THE ARCHON'"" SYSTEM AND ITS APPLICATIONS

N. R. Jennings

Department of Electronic Engineering,
Queen Mary and Westfield College,
University of London,

Mile End Road,

London E1 4NS, UK.
email: N.R.Jennings@gmw.ac.uk

ABSTRACT

ARCHON™ (ARchitecture for Cooperative Heterogeneous ON-line systems) was
Europe’s largest project in the area of Distributed Artificial Intelligence (DAI). It
devised a general-purpose architecture, software framework, and methodology which
has been used to support the development of DAI systems in a number of real world
industrial domains. Some examples of the applications to which it has been success-
fully applied include: electricity distribution and supply, electricity transmission and
distribution, control of a cement kiln complex, control of a particle accelerator, and
control of a robotics application. The type of cooperating community that it supports
has a decentralised control regime and individual problem solving agents which are
large grain, loosely coupled, and semi-autonomous.

This paper will tackle a broad range of issues related to the application of ARCHON
technology to industrial applications. Firstly, it gives the rationale for a DAI approach
to industrial applications and highlights the characteristics which typify this important
domain. Secondly, the ARCHON framework is detailed - with a special emphasis
being placed upon the implementation architecture. Thirdly, a brief resumee and status
report of the main applications is presented. Finally, the lessons learned and the future
plans are presented.

1. INTRODUCTION

In many industrial applications a substantial amount of time, effort and finance has
been devoted to developing complex and sophisticated software systems. These sys-
tems are often viewed in a piecemeal manner as isolated islands of automation, when,
in reality, they should be seen as components of a much larger overall activity (Jen-
nings, 1994). The benefit of taking a holistic perspective is that the partial subsystems
can be integrated into a coherent community in which they work together to better meet
the needs of the entire application. By the very fact that they are integrated, the finite
budgets available for information technology development can be made to go further
- agents can share a consistent and up-to-date version of the data, basic functionalities
need only be implemented in one place, problem solving can make use of timely infor-
mation which might not otherwise be available, and so on.

Two components are required to devise a well-structured integrated community: a
framework which provides assistance for interaction between the constituent subcom-
ponents and a methodology which provides a means of structuring interactions.
ARCHON addresses both of these facets: providing a decentralised software frame-
work for creating Distributed Al (DAI) systems for industrial applications and
devising a methodology which offers guidance on how to decompose an application to
best fit with the ARCHON approach (Wittig, 1992). The former is concerned with pro-
viding the necessary control and level of integration to help the subcomponents to
work together; the latter is concerned with decomposing the overall application goal(s)
and with distributing the constituent tasks throughout the community.

ARCHON’s individual problem solving entities are called agents; these agents have
the ability to control their own problem solving and to interact with other community
members. The interactions typically involve agents cooperating and communicating
with one another in order to enhance their individual problem solving and to better
solve the overall application problem. Each agent consists of an ARCHON Layer (AL)
and an application program (known as an Intelligent System (I1S)). Clearly distinguish-
ing between an agent’s social know-how and its domain-level problem solving means
that the ARCHON approach is both flexible and open - imposing relatively few con-
straints on the application designer and yet providing many useful facilities. Purpose-
built ISs can make use of the ARCHON functionality to enhance their problem solving
and to improve their robustness. However pre-existing ISs can also be incorporated,
with a little adaptation, and can experience similar benefits - see Jennings (1994) for a
detailed account of how this process was carried out for the particle accelerator control
application. This latter point is important because in many cases developing the entire
application afresh would be considered too expensive or too large a change away from
proven technology (Jennings and Wittig, 1992).

To successfully incorporate both purpose-built and pre-existing systems, community
design must be carried out from two different perspectives simultaneously. A top down
approach is needed to look at the overall needs of the application and a bottom up
approach is needed to look at the capabilities of the existing systems. Once the gap
between what is required and what is available has been identified the system designer
can choose to provide the additional functionality through new systems, through addi-
tions to the existing systems, or through the ARCHON software itself. This
methodology shapes the design process by providing guidelines for problem decom-
position and distribution which reduce inefficiencies and is described more thoroughly
in Varga et al. (1994) and Cockburn and Jennings (1995).

This paper is organised along the following lines: section two provides a detailed view
of ARCHON’s software framework - covering both inter-agent interactions and inter-
actions between the AL and its underlying IS. Section three provides an overview of
ARCHON’s applications, concentrating mainly on the electricity distribution and the
electricity transmission systems. Finally, section four presents the conclusions of this
work and outlines some future plans.

2. THE ARCHON ARCHITECTURE

The ARCHON software has been used to integrate a wide variety of application pro-
gram types under the general assumption that the ensuing agents will be loosely
coupled and semi-autonomous. The agents are loosely coupled since the number of
interdependencies between their respective ISs are kept to a minimum; the agents are
semi-autonomous since their control regime is decentralised (meaning each individual
decides which tasks to execute in which order). The ISs themselves can be heteroge-
neous - in terms of their programming language, their algorithm, their problem solving
paradigm, and their hardware platform (Roda et al., 1991) - as their differences are
masked by a standard AL-IS interface. An AL views its IS in a purely functional man-
ner - it expects to invoke functions (fasks) which return results - and there is a fixed
language for controlling this interaction.

In an ARCHON community there is no centrally located global authority, each agent
controls its own IS and mediates its own interactions with other agents. The system’s
overall objective is expressed in the separate local goals of each community member.
Because the agents’ goals are usually interrelated, social interactions are required to
meet global constraints and provide the necessary services and information. Such inter-
actions are controlled by the agent’s AL; relevant examples include: asking for
information from acquaintances, requesting processing services from acquaintances,
and spontaneously volunteering information which is believed to be relevant to others.

In more detail, an agent’s AL needs to: control tasks within its local IS, decide when
to interact with other agents (for which it needs to model the capabilities of its own IS
and the ISs of the other agents), and communicate with the others. These basic require-
ments are embodied in ARCHON’s modular and layered implementation architecture
(fig 1). This architecture contains four modules - Monitor (section 2.1), Planning and
Coordination Module (PCM) (section 2.2), Agent Information Management (AIM)
module (section 2.3), and High Level Communication Module (section 2.4)

In terms of its hardware and software requirements, the ARCHON layer was originally
implemented using LISP; later it was ported to C++ and now runs under UNIX on Sun-
4 architecture workstations and under Linux on 1386 machines.

2.1 Monitor

The Monitor is responsible for controlling the local IS. Each IS task is represented in
the Monitor by a monitoring unit (MU). MUs present a standard interface to the Mon-
itor whatever the host programming language and hardware platform of the underlying
IS. Figure 2 shows a graphical representation of an MU called TransformTelem-
etry which takes TELEMETRY as an input and produces TRANSFORMED-
TELEMETRY as an output. The IS task associated with this MU is called TRANS-
FORM-TELEMETRY in the ARCHON layer.

INTER-AGENT MESSAGE PASSING

ARCHON
AGENT 2

Acquaintance
HLCM -=— Moqdels

I ‘

If
PCM - Efodel
A AIM

ARCHON
AGENT 3

Monitor

AL/IS Interface

Intelligent System

Figure 1: Structure of an ARCHON Agent and an ARCHON Community

MUs can send and receive messages (control, confirmations and requests) to/from the
IS. All messages have to pass through the AL-IS interface which performs the transla-
tion and interpretation required for the IS to understand the AL directives and for the
AL to understand the IS messages. For instance, in the above example, the interface
functionality involves invoking the IS function transform_telemetry, passing
the arguments in the form in which they are expected by the IS’s host language, and
returning the transformed telemetry in the expected format.

For the IS to be able to react to an AL directive the interface must translate the com-
mand into the corresponding local control action(s). However this interpretation is
subject to the capabilities of the IS - for example, KILL in a C program may just mean
that - kill a process; whereas in a rule-based Prolog system it may mean clear all the
facts asserted by the current task and then stop. This means that the interface has to be
specialised to the IS’s programming language - although the ‘C’ language version can
be used as foreign code in other programming languages. Other interface functional-
ities include specifying how many invocations of a particular task can run in parallel
and how many can be queued should that limit be reached. For example, it may be pos-
sible to run only one invocation at a time (e.g. updating a global data store), or a task
can have multiple instantiations running in parallel but it may be desirable to have a
limit and to queue other requests for that task until one has completed.

4

ARCHON

Intelligent Layer

System
MU Name TransformTelemetry

AL-IS Interface Input
“TRANSFORM.- TELEMETRY
TELEMETRY” =
transform_telemetry
“NEED-NETWORK” = ¢ IS Task Name
need_networ “TRANSFORM-
TELEMETRY’)

IS Task

Result
TRANSFORMED-
TELEMETRY

transform_telemetry

IS Task

need_network

Control| Confirmation|| Request Messages

Figure 2: TransformTelemetry Monitoring Unit

MUs represent the finest level of control in the ARCHON layer, at the next level of
granularity there are plans. Plans are acyclic OR-graphs in which the nodes are MUs
and the arcs are conditions. These conditions can: be dependant on data already avail-
able from previously executed MUs in the plan; be dependant on data input to the plan
when it started; make use of the locking mechanism for part of the plan; and be used
to return intermediate results before a plan has completed.

A sample plan which ensures that the electricity network is loaded, before fault diag-
nosis can commence, is shown in figure 3. Firstly, the TELEMETRY is transformed into
a suitable format by the TransformTelemetry MU. Secondly, the MU Need-
Network checks whether that portion of the network from which the telemetry
originated is available locally. Next there is a decision point: if a
network_descriptor was returned by the previous MU then the relevant portion
of the network needs to be obtained, if not then the network is already available locally
and the plan ends. Assuming that the network needs to be loaded, an appropriate
request will be sent to the PCM and eventually the network description should arrive.
On return of the network the CreateNetworkModel MU is executed and the plan
terminates.

The highest level at which the IS’s activities are represented is the behaviour level.
Behaviours contain a plan, a trigger condition for activating the behaviour, descrip-
tions of the inputs needed by the activity and the results which will be produced, and
any children of the behaviour. There are two types of behaviour: those that are visible

Plan Name: Get_Network_Data TELEMETRY

MU Trans gdlemetry

TRANSFORMED-TELEMETRY

MU (NeedNetwork

condition
output =network_descripto

MU CreateNetwo

Figure 3: Get_Network_Data Plan

to the PCM (and the other AL components) and those that are purely internal to the
Monitor (e.g. DiagnoseFault in figure 4). The former type are called skills (e.g.
DealWithTelemetry in figure 4) and they may be triggered by data arriving from
other agents or by direct requests from other agents.

Once the PCM activates a skill the Monitor is responsible for its execution. This
involves testing any plan conditions, activating MUs as and when appropriate, and
dealing with messages from the IS. In order to activate an MU the Monitor ensures that
the necessary inputs are present - they could be available because they were an input
to the behaviour in the first place or because they were generated by the execution of
an earlier MU in the same plan. However if a piece of information is not available in
the local context then a request is forwarded to the PCM (e.g. in the
Get_Network_Data plan a request for the network associated with the generated
descriptor may not be available in the local context). Finally, the Monitor passes the
skill’s results back to the PCM and then activates any child behaviours.

2.2 Planning and Coordination Module

The PCM is the reflective part of the ARCHON Layer, reasoning about the agent’s role
in terms of the wider cooperating community (Jennings and Pople, 1993). This module
has to assess the agent’s current status and decide which actions should be taken in or-
der to exploit interactions with others whilst ensuring that the agent contributes to the
community’s overall well being. Specific examples of the PCM’s functionality in-

/BHVR \

Name DealWithTelemetry Visible to the PCM
Input TELEMETRY This behaviour is a Skill
Result FAULT_DIAGNOSIS
Plan
BHVR N
Get —»| Name DiagnoseFault
- Il’lput TRANSFORMED-
Network_ TELEMETRY
Data Result FAULT_DIAGNOSIS
Plan
Diagnose

KChild

kChild: None /

Figure 4: DealWithTelemetry skill with DiagnoseFault child behaviour

clude: deciding which skills should be executed locally and which should be delegated
to others, directing requests for cooperation to appropriate agents, determining how to
respond to requests from other agents, and identifying when to disseminate timely in-
formation to acquaintances who would benefit from receiving it.

The PCM is composed of generic rules about cooperation and situation assessment
which are applicable in all industrial applications - all the domain specific information
needed to define individual behaviour is stored in the self and acquaintance models.
The former contains information about the local IS and the latter contains information
about the other agents in the system. The type of information contained in both models
is approximately the same, although it varies in the level of detail, and includes the
agent’s skills, interests, current status, workload and so on. For example, in order to
determine how to process the request to provide the relevant portion of the network
which arises from the DealWithTelemetry skill, the PCM will make reference to
its self model to see if the information can be provided locally. If the information can-
not be provided locally then the acquaintance models are checked to see if another
community member can provide it. A second illustration of the interplay between the
agent models and the PCM occurs when the Monitor provides the results of a recently
completed skill: firstly, the PCM checks the self model to see if the data can be used
locally and then it examines its acquaintance models to see if any other agents are be-
lieved to be interested in receiving the data. The final major role of the PCM is to deal

with requests arriving from other agents. By reference to its self model, it will decide
whether to honour the request and will then activate the necessary skill to provide the
requested data; when the information is available it will ensure that a reply is directed
to the source of the request.

2.3 Agent Information Management Module

The AIM module is a distributed object management system which is designed to pro-
vide information management services to cooperating agents (Tuijnman and
Afsarmanesh, 1993). Within ARCHON, it is used to store the agent models and the
domain level data.

The self model contains all the definitions of MUs, plans and behaviours. An agent
only models those acquaintances with which it will interact; the models themselves
contain the agent’s name, the information it is interested in (which the local agent can
provide), and the skills it can perform (which the local agent may need). As an illus-
tration of the models, consider an agent which is capable of producing information
about TELEMETRY. The interest slots of its acquaintance models would contain those
agents who are interested in receiving this information and the conditions under which
they are interested. The following portion of the acquaintance model specifies that an
agent called AVA is interested in TELEMETRY in all cases, that an agent called LVDA
is interested when the operation attribute has value autoreclosure, and that the agents
called IA and HVDA are interested only if the operation attribute is equal to open or
closed

INTEREST-DESCRIPTOR
INFORMATION-NAME: TELEMETRY
INFORMATION-CONDITION:

[(*AVA”, TRUE);

(“LVDA”, (CONTAIN (TELEMETRY,”OPERATION ”“Autorec””)));
(“IA HVDA”,
(OR (CONTAIN (TELEMETRY, "OPERATION “Open””))
(CONTAIN (TELEMETRY, “OPERATION “Closed””)))) ;]

In many industrial applications the domain level data which the agents need to
exchange has a complex internal structure. In ARCHON, this structure is specified and
maintained by AIM. For example, TELEMETRY is defined in the following manner:

TELEMETRY
Text STRINGS Time INTEGER
Text_time STRINGS Substation STRINGS
Plant STRINGS Operation STRINGS
Source STRINGS

and a specific instance is as follows: (note this piece of telemetry would be deemed to

be of interest to the AVA and LVDA agents, but not to the IA or HVDA agents)

((Telemetry

(Text 'ALARM 01JANS94 12.00/12.00 SBSTN1l SUBSTATION1
Cl CIRCUIT BREAKER AUTOREC')

(Time 10874390) (Text_time '01JAN94 12.00/12.00"')

(Substation 'SUBSTATION1l') (Plant 'SUBSTATIONI1C1')

(Operation 'AUTOREC') (Source 'ALARM'))

Once domain data has been stored in AIM it is possible for the AL’s reasoning and con-
trol mechanisms to retrieve it. By giving it a definite structure, it is possible to access
the named sub-parts (e.g. checking that the attribute operation equals open). If the
application designer does not require the AL to access these components then the struc-
ture’s details need not be given. The scheme is also flexible enough to allow for a
halfway house where that part of the data the AL needs to reason about is structured,
as above, and that part which is not looked at is left unstructured (e.g. the text field
above).

2.4 High Level Communication Module

The High Level Communication Module (HLCM) allows agents to communicate with
one another using services based on the TCP/IP protocol. The HLCM incorporates the
functionality of the ISO/OSI Session Layer which continuously checks communica-
tion links and provides automatic recovery of connection breaks when possible.
Information can be sent to named agents or to relevant agents (decided by reference to
interests registered in the acquaintance models).

3. ARCHON’S APPLICATIONS

The ARCHON software and methodology have been used to develop real-world DAI
systems in a number of different industrial domains, these include:

* Electricity distribution and supply (section 3.1)

» Electricity transmission and distribution (section 3.2)
* Control of a cement kiln complex (section 3.3)

* Control of a particle accelerator (section 3.4)

» Control of a flexible robotic cell (section 3.5)

In this paper we briefly describe each of these applications - the systems built vary
from large scale project demonstrators (electricity distribution and electricity transmis-
sion) which show the scaleability of the adopted approach, to the application studies

(the remainder) which were used to test the functionality and operation of the
ARCHON system. In all cases, references to more complete descriptions are provided.

3.1 Electricity Distribution & Supply
(refs: Cockburn, 1993; Cockburn and Jennings, 1995; Varga et al., 1994)

This application (called CIDIM) is being developed as an aid to Control Engineers
(CEs) who have the job of ensuring continuity of electricity supply to the customers.
The CE’s main tasks are to plan and carry out maintenance work safely in coordination
with the Field Engineer (FE), to identify faults on the network, and to perform remedial
actions to restore supply should this be necessary. The electricity network control sys-
tem used by the CE allows remote operation of circuit breakers and also reports, via
telemetry, automatic switching operations in response to a fault, alarms, and load read-
ings. This system covers the high voltage network and part of the low voltage network;
however for the remainder of the low voltage network switching for maintenance pur-
poses is done manually by the FE in contact with the CE and fault diagnosis is based
on customer telephone calls reporting a loss of supply. The CE can also make use of
information about lightning strikes which may be the cause of a fault and so indicate a
good starting point for the FE to look for damaged equipment.

CIDIM will be able to assist the CE by automatically providing services such as fault
diagnosis, lightning detection, user driven restoration planning, and automatic
rechecking of restoration plans, as well as automatically collating much of the infor-
mation the CE now does manually by reference to standalone systems. Using
ARCHON helps information from conventional knowledge sources (such as databases
and a telemetry system) to be shared by a number of agents, thus leading to greater con-
sistency across the application. CIDIM consists of 7 agents: a telemetry agent (TA)
which receives telemetry and converts it to a standard format, an information agent
(IA) which contains information about the network (both static data - eg connectivity
of pieces of plant - and dynamic information - eg state of circuit breakers and
switches), a weather watch agent (WWA) which knows when and where lightning
strikes occur, a high voltage diagnosis agent which uses telemetry to diagnose the loca-
tion, time and type of faults on the network, a low voltage diagnosis agent (LVDA)
which uses telephone calls and lightning information as well as telemetry to diagnose
faults, a switch planning agent which allows the user to plan maintenance work, and
an advisor agent (AVA) which acts as the user interface to the entire application. The
agents represent a number of different types of IS (conventional programs, databases
and expert systems), some of them were pre-existing and some were purpose built
within ARCHON.

A sample cooperative scenario for this application occurs when the LVDA diagnoses
faults. The LVDA receives telemetry relating to the low voltage portion of the network
from the TA and triggers an appropriate skill to deal with it (see figure 4). The first step
in this skill is to determine whether the telemetry refers to a known fault or whether it
relates to a new fault (see figure 3). Assuming the latter, the LVDA needs to obtain the

10

status of the relevant portion of the network from the IA and so sends it an explicit
request. When the IA returns the pertinent part of the network, the LVDA uses it to
hypothesise a number of faults- one of which may be that the problem is caused by a
lightning strike. This hypothesis can be confirmed or rejected by sending a request to
the WWA. Eventually the LVDA will reach some conclusion and present it to the CE
via the AVA. This scenario illustrates how agents can ask one another to perform activ-
ities which are either essential (getting the network status) or optional (eg asking about
lightning) to their own problem solving.

3.2 Electricity Transmission & Distribution
(refs: Abel et al., 1993; Corera et al., 1993)

This application provides a support system for the operators of an electrical dispatch-
ing control room (DCR) in their tasks of analysing the occurrences of disturbances and
in planning the service restoration procedures. This system will be installed in the main
DCR of IBERDROLA and will be used to control the network for the north and north-
west part of Spain. The information acquired from the network updates the status of
20,000 elements - breakers, switches and protective relays - with a polling cycle of 10
seconds, and the value of 2000 analogue measurements - power flows, voltages, fre-
quencies - which are polled every 20 seconds. Management of the electricity network,
as performed by the operator in the DCR, consists mainly of topology changes (oper-
ations on breakers and switches), generation scheduling and control. However in
emergency situations this management becomes very complex due to the large number
of constraints which need to be taken into consideration and the insufficient quality of
the information arriving at the DCR.

This application is structured as a set of 6 agents which interact with one another in
order to diagnose and restore the network after disturbances. The diagnosis subset of
this community consists of an alarm analysis agent (AAA) which identifies and clas-
sifies faults based on alarms, the breaker and relay supervisor (BRS) which identifies
and classifies faults based on chronological information, the black-out area identifier
(BAI) which identifies a list of all those elements that are out of service initially, and
the control system interface (CSI) which detects the occurrence of a disturbance in
order to signal to the others that they should start their activities. The restoration subset
of the community consists of two agents: the control system interface for restoration
which provides an image of the network’s current state and the service restoration
agent which prepares the restoration plan.

As an illustration of the cooperation in this application the process of cooperative fault
diagnosis will be expanded in more depth. The fact that there is a disturbance in the
network is determined by the CSI agent (by analysing the chronological and non-
chronological alarm messages of breakers, fault recorders and relays that it receives).
If it suspects that there is a fault then it prepares and sends blocks of chronological
alarm messages to the BRS and blocks of non-chronological alarm messages to the
AAA and the BAI. Upon receipt of these messages, each of the agents start their diag-

11

nosis activities. The AAA first performs a fast approximation which generates a large
number of alternatives and then commences on a detailed and time consuming sequen-
tial evaluation of each of them. Meanwhile the BAI generates a list of elements which
are in the black out area which it sends to the AAA. The AAA is able to prune its search
space for its detailed evaluation by removing any of its initial hypotheses which are not
in the black out area as computed by the BAI There is also scope for interaction
between the BRS and the AAA - both are able to generate lists of hypotheses which
can focus the other’s problem solving and they are also able to check each other’s diag-
noses as a way of increasing the reliability of the final result. This scenario illustrates
how agents working with different data and different problem solving know-how can
interact to produce more reliable results more quickly.

3.3 Control of a Cement Kiln Complex
(refs: Lembessis and Antonopoulos, 1993; Stassinopoulos and Lembessis, 1993)

This application study is concerned with a simulation of the high level control of a kiln
complex in a cement manufacturing process. The control system has to monitor, and
set, a number of highly interdependent parameters (eg material feed rate, temperature,
gas flow, etc.) to ensure that the final product (cement) has the desired characteristics.
A DAI approach was deemed appropriate because the process itself is highly distrib-
uted, because there were a number of identifiable functional units in the existing
system which needed to interact in order to optimise the production process, and
because the process’s complexity meant that the currently existing centralised control-
ler was unable to cope with the application’s real time constraints.

The implemented ARCHON community for this application consists of 4 agents which
together are responsible for the control of the entire manufacturing process. There is a
precalciner agent (PCA) which controls the first phase of the kilning process (in which
the majority of the calcium carbonate in the raw material is decomposed into calcium
oxide and calcium dioxide); a kilning control agent (KCA) which controls the second
phase in which calcification is completed and where the chemical reaction between the
calcium oxide and the other oxides form a new compound (clinker) which is the main
ingredient of cement; a clinker cooling agent (CCA) which deals with the final phase;
and a user interface agent which presents information to the operator and accepts con-
trol commands.

As an example of the cooperation involved in this application consider the following
scenario which is taken from the precalciner and kiln control phase of the process. The
3 control agents each calculate, and then exchange, the key control parameters for that
part of the process which they are monitoring - respectively, precalciner compartment
temperature, kilning effectiveness and raw material feed rate for the PCA, KCA and
CCA. Based on these 3 pieces of information the KCA calculates the change that
should be made to the kiln’s rotary motor power in order to optimise the process and
sends this information to the PCA. Based on this proposed change, the PCA and the
KCA respectively calculate the appropriate speed of the precalciner fan and the fuel

12

rate for the burner in the kiln subprocess (they both calculate and exchange intermedi-
ate approximations before coming to a final value). These setpoint values are then fed
to the application level where they are enacted on the physical process. This is an
example of cooperation based on the sharing of intermediate and final results which
produces more coherent control of the underlying process.

3.4 Control of a Particle Accelerator
(refs: Jennings et al., 1993; Perriollat et al., 1993)

This application study involves diagnosing faults in CERN’s proton synchrotron (PS)
accelerators. The PS complex is at the heart of CERN’s accelerator and experimental
facilities acting as an injector for the bigger accelerators (the Super Proton Synchrotron
and the Large Electron Positron rings). For the PS accelerator complex about 10,000
control parameters have to be set correctly and many of them routinely change every
1.2 or 2.4 seconds to provide different types of beams to different users in a time shar-
ing manner. The reasons for adopting a DAI approach to this application include: the
desire to connect together two independently developed but related expert systems, the
fact that the domain is simply too large to be embodied into a single monolithic system,
the desire to preserve departmental boundaries, and the belief that future control sys-
tems are highly likely to be distributed in nature.

This study involved two diagnosis agents, both of which were originally conceived and
implemented as standalone expert systems. BEDES diagnoses operational faults at the
beam level. These faults occur, for example, if the intensity of the beam falls below a
certain level or if the beam deviates considerably from its ideal trajectory. Such prob-
lems can be caused by the incorrect setting of a control parameter, a breakdown in a
controller or an error in the control system itself. BEDES can diagnose the first two
types of fault if the underlying control system is still working correctly. The other diag-
nosis agent, CODES, operates solely on the level of the accelerator’s control system
and can detect the final type of fault.

Faults in the control system often require BEDES and CODES to work together to
determine the source of the fault - BEDES helps detect whether the problem is caused
by wrong parameter settings or a breakdown in the controller, while CODES deter-
mines whether the fault is caused by the control system itself. In more detail, assume
that BEDES has detected a fault and has initiated its diagnosis activities. As a first step
it generates a list of hypotheses (assertions together with accompanying knowledge
about how to prove them) to start working on. These hypotheses are communicated to
CODES, to see whether they are manifestations of control system failings, where they
form the start point of CODES’ diagnosis process. Having generated this initial list,
BEDES proceeds to perform a sequential detailed exploration of each hypothesis. The
outcome of this exploration is that a particular hypothesis H is likely to be the cause of
the fault (confirmed) or that H cannot be confirmed as the cause. This information is
then sent to CODES where it is used to re-evaluate the priorities of its hypotheses (if
H is highly suspected (confirmed) by BEDES then CODES should move it to the front

13

of its agenda or give the processing a higher priority because it indicates the region of
the accelerator where the fault is most likely to lie; however if it is given a low likeli-
hood of being the cause (not confirmed) then it should be moved to nearer the end of
the agenda because BEDES can find no evidence to support the fact that the fault is in
this area of the accelerator). This scenario illustrates how the sharing of partial and
final results can be used to focus (or divert) the reasoning of an agent towards (away
from) a promising (unpromising) area of the search space.

3.5 Control of a Flexible Robotic Cell
(refs: Oliveira and Ramos, 1993; Oliveira et al., 1991)

The academic robotic testbed which has been developed at the University of Porto
aims to be suited for assembly of units made up of different parts where millimetric
precision is not required. Its main characteristic is to be flexible, being able to perform
several different assembly tasks with the minimum amount of reprogramming. The
testbed consists of a table top on which some objects have been placed in order to be
manipulated by a 5.5 degrees of freedom robot arm. A DAI approach was adopted for
this application because it provides a more natural representation of the inherently dis-
tributed real world domain and because breaking the problem and the problem solving
strategy into smaller units makes the solution process simpler and easier to understand.

This application consists of 7 agents: a task level planner (TLP) which is a hierarchical
and non-linear high level plan generator, an execution level planner and task executor
(ELP-TE) which is responsible for executing the plan and table space management, a
VISION agent which is responsible for object recognition, a LASER agent which is
responsible for object recognition at the initial state, a MODELS agent which repre-
sents a database of the objects’ features, a world description agent (WD) which extracts
objects, relationships and constraints, and a USER agent.

In this testbed the user starts the system off by requesting the execution of an assembly
task and giving a specification of the final configuration to the USER agent. The USER
agent volunteers the final locations of the objects to all interested parties and requests
that the ELP-TE agent execute the plan. Upon receipt of the request, ELP-TE deter-
mines what input it requires to execute the assembly task and sends subsequent
requests to the appropriate agents (get initial object positions to the VISION and
LASER agents, get object manipulation models to the MODELS agent, get geometric
constraints to the WD agent and produce a high level plan to the TLP). To execute their
respective tasks, most of the agents will require further information from their
acquaintances - eg the TLP requires initial object locations and the geometric con-
straints and will therefore send requests onto VISION/ LASER and WD respectively.
Eventually the relevant information will be provided and the appropriate tasks can be
executed. When the TLP has all the information that it needs it will generate a high
level symbolic plan and pass it back to the ELP-TE agent which translates it into a
lower level set of actions. These actions are then down loaded to the PC controlling the
robot which commands the execution of the corresponding task. Thus in this scenario

14

a number of agents are working together to generate a plan which can be executed by
the ELP-TE agent - cooperation involves requesting tasks to be carried out by
acquaintances, resolving conflicts that occur (eg discrepancies between the VISION
and LASER agents), and volunteering relevant information to interested parties.

4. CONCLUSIONS

This paper has presented a brief resumee of the work undertaken in the ARCHON
project. The agent and community architectures have been presented as have the appli-
cations to which this technology has been applied thus far. For the future, a number of
new application studies are planned and a number of enhancements to the architecture
have been proposed. These enhancements involve: (i) incorporating more sophisti-
cated forms of cooperation into the Planning and Coordination Module (presently only
asking acquaintances to execute particular skills (produce particular results) and the
spontaneous volunteering of relevant information to interested agents are supported);
(i1) improving the inter-agent coordination mechanisms (presently agents operate from
a predominantly individualistic perspective and there is relatively little synchronisa-
tion of activities between agents); (ii1) improving the ARCHON layer’s ability to
operate in real-time and deal with hard and soft deadlines (presently all the real-time
capabilities of an ARCHON community reside within the intelligent systems); (iv)
devising better means of presenting a community of cooperating agents to the user and
improving the integration of the user as an active problem solver within the commu-
nity; and (v) providing a more declarative and open means of sharing information
between heterogeneous agents (the present mechanism based on federated schemas
places a large burden on the application developer and limits the amount of run-time
reasoning which the agents can perform).

ACKNOWLEDGEMENTS

The work described in this project has been carried out in the ESPRIT II project
ARCHON (P-2256) whose partners are Atlas Elektronik, Framentec-Cognitech,
Labein, Queen Mary and Westfield College, Iberdrola, EA Technology, Amber, Tech-
nical University of Athens, FWI University of Amsterdam, CAP Volmac, CERN and
University of Porto. In writing this paper I am acting on behalf of the whole consortium
by disseminating the project's results; I am not claiming to have conceived or imple-
mented all of the concepts which are described herein. Although these concepts
originated from interactions between all of the consortium's members it is nevertheless
possible to identify those individuals who have made significant contributions to cer-
tain aspects of the project: architecture design (Thies Wittig, Abe Mamdani, Erick
Gaussens), the Monitor (Erick Gaussens, Daniel Gureghian, Jean-Marc Loingtier, Ber-
nard Burg), the PCM (Nick Jennings, Jeff Pople, Jochen Ehlers, Eugenio Oliveira),
AIM (Frank Tuijnman, Hamideh Afsarmanesh, Giel Wiedijk), the HLCM (Claudia
Roda, Jutta Mueller), the Agent Models (Nick Jennings) and the C++ implementation

15

(Rob Aarnts). Work in the applications was carried out by the following people elec-
tricity distribution (Andrew Cross, David Cockburn, Laszlo Varga), electricity
transportation (Jose Corera, Inaki Laresgoiti, Juan Perez), particle accelerator control
(Paul Skarek, Rob Aarnts, Laszlo Varga), cement factory control (George Stassinop-
oulos, Evangelos Lembesis, Robert King) and robotics (Eugenio Oliveira)

REFERENCES

Abel, E., Laresgoiti, L., Perez, J., and Corera, J., (1993) “Distributed Diagnosis in Elec-
trical Networks” Proc. TOOLDIAG’93, Toulouse, France.

Cockburn, D., (1993) “Final Documentation of the CIDIM System” ARCHON Public
Deliverable 980.

Cockburn, D., and Jennings, N. R., (1995), “ARCHON: A DAI System for Industrial
Applications” in Foundations of DAI (eds. G. M. P. O’ Hare & N. R. Jennings), Wiley
Interscience (to appear).

Corera, J. Laresgoiti, I. Cockburn, D., and Cross, A. (1993), “A Cooperative Approach
Towards the Solution of Complex Decision Problems in Energy Management and
Electricity Networks”, Proc. Int. Conf. on Electricity Distribution, Birmingham, UK,
4.19.1-4.19.6.

Jennings, N. R. (1994) “Cooperation in Industrial Multi-Agent Systems” Series in
Computer Science - Vol 43, World Scientific Press (ISBN: 981-02-1652-1).

Jennings, N. R., and Pople, J. A., (1993) “Design and Implementation of ARCHON’s
Coordination Module” Proc. Workshop on Cooperating Knowledge Based Systems,
Keele, UK, 61-82.

Jennings, N. R., Varga, L. Z., Aarnts, R., Fuchs, J., and Skarek, P. (1993), “Transform-
ing Standalone Expert Systems into a Community of Cooperating Agents”, Int. Journal
of Engineering Applications of Artificial Intelligence 6 (4) 317-331.

Jennings, N. R., and Wittig, T., (1992) “ARCHON: Theory and Practice” in Distrib-
uted Artificial Intelligence: Theory and Praxis (eds. N. M. Avouris and L.Gasser),
Kluwer Academic Press 179-195.

Lembessis, E., and Antonopoulos, G., (1993) “Report on the AMBER Application
Case Study: High Level Control of a Kiln Complex in Cement Manufacturing”
ARCHON Public Deliverable 1030.

Oliveira, E., Camacho, R., and Ramos, C., (1991) “A Multi-Agent Environment in
Robotics” Robotica 9 (4) 431-440.

16

Oliveira, E., and Ramos, C., (1993) “Cooperation in the University of Porto Robotic
Testbed” ARCHON Public Deliverable 1050.

Perriollat, F., Skarek, P., and Varga, L. Z., (1993) “Report on the CERN Application
Study” ARCHON Public Deliverable 1060.

Roda, R., Jennings, N. R., and Mamdani, E. H., (1991) “The Impact of Heterogeneity
on Cooperating Agents”, Proc. AAAI Workshop on Cooperation among Heteroge-
neous Intelligent Systems, Anaheim, USA

Stassinopoulos, G., and Lembesis, E. (1993), “Application of a Multi-Agent Coopera-
tive Architecture to Process Control in the Cement Factory”, ARCHON Technical
Report 43, Atlas Elektronik, Bremen, Germany.

Tuijnman, F., and Afsarmanesh, A., (1993), “Distributed Objects in a Federation of
Autonomous Cooperating Agents” Proc. Int. Conf. on Intelligent and Cooperative
Information Systems, Rotterdam, The Netherlands, pp 256-265.

Varga, L. Jennings, N. R., and Cockburn, D. (1994), “Integrating Intelligent Systems
into a Cooperating Community for Electricity Distribution Management”, Expert Sys-
tems with Applications (1994) 7 (4)

Wittig, T. (Ed), (1992), “ARCHON: An Architecture For Multi-agent Systems”, Ellis
Horwood Chichester.

NOTE: Copies of the ARCHON final deliverables can be obtained by writing to:
Dr. Thies Wittig, Atlas Elektronik GmbH, Research & Development Projects,
TEV2, SeebaldsbruckerHeerstrasse 235, D-2800 Bremen 44, Germany.

17

