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Integrating Intelligent Systems into a Cooperating
Community for Electricity Distribution Management

Abstract:

Systems in which semi-autonomous problem solving agents communicate and cooperate with

one another represent an exciting vision of future computing environments. However, if this

vision is ever going to result in commercially viable systems then consideration must be given

to the large software base which exists within many organisations. Success requires the ability

to incorporate pre-existing systems alongside purpose built agents in a cooperating

community. This requirement is vital because the former represent a substantial resource

investment which companies cannot afford to consign to the scrap heap.

This paper reports on our experiences of constructing cooperating communities which contain

elements which were pre-existing and some which were developed specifically for

incorporation into an integrated environment. The general purpose framework of ARCHON

(ARchitecture for Cooperative Heterogeneous ON-line systems) provides the underlying

technology which facilitates cooperative problem solving and the exemplar domain is the real

world problem of electricity distribution management. The actual application being developed

is called CIDIM (Cooperating Intelligent systems for DIstribution system Management).

An evolving methodology for designing and developing a mixed system such as this is

outlined, based on our experiences in CIDIM and several other real-world industrial

applications. It specifies a hybrid top-down and bottom-up approach to integration, identifies

the important characteristics which shape multi-agent problem analysis and outlines key

factors which impinge upon the design of the community. This methodology is then used to

motivate the design decisions for the CIDIM application. Finally the process of instantiating

the individual agents is discussed, some helpful guidelines on testing and evaluating future

applications are given and the implementation of one of CIDIM’s cooperative scenarios is

described in depth.
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1. INTRODUCTION

In sophisticated industrial applications there is a growing desire to intelligently integrate

information from a diverse range of sources. Such information will usually have been

produced from multifarious data gathering and problem solving activities, each of which is

concerned with a particular (partial) aspect of the overall process. However, because of the

interdependencies which exist through the common process, if information is shared in an

intelligent and efficient manner the performance of both the individuals and the system as a

whole can be enhanced. Consequently an increasingly large number of applications are being

conceptualised in terms of cooperating agents - examples include speech processing (Erman

& Lesser, 1975), flexible manufacturing systems (Parunak, 1987), air traffic control

(Cammarata et al., 1983), electricity transportation management (Jennings et al., 1992),

telecommunications network management (Weihmayer & Brandau, 1990), design (Klein,

1991), concurrent engineering (Reddy et al., 1993), sensor interpretation (Lesser and Erman,

1980) and particle accelerator control (Jennings et al., 1993).

In such Distributed Artificial Intelligence (DAI) systems each agent is capable of some useful

problem solving activity in its own right, but by communicating and cooperating with others it

is able to enhance its performance (Bond & Gasser, 1988; Gasser & Huhns, 1989; Huhns,

1988). Such agents have two distinct types of knowledge and reasoning capabilities: one for

solving domain level problems (e.g. fault diagnosis, security analysis and restoration

planning) and another for participating in environments containing other entities (e.g. being

able to request information and services from acquaintances and sending timely information

to help community members).

Jennings and Wittig (1992) highlight two features of industrial applications which have a

significant impact upon the design of a cooperating community. Firstly there is a vast amount

of pre-existing software currently being used. Secondly a given application is composed of a

diverse range of generic tasks (e.g. diagnosis, planning, monitoring and scheduling). The

upshot of these two observations is that any ensuing multi-agent system in this domain will be

heterogeneous at many distinct levels - different problem solving methods will be employed
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(e.g. heuristic and model based diagnosis), different types of computer system will need to

interact (e.g. expert systems, databases and conventional numerical software) and different

base level programming languages will be used (e.g. LISP, Prolog, C, FORTRAN and

Informix)1. Having to deal with pre-existing and heterogeneous software meant that a range

of new DAI problems needed to be tackled - these issues were obscured in previous systems

because they predominantly dealt with homogeneous and purpose built problem solvers. As

such, the problems which were raised and the solutions which were developed during this

work represent a necessary and important step in bridging the gap between the simplifying

assumptions of academic exercises and real-world multi-agent systems.

This work contributes to the general body of information on DAI by describing a new

application and how it was solved using multi-agent techniques. From an application

perspective, this paper describes a novel and promising approach to tackling the complexity of

a real-world problem of electricity distribution management - hereafter referred to as CIDIM

(Cooperating Intelligent systems for DIstribution system Management) (Cockburn et al.,

1992; Corera et al, 1993). An evolving methodology for analysing, designing and building

multi-agent systems for industrial applications which contain a number of pre-existing

software components is described (section 3). After introducing the electricity distribution

domain, these design guidelines are used to motivate the structure of the CIDIM community.

The benefits of the resulting cooperating ensemble are then explained in terms of the

improved system functionality, the greater automation of mundane tasks and the reduced

burden on the control engineer (section 4). Finally the process of instantiating the individual

agents is discussed, some helpful guidelines on testing and evaluation are given and the

implementation of one of CIDIM’s cooperative scenarios is described in depth (section 5).

The agent community was constructed using the ARCHON (ARchitecture for Cooperative

Heterogeneous ON-line systems) platform (Jennings & Wittig, 1992; Wittig, 1992) which is a

general-purpose multi-agent framework for industrial applications (section 2).

1. A more complete classification of the types of heterogeneity which can be found in such applications and how

it impacts on the design of subsequent multi-agent systems is contained in (Roda et al., 1991).
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2. THE ARCHON ARCHITECTURE

ARCHON agents have two distinct components; an Intelligent System (IS) and an ARCHON

Layer (see figure 1). The former may be pre-existing or may be purpose built and solves

problems such as detecting disturbances, recording status information and diagnosing faults.

From the ARCHON Layer perspective, the IS is composed of a number of atomic tasks,

although in terms of their actual implementation the tasks may themselves be relatively

sophisticated problem solving activities involving branching and decision making. The latter

is a meta-level controller which operates on the IS to ensure that its activities are coordinated

with those of the others within the community.

[INSERT FIGURE 1 ABOUT HERE]

Communication between agents is via message passing and is controlled through the High

Level Communication Module (HLCM). It is deemed High Level since it not only provides

standard communication facilities (achieved through a Session Layer implementation) but also

services such as intelligent addressing and filtering. For example, if the IS produces a result

which is relevant for other agents, the Planning and Coordination Module (PCM) can simply

instruct the HLCM to send it to all interested agents without having to enumerate them. A

message passing paradigm was chosen in preference to a shared memory approach (such as a

blackboard (Hayes-Roth, 1985; Nii, 1986a/b)) because: it has well understood semantics and

offers a more abstract means of communication (Hewitt and Kornfield, 1980); no hidden

interactions can occur - so there is greater comprehensibility, reliability and control over access

rights; and it makes fewer assumptions about the system architecture. Also the physical

distribution of the problem solving agents and the desire to conform to the OSI standard for

communication made message passing the natural choice.

The Agent Acquaintance Models (AAMs) are a representation of other agents in the

community. Information maintained includes an acquaintance’s skills, interests, current status,

workload and so on. These models are a prerequisite for coordinated activity because they

provide a characterisation of the social problem solving context in which the agent has to
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operate (Jennings et al., 1992). The HLCM’s intelligent addressing facilities also make use of

these models to find the agents interested in a specific result. Much like the AAMs represent

other agents in the community, the Self Model (SM) is an abstract characterisation of the

agent’s underlying IS. It contains information about the current state of the IS and embodies a

representation of the sequences of actions which can be executed by the ARCHON Layer in its

underlying IS.

The Monitor coordinates locally executable activities and is responsible for passing

information to and from the IS. Skills are the coarsest granularity at which these activities are

described. Other ARCHON Layer components (e.g. PCM, SM and AAMs) deal exclusively

on the level of skills, but within the Monitor they are given a finer structure - corresponding to

a pre-defined OR-graph in which the named branches specify alternative solutions. Branches

are composed of named units of activity called plans and are traversed in a depth-first manner.

The associated constraints determine path selection at runtime. The nodes of the graph are

called monitoring units and they correspond to the invocation of individual tasks within the

IS.

The PCM is the reflective part of the ARCHON Layer, reasoning about the agent’s role in

terms of the wider cooperating community. This module has to assess the agent’s current status

and decide which actions should be taken in order to exploit interactions with others whilst

ensuring that the agent contributes to the community’s overall well being. Specific examples

of the PCM’s functionality include: deciding which skills should be executed locally and which

should be delegated to others, directing requests for cooperation to appropriate agents,

determining how to respond to requests from other agents and identifying when to disseminate

timely information to acquaintances who would benefit from receiving it. The PCM is

composed of generic rules about cooperation and situation assessment which are applicable in

all industrial applications - all the domain specific information needed to define individual

behaviour is stored in the Self and Acquaintance Models (Jennings, 1992).

ARCHON’s layered and modular architecture is ideally suited for industrial applications - it

has been successfully applied to a number of problems, including: electricity distribution (see
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sections 4 and 5), electricity transportation (Wittig, 1992, chapter 8); cement factory control

(Stassinopoulos and Lembesis, 1993); flexible assembly robotic cells (Oliveira et al., 1991) and

particle accelerator control (Jennings et al., 1993). The separation of the domain and

cooperation know-how into the IS and the ARCHON Layer respectively, allows pre-existing

systems to be incorporated into the multiple agent community with relatively few

modifications. Without this clear demarcation, extensive changes would be required to the

existing systems in order to provide them with the necessary knowledge to interact with, and

benefit from, the other agents in the community. Also by providing a configurable mechanism

for agent control and by defining a language for interacting with ISs, the Monitor masks the

underlying heterogeneity of the domain system and allows the ARCHON Layer to operate

upon a homogeneous representation.

3. METHODOLOGY OF INTEGRATION

3.1 A Two Sided Approach to Integration

The instantiation of a multi-agent system can proceed in two ways. Using the concepts of a

general purpose framework an application can be built completely from scratch in a top-down

manner. Alternatively the elements which satisfy the application requirements can be

developed in a bottom-up manner. However neither of these approaches is entirely

satisfactory for the majority of industrial applications; the former means that already existing

software is not used, the latter that no reusable components are available for subsequent use in

future multi-agent applications. Thus it was decided that successful integration for this class

of problem requires a mixture of the two approaches to be applied simultaneously and

iteratively (see figure 2). Therefore whilst constructing the agents the application designers

continuously compare their design with the general architecture and, if the concepts are being

poorly utilised, a redesign may be necessary. The bottom-up forces ensure this design is

continually compared with the application requirements and constraints.

[INSERT FIG 2 ABOUT HERE]

In our case, the top-down part of the integration process expresses the fact that the application
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designer must understand the ARCHON architecture and its associated concepts and then

apply them to meet the problem requirements and the abilities of the already implemented

elements. For CIDIM the bottom-up aspect constitutes the bigger part of application design -

it involves analysing the problem from a multi-agent perspective and extending/modifying the

existing systems into a cooperating community so that the general framework can be applied

in the most beneficial manner. An initial methodology for these bottom-up processes is

discussed in the following subsections and its application to CIDIM is described in section 4.

At this stage the methodology cannot be described in a fully formal manner, nor can it claim

complete generality because it has only been applied to industrial control applications. The

current situation is somewhat akin to that of knowledge engineering for standalone expert

systems - as experts cannot fully and formally describe the knowledge needed to solve their

problems, they illustrate it through examples. The multi-agent analogue is that developers and

end-users prefer to see examples of how cooperation can solve a problem in the application

domain rather than abstract examples of different cooperation types. Despite this informality,

a methodological guide with such application derived examples is still extremely helpful in

structuring their approach to system design.

3.2 Multi-Agent Problem Analysis

Designing a cooperating community requires the problem to be analysed from a multi-agent

perspective. The following key issues are dealt with in the remainder of this subsection:

analysis of pre-existing systems; analysis of the cooperation amongst the operators controlling

the process; analysis of possible means of decomposing the systems; plans for new system

components and the detection of new cooperative situations made possible by system

integration (see figure 3).

[INSERT FIG 3 ABOUT HERE]

3.2.1 The Pre-Existing Intelligent Systems

The capabilities of the existing ISs have to be identified. Questions which need answering

include: “what is their main function?”, “how is this function achieved?”, “what tasks are
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utilized in the operation of the IS?”, “are these tasks executable in a standalone way or are

they deeply embedded in the IS?” and “are there tasks or data which are duplicated in several

ISs?”. This analysis must also address the issue of the user interface. Most existing ISs have

an interface, which allows the operator to interact with their component tasks (see interactions

a). However some portion of these interactions will be replaced by cooperation amongst the

agent community (see interaction b). For those interactions which cannot be replaced by

interagent communication, some of them can be inherently (e.g. derived from the structure of

the company) attached to the IS and some of them can be moved to a separate interface agent.

These three types of interactions must be identified and classified and appropriate

modifications and/or extensions made to the interfaces.

3.2.2 Cooperation between the Operators

In many industrial applications, the partial implementation of various facets of system control

requires the operators to interact with one another to produce effective overall responses

(Jennings & Wittig, 1992). Analysis of these interactions (shown as c) gives an important

insight into some of the types of cooperation which are likely to occur in the multi-agent

system implementation. Factors which need to be identified include: the data and activity

requests communicated between the operators; the criteria which determine when requests are

issued and to whom; the mechanism by which requests are issued; the protocol adopted for the

request and how the result is accepted. Sometimes communication is not apparent, because

two systems are operated by one individual - in this case the information transfer must be

brought into the open.

3.2.3 Possible Decompositions of the Intelligent Systems

Some large ISs are difficult to maintain in their own right and introducing a further level of

complexity by incorporating them directly into a cooperating community would simply be

infeasible. In such cases it is worth splitting up the IS into several agents. Another reason for

decomposing an IS into multiple agents is if it has a capability which is replicated by another

component which will become part of the community. In this situation a decision has to be
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reached about the tradeoff between the efficiency of creating a dedicated agent and the

desirability for robustness which comes from duplicated capabilities. There is an analogous

situation for data: if the same information is needed by several agents, then it is often worth

introducing a database agent to maintain it. This is especially true if the data is a description of

the process controlled by the ISs because it can be kept up-to-date and consistent more easily.

In terms of figure 3, a pre-existing system has been split up - most of it remains in system A,

but an identifiable portion (B) has been combined with another piece of pre-existing software

(C) to make the intelligent system of the middle agent.

3.2.4 Introducing New System Components

Some components of the application may not be automated at the time when the multi-agent

system is being evaluated. In this case it is worth investigating the benefits of introducing new

ISs to deal with these activities - see system D in figure 3. New ISs may also be added for

reasons other than missing functionality. For example if a particular IS is often overloaded,

then this bottleneck may be avoided by making it into several identical agents within the

community. To enhance solution quality, new ISs can be added which generate the same

information as an existing system, but which work with different data and different side

effects.

Newly written ISs can take advantage of being designed specifically for use in an agent

community by having the ability to use information from acquaintances which would not be

available to them outside of the particular social context. For example in CIDIM a purpose

built diagnosis agent makes use of lightning location information in its reasoning process

because an acquaintance is able to provide it. Outside of CIDIM this information would not

normally be available. In order to maximise software reusability and system robustness, the

diagnosis agent is not dependent on the lightning location information, but if it is available

then it can be used to improve the quality of its output. The same use of optional additional

inputs by existing ISs can sometimes be achieved - however this always involves some

restructuring work since the additional data would not have been taken into account in the
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original design

3.2.5 Introducing New Forms of Cooperation

Sometimes in non integrated systems potential interactions which would be beneficial to the

community’s problem solving efforts are not undertaken because they would require a

substantial amount of manual effort or cross checking. In these cases (interaction d in figure 3)

an integrated system offers significant improvements by automating these exchanges.

3.3 Agent Community Design

Once the problem analysis has been completed, design of the multi-agent system can

commence. To be successful this design must consolidate the valuable features of the existing

system, improve upon some of the existing features and introduce new features by exploiting

the opportunities provided through social interactions. By adopting a mixed approach to

integration, community design is more constrained than designing a system from scratch -

because the designer should aim to maximise software reuse. However this should not be

taken to the extreme, in certain cases it is better to cease using certain parts of the existing

system and change to new ideas brought in through the multi-agent system approach.

The first phase of system design concerns the community - issues which need to be addressed

include: determination of the agent granularity, identification of the role of each agent, design

of the user interfaces, definition of the agents’ skills and enumeration of the forms of inter-

agent communication. Once the community design has been completed, each individual needs

to be instantiated - see section 5 for details of this process.

3.3.1 Level of Granularity

The first step is to determine the granularity of the agents. In many cases it will be the same as

that of the existing systems because it involves the least amount of restructuring work.

However the granularity may be changed if the application is growing and needs redesign or if

the granularity does not really fit the problem. For example earlier experiments in the domain

of particle accelerator control showed that mapping two pre-existing expert systems directly
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into a community of two agents did not allow the full potential of the cooperating systems

metaphor to be exploited (Jennings et al., 1993). Only by decomposing the two agents into a

community of six could the benefits of parallelism and asynchronous interactions be fully

realised.

Other factors which impinge upon decisions about granularity are: the limitations on agent

size caused by the availability of computing resources; the natural distribution and structure of

the problem and the ease of transforming (restructuring) the existing systems.

3.3.2 Role of Each Agent

The next step is to determine the functional role of each agent and of the community as a

whole. If as a result of the problem analysis phase it is determined that the existing ISs fulfil

all the necessary requirements, then the role of the agent community is basically the same as

that of the original system. In this case the ISs only need to be extended with the appropriate

cooperative functions. However if the existing ISs do not fulfil all the requirements, then

identifying the role of each agent is a more time consuming task. The functionality of the

whole application has to be described, this functionality has to be broken into identifiable

subproblems, these subproblems are then mapped to IS tasks, and the IS tasks have to be

allocated to ISs. All of this has to be undertaken whilst still being mindful of the constraints

imposed by the structure of the existing ISs.

3.3.3 User Interface

In the same way as each agent’s role is specified, so the role of the user interface(s) also has to

be determined. The basic question is whether the designer wants to hide all the agents behind

one interface and make the cooperating community transparent or whether each agent has its

own interface and the community and its interactions are made visible (Avouris, 1992). A

single interface is most appropriate when the application is centred around one problem or

when one operator can survey the whole application. Multiple interfaces better fit those

applications in which agents mainly serve their own goals and cooperation manifests itself as

occasional assistance.
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3.3.4 Agent Skills

Once the functional role of each agent has been defined, the skills to be represented at the

ARCHON Layer have to be decided upon. For newly developed ISs the designer has a large

degree of freedom in deciding upon the skills, with pre-existing systems the process may be

severely constrained by the current structure of the system. Skills are allocated so that agents

are able to fulfil their designated role and also so that they represent the largest possible

granularity of action. The latter point ensures they are large enough to warrant the overhead

inherent in skill execution, yet sufficiently small to concisely fulfil the desired objective. The

mandatory and optional inputs of the skills must be described as well as the intermediate and

final results which are produced.

It should not be possible to combine two skills without losing something in the role of that

agent and, conversely, it should not be necessary to divide a skill into sub-skills unless this

enhances the role of the agent. Thus, for example, an application designer may be faced with

the decision of whether to make tasks A and B of an IS available as skills in the ARCHON

Layer or whether to combine them into a single skill. This may be the case when in the normal

operation of the IS function B always follows function A. In making this decision the

following points should be considered; if the answer to any of the following is “yes”, then A

and B should be separate skills. If the answer is “no” and it is likely to remain this way even

with future developments in the application, then for efficiency reasons it is better to combine

them into a single skill.

• Will the calling of B ever be contingent on the output of A and if so will the

ARCHON Layer be able to assist in evaluating the decision?

• Could the calling of B be dependent on conditions in another agent?

• Is A or B an activity which another agent might want to request as a service (e.g. an

acquaintance wants B performed, but not A)?

• Are there different requirements regarding concurrent execution for A and B? If
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many versions of A can run concurrently but B is a critical section it makes sense to

have separate skills and use the locking mechanisms of ARCHON for B.

3.3.5 Messages

From knowing the skills which are present in the community, it is possible to describe what

types of messages will be sent between the agents, what format the information will be in and

what the expected size of the transmissions will be. Examples of generic message types

supported by ARCHON include: requests for data, requests for the execution of skills,

spontaneously volunteered information, responses to requests, reports of current status,

execution failure messages and emergency status messages.

It is also important to decide the mechanisms which should be employed to disseminate useful

information around the community. For example if an agent is capable of producing a result

which two of its acquaintances are interested in, only if they are in specific problem solving

state, then this data cannot be volunteered as unrequested information (since the sender cannot

be constantly aware of the exact state of the other community members) and should be

requested by the agents when they are in the relevant state. In other cases, the main form of

social interaction will be through the spontaneous sending of information which is believed to

be relevant to the recipient.

4. COOPERATIVE ELECTRICITY DISTRIBUTION MANAGEMENT

4.1 Introducing Electricity Distribution Management

Electricity distribution systems deliver electrical energy from the transmission substations to

customers, transforming to a suitable voltage where necessary. In the U.K., Regional

Electricity Companies (RECs) are responsible for distribution and supply to customers within

a geographical area. Most electricity is supplied by the generating companies via the national

grid at 400kV and 275kV to grid points where it is fed through transformers to the 132kV

network of the REC. From here it is passed around at a variety of voltage levels, to various

different types of customer (see figure 4).
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[INSERT FIGURE 4 ABOUT HERE]

Management of the distribution network aims to ensure there is a secure supply to all

customers. This involves maintenance and repair of plant, re-configuration of the network for

stable operation and restoring supply that has been lost due to faults. Coordination within and

between the different voltage levels is carried out at a control centre by control engineers

(CEs) who aim to maintain the optimal network configuration which keeps all customers

supplied and minimises losses. Listed below are a number of forces that can cause the network

to deviate from its steady state and which the CE must therefore take into account when

making decisions about which actions to perform. Some of these forces can be anticipated

well in advance, meaning a schedule of actions can be agreed beforehand; others are

unplanned and require the engineers to create appropriate strategies in real time.

• Weather: Temperature fluctuations cause changes in load. Wind, icing and

lightning damage the network.

• Demand: Demand changes according to the time of day, the day of the week

and the weather.

• Events: Third party damage, equipment failure, industrial action, disasters.

• Planned work: Maintenance, installing new equipment, reinforcement.

The higher voltage networks are usually managed solely from the control centre meaning that

authorisation must be given for any actions to be carried out by a field engineer and that the

outcome must be reported back. With the lower voltage levels, the field engineer may be

authorised to perform a sequence of operations to a pre-planned schedule and only report back

on significant items. Figure 5 represents a schematic picture of a control centre’s typical

communication flows.

[INSERT FIGURE 5 ABOUT HERE]

The extent to which the CE directly controls the network, based upon the measurements,

indications and alarms available to him and through the use of telecontrol command schemes,
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varies between RECs. However in all cases it can be an extremely difficult task; decisions

have to be taken based on incomplete information, presented from a variety of diverse sources

and the resulting actions must be both timely and secure. The major activity is to grant

authority for switching operations to the field engineers (except for the 240/415V local

network) and, where telecontrol equipment is installed, to initiate the remote operation of

plant via a console in the control room. These activities are the outcome of the CE’s reasoned

decision making process and are a response to his perception of the network’s needs:

• If the network is quiescent, work on it consists of repairs and planned routine

maintenance which requires authorisation, or actual performance of, the necessary

switching operations to release the plant from the network.

• If there is a fault in the network, responsibility has to be assumed for initiating

remedial action.

• The network configuration needs to be continuously monitored to ensure it is in a

stable electrical condition. This includes: assessment of the load on the network to

respond to overloads on plant items or take early corrective action to avoid it; actions

to avoid excessive fault levels and actions which aim to improve system security

within the constraints of the current network status.

4.2 Analysis and Design of the CIDIM Community

Following the methodology outlined in the previous section, the first task when developing the

CIDIM application was to analyse the problem of electricity distribution management. From

the top-down perspective, a specification of the whole CIDIM application was developed.

This necessarily included the functionality already available in the ISs but also highlighted

some of the functionality which could not be assigned to any single IS (i.e. those

functionalities which require cooperation between ISs or those which utilise ARCHON Layer

concepts). From the bottom-up perspective, analysis involved a detailed examination of the

pre-existing ISs, identification of the types of cooperation which take place between CEs,

study of the possible decompositions of the ISs, identification of potential new components
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and recognition of any new forms of cooperation which could be realised through integrated

problem solving.

In this application a number of pre-existing systems were available to assist the CE in

managing the network. These include: a switching schedule production assistant (SSPA)

(Brailsford et al., 1987; Cross et al., 1992 & 1993); a weather watch expert system which

locates lightning strikes (Scott, 1988; Lees, 1992) and a high voltage diagnosis expert system

(HVDES) (Bramer et al., 1988; Cockburn et al., 1991 & 1992). These systems formed the

basis of the CIDIM application but needed to be transformed into a cooperating community

using the established methodology.

The HVDES had a separate program to translate and filter the telemetry messages arriving

from the electricity network. Since other agents also need this telemetry, a dedicated

Telemetry Agent (TA) was created to handle telemetry for the whole system (see 3.2.3).

Similarly the network model of the HVDES was self contained. However as each REC

represents its network model, in its own database, using its own format, it was deemed

appropriate, on the grounds of consistency (see 3.2.3), to create an information agent (IA) to

provide a front end to the actual database. This organisation also allows easier access to the

network models and should the database need to be changed, for example using CIDIM in a

different REC, the alterations will be confined to the internal workings of the IA. From an

external perspective, the format of the queries posed by other agents and the response from the

IA will remain the same.

The HVDES does not cover the whole distribution network, so to produce a more

comprehensive aid to the CE a low voltage diagnosis expert system (LVES) (Cockburn et al.,

1992) was developed (see 3.2.4). The LVES was conceived as separate from the HVDES

because its input data is different and because its diagnosis method is necessarily different

(incremental refinement rather than simulate and test). The reasons for these differences are

firstly that the operation of automatic protective devices only locates a fault to the circuit level

in the low voltage network and secondly that important additional information is obtained

from customer telephone calls which report loss of supply.
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For this application it was deemed appropriate to develop a standard presentation system for

information to the CE (see 3.3.3). This Advisor Agent (AVA) allows information derived from

more than one source to be presented in a standard way. For example the CE is interested in

fault reports, not the fact that two separate agents were responsible for producing them. Also

with an integrated presentation, lightning information can be displayed next to faults which it

may have caused, thus providing a useful cross check of information for the CE (see 3.2.5).

In addition to diagnosing faults, CEs spend a significant proportion of their time on routine

maintenance and restoration of power. However before maintenance can begin, a plan of safe

switching operations needs to be made which isolates that part of the network to be worked

on. The pre-existing SSPA was able to perform this job and by integrating it into the CIDIM

community it could use the network data from the IA (previously it had its own source). The

SSPA has its own graphical user interface with which the CE interacts to produce switching

plans. In CIDIM these plans can be made available to other agents so that checks can be

carried out to determine whether newly detected faults will interfere with them. If this is the

case, such interference will be signalled to the user via the AVA. Thus the SSPA can use its

own specialised interface for creating switching plans, so to the user it appears the same as it

does in standalone mode (see 3.2.1), and the AVA can be used for giving warning warnings

about new faults affecting switching plans. The latter is additional functionality brought into

being by the SSPA being included in CIDIM.

A switch checking agent (SCA) will also be included in CIDIM. This agent will have the same

safety checking capabilities as the SSPA but will not require the separate user interface. Its

role will be to recheck already created plans against the current network status before they are

carried out. This recheck will be automatically triggered by the ARCHON Layer and the

results will go to the AVA (see 3.2.5).

When a fault occurs it may be that no customers actually lose supply - because of alternative

routes through the network. These new routes can be switched in by the CE after he has

checked, using the SCA, that they will not damage the network. This new network

configuration might work temporarily but may leave the distribution system in a precarious
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state with a line overloaded or in a state such that a subsequent fault may cause the loss of

power to a far greater area. Thus a Security Agent (SA) was included to check for overloads

and to consider the network security should subsequent faults occur. Previously such

programs were not used on line, but integration within CIDIM means an up to date network

model is available (through the IA) and that the checks can be triggered to run automatically

at suitable times (e.g. after a fault - see 3.2.5).

In comparison to the majority of DAI applications the level of granularity of the CIDIM

agents is high. The reason for this is that in CIDIM the ISs stem from standalone systems

which were themselves of high complexity, whereas most DAI systems simply build their

applications from scratch without having any bottom-up design constraints. Obviously

CIDIM’s distinct functional components could be made into separate agents, as with the

HVDA, but finer decomposition would require significant re-working of the remaining

structure and would therefore contravene the basic principle of software reusability. A further

constraint is that several of the pre-existing systems will continue to be used in stand alone

mode outside CIDIM. Therefore if the two versions of the software are substantially different

then there is a significant extra burden on maintenance.

4.3 Cooperation in CIDIM

One of the major benefits of interaction in this application is to automatically collate results

between different agents and to ensure that timely and consistent information can be accessed

by all community members. For example a switching plan for a routine maintenance operation

may be made one day to be carried out the next. However if a fault occurs in that area in the

meantime, the plan will have to be redone. Within CIDIM all the necessary information is

dispersed at various sites within the community, but by instantiating the necessary social

interactions these checks can be carried out automatically. Two other types of cooperative

interaction which enable the multi-agent community to perform more robustly in the face of

missing information and agent failures are detailed below.
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4.3.1 Assistance when Information is Missing or Unavailable

The distribution network is protected from faults by automatic circuit breakers. The TA, the

high voltage diagnosis agent (HVDA) and the low voltage diagnosis agent (LVDA) can all

make assumptions about the state of these circuit breakers. As the TA receives telemetry

messages when circuit breakers operate, it is usually assumed to have the definitive view of

the network’s state. However there are three exceptional situations in which this is not the

case: not all circuit breakers are telemetered; telemetry can go missing and not be received at

the control centre; and telemetry from a whole substation may not be reported for a period of

time.

In each of these exceptional cases the HVDA and LVDA can make assumptions about the

network state, through their own knowledge and by interacting with their acquaintances, and

can convey them to the IA so that a more accurate description of the network is available to

the community. Firstly the HVDA may use telemetry from the TA and its knowledge of how

the protection system operates to hypothesise faults as the cause of the telemetry. It can then

simulate them on its network model and show that a circuit breaker should have operated but

that no telemetry message was received. Secondly the LVDA can combine telemetry from the

TA with telephone calls from customers reporting loss of supply in its diagnosis. These two

sources of information can be used by the LVDA to indicate that a circuit breaker is open even

if the corresponding telemetry has not arrived. Finally, an example involving a more elaborate

pattern of interaction occurs when there is a high voltage fault which would mean a loss of

supply to the low voltage network if it were permanent, but the HVDA is uncertain about the

state of a circuit breaker, and thus the nature of the fault, due to missing telemetry. Here the

HVDA can interact with the LVDA and the TA, asking the LVDA if power has been lost in the

low voltage network and asking the TA to reconfirm its opinion of the state of the circuit

breaker (since a communication failure could have occurred in the telemetry system and the

missing telemetry could have been received late).
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4.3.2 Cooperative Query Processing

The LVDA can improve its diagnosis for overhead line networks by cooperating with the

weather watch agent (WWA) to determine whether there was lightning at a certain time near a

certain plant item. If there was lightning in the vicinity then it is extremely likely that it was

the cause of the fault. However the WWA is unable to answer this question on its own because

its database only contains information relating the time of lightning strikes to geographic

locations. To determine whether the strike was near a particular item of plant the WWA needs

to interact with the IA which is able to map between items of plant and geographic locations.

The WWA can determine for itself whether there was lightning at a particular time. If the

answer is “no” then there is no need to seek assistance from the IA and the LVDA’s query can

be answered. If the answer is “yes” then the WWA will interact with the IA to determine

whether there was lightning near the particular item of plant in question and when this answer

is available return it to the LVDA which can incorporate it into its diagnosis.

This community design is beneficial in that the pre-existing IS of the WWA can stay as a

general purpose system for lightning location and does not need to be augmented with

knowledge about electrical plant. Through cooperation with another agent (the IA), the WWA

can be used in a specific domain (electricity distribution networks) without decreasing the

flexibility of the original program.

5. INSTANTIATING THE AGENTS AND BUILDING A COMMUNITY

Having designed the community’s overall structure and specified each agent’s role, the next

task is to instantiate the ARCHON Layer of the individual members. The agent’s ARCHON

Layer then needs to be connected to the IS to produce a complete agent. Once all the agents

are completed, they need to be combined into a community and tested. The present

implementation concentrates on the LVDA’s diagnosis phase - with particular attention being

given to the diagnosis using telemetry received from the TA and the interaction with the IA to

provide the appropriate model of the network.
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5.1 Agent Instantiation

The functional role of each agent devised in the community design phase is made operational

by defining each agent’s skills. For example the role of the LVDA is to diagnose faults in the

low voltage network. To carry out this task successfully it needs information from the TA

(DEAL_WITH_TELEMETRY), the IA, the WWA and the HVDA (ACCEPT_HV_FAULT),

as well as from direct telephone call inputs from customers

(DEAL_WITH_TELEPHONE_CALLS). The telemetry coming from the TA may be delayed

or lost (DEAL_WITH_SUBSTATION_FAILURE) meaning that the final diagnosis may take

longer than expected. The result of the diagnosis is only made available to the CE after several

telephone calls and telemetry messages have been received or after a fixed deadline has

expired (REPORT_DIAGNOSIS). Using this as a basis, the following skills were assigned to

the LVDA:

DEAL_WITH_TELEMETRY: Receive telemetry from the TA whose the operation is

autoreclosure (the circuit breaker opened and then reclosed automatically), create a

network model for the area identified by the telemetry (using information from the IA)

and refine the diagnosis.

DEAL_WITH_TELEPHONE_CALLS: Receive information about telephone calls from

customers, create a network model for the area identified by the telephone call (using

information from the IA) and refine the diagnosis.

REPORT_DIAGNOSIS: After sufficient time has elapsed so that no more information

about a particular fault is expected, contact the WWA for information about lightning

strikes in the area and produce a final report for the fault.

ACCEPT_HV_FAULT: Accept information from the HVDA about the occurrence of

high voltage faults which may affect the low voltage network and use this information

to refine the diagnosis.

DEAL_WITH_SUBSTATION_FAILURE: Receive reports of failure in the telemetry
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system and refine the diagnosis to take into account the missing information.

Having defined an agent’s basic units of activity, the local and social problem solving

behaviour required for a given application must be encoded through appropriate instantiation

of the ARCHON Layer mechanisms. There are two main areas which need to be addressed.

Firstly the agent’s local problem solving behaviour and its data definitions need to be encoded

into the Monitor and the Self Model. Secondly all the agent’s social interactions and global

situation assessment capabilities need to be represented through appropriate instantiation of

the PCM, the Self Model and the Acquaintance Models.

5.1.1 Instantiation of Local Problem Solving Activities

To instantiate the necessary local control, the application designer has to encode the skills.

Figure 6 shows a portion of the LVDA’s DEAL_WITH_TELEMETRY skill which accepts

telemetry information and starts a fresh diagnosis activity if it corresponds to a new fault or

updates an existing diagnosis if it represents an area which is already under investigation. For

simplicity only one branch is elaborated - this has two named sub-components:

GET_NETWORK_DATA and DIAGNOSE_FAULT. The former ensures that the relevant

portion of the network is loaded and the latter actually performs the diagnosis based on the

telemetry and the loaded network model.

[INSERT Fig 6 ABOUT HERE.]

The leftmost branch of the skill is traversed first. This means the first step to be executed is the

GET_NETWORK_DATA plan which is itself composed of an OR-Graph of monitoring units

(MUs):

PLAN GET_NETWORK_DATA

:MU MU_NEED_NETWORK
:PRECONDITIONS NIL
:CHILDREN (MU_GET_NETWORK :END)
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:MU MU_GET_NETWORK
:PRECONDITIONS ((:output-match NETWORK_DESCRIPTOR))
:CHILDREN (:END)

The root MU MU_NEED_NETWORK is executed immediately because its constraints on

execution (i.e. preconditions) are satisfied (in fact, there are none). This MU invokes a

function in the LVES called TASK_NEED_NETWORK which is called with the parameters

TELEMETRY (see below). Upon completion, this task returns a NETWORK_DESCRIPTOR

- e.g. (:message-type NETWORK_DESCRIPTOR :content ((SUBSTATION

SUB1) (VOLTAGE 11000)) - which describes the network needed by the LVES or

FALSE if the relevant portion of the network has already been loaded.

(define-MU-type

:name MU_NEED_NETWORK

:is-task TASK_NEED_NETWORK

:parameters (TELEMETRY)

:outputs (NETWORK_DESCRIPTOR))

When the plan’s first action is completed, its children slot (MU_GET_NETWORK :END) is

examined to identify the next activity to be performed. In this case the constraint on the

execution of the leftmost branch (i.e. MU_GET_NETWORK) is examined. If these

preconditions are met (i.e. the output of the previous MU is a NETWORK_DESCRIPTOR),

then this step is followed. If its conditions are not met, then the next child is examined - here it

is the keyword :END which always succeeds.

Assuming that the NEED_NETWORK MU returns a network descriptor then a new portion

of the network needs to be loaded. Therefore the GET_NETWORK MU will be executed:

(define-MU-type

:name MU_GET_NETWORK

:is-task TASK_CREATE_NETWORK_MODEL

:parameters ((NETWORK-DATA :para NETWORK_DESCRIPTOR))

:output NIL
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Before calling the task in the IS, the Monitor ensures that all the necessary input parameters

are available. In this case, data of type NETWORK-DATA is not available in the environment

of the skill and so the Monitor signals to the PCM that this piece of information is needed and

provides the NETWORK_DESCRIPTOR as the necessary parameters for computing the

information. The PCM then determines how this information can be produced and by whom

(a process described in more detail in the following section). The PCM identifies that the best

means of producing the desired information is to interact with the IA and so it sends out the

following request: (INFO-REQUEST NETWORK-DATA :parameters

((SUBSTATION SUB1) (VOLTAGE 11000)). The IA will eventually provide the

necessary information to the LVDA’s PCM which will signal to the Monitor that it can restart

its execution of the relevant MU. The CREATE_NETWORK_MODEL function of the IS is

now invoked with the NETWORK-DATA returned from the IA and the relevant portion of the

network model is constructed in the LVES. Having finished this second plan step its children

are evaluated - however as the CHILDREN slot contains :END there are none and so the plan

step has successfully completed.

As the GET_NETWORK_DATA plan has successfully completed, the next plan step is

activated. DIAGNOSE_FAULT is a plan composed of just one MU:

PLAN DIAGNOSE_FAULT

:MU MU_DIAGNOSE_FAULT
:PRECONDITIONS NIL
:CHILDREN (:END)

The plan step DIAGNOSE_FAULT is executed because its preconditions are satisfied. This

results in the LVES’s DIAGNOSE_FAULT task being invoked with the TELEMETRY which

has been provided from the TA as input (see below). This task first checks to see whether the

supplied TELEMETRY relates to an existing hypothesis. If it does not then a new hypothesis

is created and a timer is started. The length of time spent on diagnosis depends on how soon

the LVES expects to receive all the data that is normally produced when such a fault occurs

(e.g. telephone calls from customers who have lost supply). This delay before the diagnosis is
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reported is necessary because all the information coming from the customers will take a while

to start arriving. If the TELEMETRY relates to an existing hypothesis then the new

information is used to refine the current hypothesis. In the meantime, other skills (e.g.

DEAL_WITH_TELEPHONE_CALLS and ACCEPT_HV_FAULT) can be running and

providing further refinements to the diagnosis. When the timer expires, the diagnosis is

returned.

(define-MU-type

:name MU_DIAGNOSE_FAULT

:is-task DIAGNOSE_FAULT

:parameters (TELEMETRY)

:outputs (LVDA_DIAGNOSIS))

When this MU has completed, the result LVDA_DIAGNOSIS will be produced. There are no

further plan steps and so the DIAGNOSE_FAULT plan has finished. As the last plan in the

current branch of the skill has succeeded, the skill has been performed.

Once the skill has been defined it needs to be placed into the Self Model so that other

ARCHON Layer components can reason about it. For example the

DEAL_WITH_TELEMETRY skill is defined in the following manner, the triggering

condition is dealt with in section 5.1.2:

Name: DEAL_WITH_TELEMETRY

Trigger: TELEMETRY-TRIGGER-FOR-LVDA

Inputs: ((TELEMETRY :mandatory))

Results: (LVDA_DIAGNOSIS)

Plan Name: PLAN_GET_NETWORK_DATA

Children: (DIAGNOSE_FAULT)

In many industrial applications, the data to be exchanged between agents has a complex

structure. This structure must be specified in the Self Model and must be commonly
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understood by all the agents in the community. The structure identifies the constituent

components of the data and defines their type. For example the TELEMETRY data used

above is an instance of the class TELEMETRY-MESSAGE-TYPE which has the following

definition:

type_create: TELEMETRY-MESSAGE-TYPE

components:( (TEXT: STRING) (TIME: INTEGER)

(TEXT_TIME:STRING)(SUBSTATION: STRING)

(PLANT: STRING) (OPERATION: STRING)

(SOURCE: STRING) (VOLTAGE INTEGER) )

and a typical example is

((TEXT “ALARM 04SEP90 15.50/12.00 RUSKI RUSKINGTON C2
CIRCUIT BREAKER AUTOREC”)

(TIME 10874390) (TEXT_TIME “04SEP90 15.50/12.00”)

(SUBSTATION “RUSKINGTON”)(PLANT “RUSKINGTONC2”)

(OPERATION “AUTOREC”) (SOURCE “ALARM”)

(VOLTAGE 11000) )

5.1.2 Instantiation of Social Problem Solving Activities

Analysis of CIDIM’s social interactions reveals the PCM is required to undertake the

following duties: initiate cooperative interactions; select between local and remote execution

of skills; if remote execution is selected, then choose the appropriate agent; if local execution

is selected, then choose the appropriate skill (several local skills may provide the desired

result) and service external requests. The reasoning required to perform these functions is

built into the PCM’s generic rules and the application specific details are contained in the

Agent Models. Therefore instantiating the necessary control of social activities mainly

involves setting up the appropriate agent models. The only feature of the generic rules which

can be modified is the relative priority of the various social functions: thus an agent can be

made service-oriented by increasing the priority of external communication or computation-
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oriented by increasing the priority of local activities.

With regard to the LVDA’s diagnosis using telemetry, the PCM of the respective agent is

responsible for the following functions:

i) When the IS of the TA generates telemetry, the PCM must recognise, through its

acquaintance models, that the LVDA is interested in receiving it. Knowing this, the PCM

should volunteer the data as unrequested information.

Interest descriptors indicate information that other agents would benefit from receiving. They

allow the developer to describe under what conditions information should be sent to an

acquaintance, thus reducing unnecessary traffic. This specification contains two parts, the

name of the data item and the condition in which the acquaintance is interested in it. For

example the TA’s model of the LVDA specifies that it is interested in receiving TELEMETRY

data which refers to the low voltage network (i.e. less than or equal to 11,000 volts). The “!!”

and “?X” symbols in the condition are pattern matching primitives - the former matches

against a pattern of arbitrary length and the latter binds the value of the voltage slot of the

telemetry information to a local variables named X.

Name: TELEMETRY-INTEREST-FOR-LVDA

Data name: TELEMETRY

Condition: ((!! (VOLTAGE ?X) !! ) (<= X 11000))

The associated generic rule which acts upon the acquaintance model to produce the desired

behaviour is:

(rule volunteer-info

(if (and (INFO-AVAILABLE ?I)

(ACQUAINTANCE-INTERESTED-IN ?I ?ACQ)))

(then (SEND ?I TO ?ACQ AS UNREQUESTED-INFORMATION)))
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ii) To create its network model, the LVDA needs structural information about the network.

When such information is required, the PCM has to determine which acquaintance can

provide it and send that agent a request.

The LVDA knows the IA can produce the network data for a substation because its

acquaintance model indicates that it can perform a skill whose result is the NETWORK-

DATA:

Name: GET_NETWORK_FOR_SUBSTATION

Inputs: SUBSTATION

Results: NETWORK-DATA

The associated generic rule which produces the desired behaviour is:

(rule generate-service-request

(if (and (INFO-NEEDED ?I)

(CANNOT-BE-PRODUCED-LOCALLY ?I)

(ACQUAINTANCE-CAN-PRODUCE ?I ?ACQ)))

(then (SEND INFO-REQUEST TO ?ACQ TO PRODUCE ?I)))

iii) When the LVDA receives telemetry whose operation is autoreclosure, its PCM must trigger

execution of the DEAL_WITH_TELEMETRY skill.

The trigger for the DEAL_WITH_TELEMETRY skill is defined in the Self Model. It is

triggered on receipt of TELEMETRY whose voltage value is less than or equal to 11kV and

whose operation is autoreclosure (the pattern matching primitives are the same as those used

in the interest descriptor).

Name:TELEMETRY-TRIGGER-FOR-LVDA

Data name: TELEMETRY

Condition: ( (!! (VOLTAGE ?X) !! (OPERATION ?OP) !!)
(<= X 11000) (OP = AUTOREC))
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The associated generic rule is:

(rule start-skill

(if (and (RECEIVE-INFO ?I)

(INFO-IS-SKILL-TRIGGER ?I ?SKILL)

(TRIGGER-SATISFIED ?SKILL)))

(then (EXECUTE-SKILL ?SKILL)))

5.2 Interfacing the ARCHON Layer and its Intelligent System

Having instantiated the relevant parts of the ARCHON Layer a connection with the IS needs

to be established. In the case of purpose built ISs, this is a relatively straightforward activity

because they are designed to be controlled from the ARCHON Layer. In this case, invoking an

IS task is similar to an asynchronous function call.

In case of pre-existing systems, however, connection with the ARCHON Layer can be a

substantially more demanding job. One reason for this is that the ISs control regime is

embedded in the software alongside problem solving expertise. From a multi-agent point of

view this is unsatisfactory, the ARCHON Layer should be taking the major control decisions

since it knows about the other community members and the effects that local decisions will

have on global coherence. Therefore the IS will need to be altered to make the control more

accessible and amenable to manipulation. For example in the particle accelerator application,

once the diagnosis expert systems were started they remained in a continuous loop and control

could only be achieved by injecting items into their agenda (Jennings et al., 1993). To

incorporate these systems into a cooperating community the basic steps of the loop were

identified as skills and then the top-level control loop was removed from the IS and placed in

the ARCHON Layer. An example from CIDIM is that the LVES originally had its own data

sources. However when the LVDA was integrated into the cooperating community other

agents became responsible for providing the information it needed. Thus the control of when

such information was incorporated into the reasoning process was undertaken by the

ARCHON Layer rather than the IS where it had previously resided.
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5.3 Introducing the Agents to Each Other

Once all the agents have been instantiated they can be integrated into a community. Ideally

this final phase just involves loading the agents into the target environment, specifying the

network addresses and starting the whole system. However before this is carried out, it is

advisable to perform a few simple consistency checks on the Agent Models - especially if

each agent has been developed by a different team. Pertinent checks include ensuring

interacting agents have consistent information definitions for data they are to exchange and

ensuring that each agent’s requests for services are capable of being executed by at least one

community member.

Once the agents are plugged together they have to be tested. This can be carried out in two

ways: if the real process allows on-line experimentation then this should be used as the test

environment (as was the case with CERN’s particle accelerator controller). Alternatively a

simulated environment must be developed and used as the basis for testing. In CIDIM, testing

was based on simulated inputs which were sampled from real events because the distribution

network can run for long periods of time before a disturbance occurs. The purpose of this

community testing phase is to ensure that each agent’s individual modules have been coded

correctly and also that the interactions between community members have been successfully

captured.

In many applications non-functional requirements such as performance are an important

component of the final system. For this reason, the cooperating community must meet the

desired performance characteristics as well as operating correctly. Bottlenecks may occur in

the computation resources of individual agents or in the communication channels between

them and can only be detected by monitoring the performance of the working system. When

such bottlenecks are detected, the designer must take appropriate steps to alleviate them. In an

early version of CIDIM, for example, the TA would send all the generated telemetry to both

the HVDA and the LVDA. This meant that large amounts of data were needlessly being sent

to agents who simply discarded them. This problem has been overcome in the present

implementation by allowing more expressive statements to be included in the conditions of
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interest descriptors (see 5.1.2). Another example is that the switch checking agent was

introduced into CIDIM to reduce a resource bottleneck. The SSPA is capable of rechecking

switching plans, but if the user is in the process of creating a schedule (the SSPA’s main

activity) then there will be a major resource conflict. By increasing the availability of the

scarce resource (the ability to recheck switching plans), CIDIM can operate more efficiently.

6. CONCLUSIONS

CIDIM can be regarded as typical of a whole class of industrial applications which are ripe for

a multi-agent approach. It has many features which are often observed in this type of

application: some of the ISs were pre-existing and some needed to be purpose built for the

integrated system; there was some interaction, through the operators, before the cooperating

community was implemented although there was significant scope for improvements in the

quality of such exchanges. Development of CIDIM represents an important contribution in

that DAI (and AI) techniques are rarely applied to real-world problems. Consequently many

of the bottom-up design and implementation issues highlighted by this paper remain hidden

when systems are built for toy or highly idealised domains. A further contribution is in

highlighting the types of cooperation which can be expected when semi-autonomous agents

interact on a common problem. This aspect provides an important means of verifying the

applicability of the various theoretical models of cooperation which exist within the DAI

literature. In this type of application the forms of interaction which are most beneficial are: the

timely sharing of relevant information and the ability to ask acquaintances to carry out tasks /

provide information which the local agent is unable to perform / provide for itself.

As a consequence of building CIDIM, and several other industrial applications, a series of

issues and design forces were identified as central to the process of developing real world

multi-agent systems. Guidelines are given relating to the analysis of an application from a

multi-agent perspective and important design choices concerning the composition of a

cooperating community are identified. At this stage the methodology cannot be regarded as a

final, neither for creating ARCHON applications nor for constructing multi-agent

communities for industrial control. However it is now sufficiently mature such that still
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greater experience will only result in slight modifications.

Future work aims to incrementally extend the CIDIM implementation. The remainder of the

interactions relating to diagnosis will be coded and work on incorporating the full

functionality related to switching plans and security analysis will begin. Once a sufficiently

complete cooperating community has been built, a three month trial will be conducted at a

Regional Electricity Company to see how the system copes with on-line management of the

distribution network and how it compares with the present mode of operation. This initial

implementation highlighted a number of deficiencies in the ARCHON system which need to

be ironed out for the final version. In particular, run-time control of the various social and

situation assessment functions needs to be improved so that agents can respond in a more

timely fashion to urgent events. Secondly a limited form of conflict resolution is needed, so

that discrepancies can be resolved by the community at run-time rather than attempting to

engineer them all out at design time as occurs with the present implementation.

When CIDIM is complete it will enhance the job of the CE by automating tasks which are at

present extremely tedious to perform. For example rather than seeing all telemetry messages,

as is the case at present, just fault diagnoses can be presented. In the worst case this will mean

being shown tens of faults in a day of which the important ones will be highlighted. This

contrasts with the thousands of telemetry messages which are currently presented on an

average day. Confidence in diagnoses will increase because lightning information will

automatically be collated with faults - at present this requires a time consuming look up which

is often not undertaken when the CE is busy. These and other automated exchanges of

information will allow the CE to concentrate more on supervision of maintenance and repair

work and will also allow more time to be spent on preventative actions.

In the long term, the adoption of a cooperating systems approach, coupled with other changes

in the control room (such as graphical information systems), means there will be less need to

have centralised control and also that there will be greater opportunities for dynamically

switching control from one centre to another. At present the latter capability is limited (unless

it has been preplanned like the changeover of control at night) because all the necessary
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information is not portable (e.g. a Control Centre is responsible for one region and has large

wall diagrams of the network for that region). This ability to transfer control will be of use as

a backup procedure or to share the workload during severe fault conditions.

Finally with the advances in telecommunications and radio links it will soon be possible for

the field engineer to have full access to network diagrams, safety checking, lightning data and

all the services of CIDIM whilst he is on location. Indeed the role of the CE may change

dramatically with more local decisions being taken because of the increased availability of

information.
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