change in the number of false positives can only lead to a small change in FPR which is used in ROC analysis.
- However, since precision compares false positives against true positive, PRC will be able to capture the effect of the large number of negative examples on the algorithm's performance.