
Logic for Computer Scientists

Pascal Hitzler
http://www.pascal-hitzler.de

CS 499/699 Lecture, Winter Quarter 2011
Wright State University, Dayton, OH, U.S.A.

[final version: 03/10/2011]

Contents

1 Propositional Logic 2
1.1 Syntax . 2
1.2 Semantics . 3
1.3 Equivalence . 6
1.4 Normal Forms . 7
1.5 Tableaux Algorithm . 9

2 First-order Predicate Logic 13
2.1 Syntax . 13
2.2 Semantics . 14
2.3 Equivalence . 17
2.4 Normal Forms . 18
2.5 Tableaux Algorithm . 18

Appendix 21
1.6 Theoretical Aspects (Propositional Logic) . 21
2.6 Theoretical Aspects (Predicate Logic) . 24

3 Application: Knowledge Representation for the World Wide Web 25

References

[Ben-Ari, 1993] Ben-Ari, M. (1993). Mathematical Logic for Computer Science. Springer.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of
Semantic Web Technologies. Chapman & Hall/CRC.

[Schöning, 1989] Schöning, U. (1989). Logic for Computer Scientists. Birkhäuser.

1

[Slideset 1: Motvation] 01/04/11

1 Propositional Logic

1.1 Syntax

[Schöning, 1989, Chapter 1.1]

Let {A1, A2, . . . } be an infinite set of propositional variables.

1.1 Definition
An atomic formula is a propositional variable.
Formulas are defined by the following inductive process.

1. All atomic formulas are formulas.

2. For every formula F , ¬F is a formula, called the negation of F .

3. For all formulas F and G, also (F ∨G) and (F ∧G) are formulas, called the disjunction
and the conjunction of F and G, respectively.

If a formula F occurs in another formula G, then it is called a subformula of G. Note that
every formula is a subformula of itself.

1.2 Notation
We use the following abbreviations:
A,B,C, . . . instead of A1, A2, . . . and other obvious variants.
[Be careful with the use of F and G!]
We sometimes omit brackets if it can be done safely. [Be careful with this!]
(F → G) instead of (¬F ∨G)
(F ↔ G) instead of (F → G) ∧ (G→ F)
(
∨n

i=1 Fi) instead of (F1 ∨ F2 ∨ · · · ∨ Fn)
(
∧n

i=1 Fi) instead of (F1 ∧ F2 ∧ · · · ∧ Fn)

1.3 Example
(¬B → F) is (¬¬B ∨ F).
Some Subformulas: ¬¬B, ¬B.

1.4 Example
((I ∨ ¬B)→ ¬F) is (¬(I ∨ ¬B) ∨ ¬F).
Some Subformulas: ¬(I ∨ ¬B), I, ¬B.

Exercise 1 (no hand-in) Determine all subformulas of ((B ∧ F)→ ¬I).

1.5 Remark
Formulas can be represented in a unique way as trees. [Example 1.4 on whiteboard.]

Exercise 2 (no hand-in) Draw the formulas from Example 1.3 and Exercise 1 as trees.

2

01/06/2011

1.2 Semantics

[Schöning, 1989, Chapter 1.1 cont.]

1.6 Definition
T = {0, 1} – the set of truth values : false, and true, respectively.
An assignment is a function A : D→ T, where D is a set of atomic formulas.
Given an assignment A, we extend it to A′ : E → T, where E is the set of all formulas
containing only elements from D as atomic subformulas:

1. A′(Ai) = A(Ai) for each Ai ∈ D

2. A′(F ∧G) =

{
1, if A′(F) = 1 and A′(G) = 1

0, otherwise

3. A′(F ∨G) =

{
1, if A′(F) = 1 or A′(G) = 1

0, otherwise

4. A′(¬F) =

{
1, if A′(F) = 0

0, otherwise

[From now on, drop distinction between A and A′.]

1.7 Example
Let A(B) = A(F) = 1 and A(I) = 0.

A(¬(B ∧ F) ∨ ¬I) =

{
1, if A(¬(B ∧ F)) = 1 or A(¬I) = 1

0, otherwise

=

{
1, if A(B ∧ F) = 0 or A(I) = 0

0, otherwise

=

{
1, if A(B) = 0 or A(F) = 0 or A(I) = 0

0, otherwise

= 1

Exercise 3 (no hand-in) Do the calculation from Example 1.7 for the formula ¬(I∨¬B)∨
¬F from Example 1.4 and the values A(I) = 1 and A(B) = A(F) = 0.

1.8 Remark
The same thing can be expressed via truth tables.

3

A(F) A(G) A(F ∧G)
0 0 0
0 1 0
1 0 0
1 1 1

A(F) A(G) A(F ∨G)
0 0 0
0 1 1
1 0 1
1 1 1

A(F) A(¬F)
0 1
1 0

1.9 Example
Determining the truth values of formulas using truth tables:
[Use the tree structure of formulas.]
A(B) A(F) A(I) A(B ∧ F) A(¬(B ∧ F)) A(¬I) A(¬(B ∧ F) ∨ ¬I)

0 0 0 0 1 1 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 0 1 0 1 1
1 1 1 1 0 0 0

1.10 Remark
The truth value of a formula is uniquely determined by the truth values of the propositional
variables it contains as subformulas.

Exercise 4 (no hand-in) Make the truth table for the formula from Exercise 3.

1.11 Remark
A(F) A(G) A(F → G)

0 0 1
0 1 1
1 0 0
1 1 1

A(F) A(G) A(F ↔ G)
0 0 1
0 1 0
1 0 0
1 1 1

1.12 Definition
F , a formula, A, an assignment.
A is suitable if it is defined for all atomic formulas occurring in F .
We write A |= F if A is suitable for F and A(F) = 1. We say F holds under A or A is a
model for F . Otherwise, we write A 6|= F .
F is satisfiable if F has at least one model. Otherwise, it is called unsatisfiable or contradic-
tory.
A set M of formulas is satisfiable if there is an assignment A which is a model for each
formula in M. In this case, A is called a model of M, and we write A |= M. [Note the
overloading of notation.]
F is called valid or a tautology if every suitable assignment for F is a model for F . In this
case we write |= F , and otherwise 6|= F .

4

Exercise 5 (hand-in) Give a model for ¬(B ∧ F) ∨ ¬I.

1.13 Example
A ∨ ¬A is a tautology.
[This is established by the following truth table:

A(A) A(¬A) A(A ∨ ¬A)
0 1 1
1 0 1

]

Exercise 6 (hand-in) Show the following.

1. A ∧ ¬A is unsatisfiable.

2. A→ ¬A is satisfiable.

1.14 Theorem
A formula F is a tautology if and only if ¬F is unsatisfiable.

Proof: F is a tautology
iff every suitable assignment for F is a model for F
iff every suitable assignment for F (hence also for ¬F) is not a model for ¬F
iff ¬F does not have a model
iff ¬F is unsatisfiable �

1.15 Definition
A formula G is a (logical) consequence of a set M = {F1, . . . , Fn} of formulas if for every
assignment A which is suitable for G and for all elements of M , it follows that whenever
A |= Fi for all i = 1, . . . , n, then A |= G.
If G is a logical consequence of M , we write M |= G and say M entails G. [Note the
overloading of notation!]

01/13/11

1.16 Theorem
The following assertions are equivalent.

1. G is a consequence of {F1, . . . , Fn}.

2. ((
∧n

i=1 Fi)→ G) is a tautology.

3. ((
∧n

i=1 Fi) ∧ ¬G) is unsatisfiable.

Exercise 7 (hand-in) Show that an assignment is a model for (
∧n

i=1 Fi) if and only if it is
a model for {F1, . . . , Fn}.

Exercise 8 (no hand-in) Prove that 1. and 2. of Theorem 1.16 are equivalent. [Hint: Use
Exercise 7.]

5

1.17 Example
Using Theorem 1.16, we can determine logical consequences using truth tables.
E.g., modus ponens : {P, P → Q} |= Q.
We have to show: (P ∧ (P → Q))→ Q is a tautology.

A(P) A(Q) A(P → Q) A(P ∧ (P → Q)) A((P ∧ (P → Q))→ Q)
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

Exercise 9 (no hand-in) Express modus tollens, modus tollendo ponens, and modus po-
nendo tollens in propositional logic.

Exercise 10 (no hand-in) Show, using truth tables, that the modi from Exercise 9 are
valid.

1.18 Remark
The symbols ¬, ∨, ∧ (and also →, ↔) are called connectives.

1.3 Equivalence

[Schöning, 1989, Chapter 1.2]

1.19 Definition
Formulas F and G are (semantically) equivalent (written F ≡ G) if for every assignment A
that is suitable for F and G, A(F) = A(G).

1.20 Example
A ∨B ≡ B ∨ A. (commutativity of ∨)
[
A(A) A(B) A(A ∨B) A(B ∨ A)

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

]
A ∨ ¬A ≡ B ∨ ¬B. [truth table]

1.21 Example
F ≡ G iff |= (F ↔ G). [truth table]

6

1.22 Theorem
The following hold for all formulas F , G, and H.

F ∧ F ≡ F F ∨ F ≡ F Idempotency

F ∧G ≡ G ∧ F F ∨G ≡ G ∨ F Commutativity

(F ∧G) ∧H ≡ F ∧ (G ∧H) (F ∨G) ∨H ≡ F ∨ (G ∨H) Associativity

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) Distributivity

¬¬F ≡ F Double Negation

¬(F ∧G) ≡ ¬F ∨ ¬G ¬(F ∨G) ≡ ¬F ∧ ¬G de Morgan’s Laws

Proof: Straightforward using truth tables. �

Exercise 11 (hand-in) Prove that 2. and 3. of Theorem 1.16 are equivalent.

Exercise 12 (no hand-in) Translate the “secrets” of the centenarian (slide 14 of slideset
1) into formulas, where B stands for beer for dinner, F for fish for dinner and I for ice cream
for dinner.

Exercise 13 (no hand-in) Show that the claim on slide 14 of slideset 1 holds.

1.23 Remark
Disjunction is dispensable. [F ∨G ≡ ¬(¬F ∧ ¬G)]
Alternatively, conjunction is dispensable. [F ∧G ≡ ¬(¬F ∨ ¬G)]

1.24 Remark
Let F ↑ G = ¬(F ∧G).
¬F ≡ ¬(F ∧ F) ≡ F ↑ F .
F ∨G ≡ ¬(¬F ∧ ¬G) ≡ ¬F ↑ ¬G ≡ (F ↑ F) ↑ (G ↑ G)
F ∧G ≡ ¬¬(F ∧G) ≡ ¬(F ↑ G) ≡ (F ↑ G) ↑ (F ↑ G).

1.25 Remark (The contraposition principle)
{F} |= G iff {¬G} |= ¬F .
[{F} |= G iff F → G is a tautology (Theorem 1.16).
F → G ≡ ¬F ∨G ≡ ¬(¬G) ∨ (¬F) ≡ (¬G)→ (¬F).
(¬G)→ (¬F) is a tautology iff {¬G} |= ¬F (Theorem 1.16)]

01/18/11

1.4 Normal Forms

[Schöning, 1989, Chapter 1.2 cont.]

1.26 Definition
A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal).
A formula F is in negation normal form (NNF) if it is made up only of literals, ∨, and ∧.

7

1.27 Theorem
For every formula F , there is a formula G ≡ F which is in NNF.

Proof: The proof of Theorem 1.30 below shows this as well. �

1.28 Example
(¬(I ∨ ¬B) ∨ ¬F) ≡ (¬I ∧B) ∨ ¬F

1.29 Definition
A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of
literals, i.e., if

F =

(
n∧

i=1

(
m∨
j=1

Li,j

))
,

where the Li,j are literals.
A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals, i.e., if

F =

(
n∨

i=1

(
m∧
j=1

Li,j

))
,

where the Li,j are literals.

1.30 Theorem
For every formula F there is a formula F1 ≡ F in CNF and a formula F2 ≡ F in DNF.

Proof: Proof by structural induction.
Induction base: If F is atomic, then it is already in CNF and in DNF.
Induction hypothesis : G has CNF G1 and DNF G2, H has CNF H1 and DNF H2. Induction
step: We have 3 cases.
Case 1: F has the form F = ¬G.
Then

F ≡ ¬G1 ≡ ¬

(
n∧

i=1

(
m∨
j=1

Li,j

))
≡

(
n∨

i=1

(
m∧
j=1

¬Li,j

))
≡

(
n∨

i=1

(
m∧
j=1

Li,j

))
,

where

Li,j =

{
A if Li,j = ¬A
¬A if Li,j = A

and the latter formula is in DNF as required. Analogously, we can obtain from G2 a CNF
formula equivalent to F .
Case 2: F has the form F = G ∨H.
Then F ≡ G2 ∨H2, which is in DNF.
Further,

F ≡ G1 ∨H1 ≡

(
n∧

i=1

(
m∨
j=1

Ki,j

))
∨

(
o∧

k=1

(
p∨

l=1

Lk,l

))
≡

(
n∧

i=1

(
o∧

j=1

(
m∨
k=1

Ki,j ∨
p∨

l=1

Lk,l

)))
,

8

which is in CNF.
Case 3: F has the form F = G ∧H.
This case is analogous to Case 2. �

Exercise 14 (hand-in) Show by structural induction: For any formula F (with all brackets
written), we have b(F) ≤ c(F), where b(F) is the number of all opening brackets in F , and
c(F) is the number of all connectives in F .

01/25/2011

1.31 Remark
Structural induction is a fundamental proof technique, comparable with natural induction.

Exercise 15 (no hand-in) Transform ¬((A ∨B) ∧ (C ∨D) ∧ (E ∨ F)) into CNF.

1.32 Remark
DNF via truth table.
If, e.g.,

A(A) A(B) A(C) A(F)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

then a DNF for F is (¬A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ C).

Exercise 16 (no hand-in) Give a CNF for the formula F in Remark 1.32.

1.33 Definition
Two formulas F and G are equisatisfiable if the following holds: F has a model if and only
if G has a model.

Exercise 17 (no hand-in) Show the following: For all formulas Fi (i = 1, 2, 3), F1 ∨ (F2 ∧
F3) and (F1 ∨ E) ∧ (E ↔ (F2 ∧ F3)) are equisatisfiable (E is a propositional variable not
occurring in F1, F2, F3).

1.5 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 2.6, strongly modified]

Translating truth tables directly into an algorithm is very expensive.
We take the following approach:
For showing F1, . . . , Fn |= G, if suffices to show that F = F1 ∧ · · · ∧ Fn ∧ ¬G is unsatisfiable
(Theorem 1.16).

9

We attempt to construct a model for F in such a way that, if and only if the construction
fails, we know that F is unsatisfiable.

1.34 Definition
Let F be a formula in NNF. A tableau branch for F is a set of formulas, defined inductively
as follows.
• {F} is a tableau branch for F .
• If T is a tableau branch for F and G ∧ H ∈ T , then T ∪ {G,H} is a tableau branch

for F .
• If T is a tableau branch for F and G ∨H ∈ T , then T ∪ {G} is a tableau branch for
F and T ∪ {H} is a tableau branch for F .

A tableau for F is a set of tableau branches for F .
A tableau branch is closed if it contains an atomic formula A and the literal ¬A. Otherwise,
it is open.
A tableau branch T is called complete if it satisfies the following conditions.
• T is open.
• If G ∧H ∈ T , then {G,H} ⊆ T .
• If G ∨H ∈ T , then G ∈ T or H ∈ T .

A tableau M for F is called complete if it satisfies the following conditions.
• If G ∨H ∈ T ∈ M , and T is open, then there are branches S1 ∈ M and S2 ∈ M with
{G} ∪ T ⊆ S1 and {H} ∪ T ⊆ S2.
• All branches of M are complete or closed.

A tableau is closed if it is complete and all its branches are closed.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau
branch) for an NNF of F .

1.35 Example
Consider (¬I ∧ B) ∨ ¬F , for which a complete (but not closed) tableau is {{(¬I ∧ B) ∨
¬F,¬I ∧B,¬I, B}, {(¬I ∧B) ∨ ¬F,¬F}}.

Exercise 18 (hand-in) Give a complete tableau (as set of sets of formulas) for (¬A∧¬B∧
¬C) ∨ (A ∧ ¬B ∧ ¬C).

1.36 Remark
Tableaux can be represented graphically (blackboard).

1.37 Theorem (Soundness)
A formula F is satisfiable if there is a complete tableau branch for F .

1.38 Theorem (Completeness)
If a formula F is satisfiable, then there is a complete tableau branch for F .

01/27/11

1.39 Theorem
A formula F is

10

1. unsatisfiable if and only if there is a closed tableau for F ,
2. a tautology if and only if there is a closed tableau for ¬F .

1.40 Example
Modus Ponens holds if (P ∧ (P → Q))→ Q is a tautology. We construct a complete tableau
(blackboard) for ¬((P ∧ (P → Q))→ Q), which turns out to be closed.

Exercise 19 (no hand-in) Do the same as in Example 1.40 for Modus Tollens.

Exercise 20 (hand-in) Show {A → (B → C)} |= (A → B) → (A → C) using the
tableaux algorithm.

1.41 Lemma
Let F be a formula, T be a complete tableau branch for F , and L1, . . . , Ln be all the literals
contained in T . Then any assignment A with A(L1 ∧ · · · ∧ Ln) = 1 is a model for F .

Proof: We show by structural induction, that A is a model for each formula F ′ in T .
Induction Base: Let F ′ = L be a literal. Then by definition A(F ′) = 1.
Induction Hypothesis: A(G) = A(H) = 1 for G,H ∈ T .
Induction Step: (1) Let F ′ = G ∧ H ∈ T . Then G ∈ T and H ∈ T . By IH, A(F ′) =
A(G∧H) = 1. (2) Let F ′ = G∨H. Then G ∈ T or H ∈ T . By IH, A(G) = 1 or A(H) = 1,
hence A(F ′) = 1. (3) The case F ′ = ¬G ∈ T cannot happen since all formulas are in NNF,
and the literal case was dealt with in the induction base. �

Proof of Theorem 1.37: By Lemma 1.41, we obtain that F has a model, hence it is
satisfiable. �

02/08/2011

1.42 Example
Is the following formula valid? satisfiable? unsatisfiable?

(((A→ B)→ A)→ A)

(done on whiteboard)
02/17/2011

Proof of Theorem 1.38: First note the following, for any assignment M and all formulas
G and H:
• If M |= G ∧H, then M |= G and M |= H.
• if M |= G ∨H, then M |= G or M |= H.

Since F is satisfiable, it has a model M . Construct a tableau branch T for F recursively as
follows.
• If G ∧H ∈ T , set T := T ∪ {G,H}.
• If G ∨H ∈ T with M |= G, set T := T ∪ {G}, otherwise set T := T ∪ {H}.

The recursion terminates since only subformulas of F are added and sets cannot contain
duplicate elements. The resulting T is a complete tableau branch, and M |= T , by definition.

�

11

Proof of Theorem 1.39:
We prove Statement 1. Statement 2 is shown in Exercise 21.
Let A be the statement “F is unsatisfiable”, and let B be the statement “F has a closed
tableau”.
We need to show: A ≡ B, for which it suffices to show that A↔ B ≡ (A→ B) ∧ (B → A)
is valid.
By the contraposition principle, it therefore suffices to show that (¬B → ¬A) ∧ (¬A →
¬B) ≡ (¬B ↔ ¬A) is valid, i.e., that ¬A ≡ ¬B.
¬A is the statement “F is not unsatisfiable”, i.e. “F is satisfiable”.
¬B is the statment “F does not have a closed tableau”. Since, every formula has a complete
tableau, this is equivalent to the statement “F has a complete tableau branch”.
It thus remains to show: F is satisfiable if and only if F has a complete tableau branch. This
was shown in Theorems 1.37 and 1.38. �

1.43 Remark
In short, Statement 1 of Theorem 1.39 holds because it expresses the contrapositions of
Theorem 1.37 and 1.38.

Exercise 21 (hand-in) Show Theorem 1.39 2.

Exercise 22 (hand-in) For any formula F , let F ′ be the formula obtained from F by
replacing all ∨ by ∧, and by replacing all ∧ by ∨. Furthermore, let F be obtained from F
by replacing each occurrence of an atomic formula A in F by ¬A.
Example: For F = (A ∧B) ∨ ¬C, we have F ′ = (A ∨B) ∧ ¬C and F = (¬A ∧ ¬B) ∨ ¬¬C;

and F
′
= (¬A ∨ ¬B) ∧ ¬¬C.

Show by structural induction: F ≡ ¬F ′ for each formula F .

12

2 First-order Predicate Logic

2.1 Example
Difficult/impossible to model in propositional logic:
• For all n ∈ N, n! ≥ n.

2.2 Example
Difficult/impossible to model in propositional logic:

1. Healthy beings are not dead.
2. Every cat is alive or dead.
3. If somebody owns something, (s)he cares for it.
4. A happy cat owner owns a cat and all beings he cares for are healthy.
5. Schrödinger is a happy cat owner.

2.1 Syntax

[Schöning, 1989, Chapter 2.1]

2.3 Definition
• Variables : x1, x2, . . . (also y, z, . . .).
• Function symbols : f1, f2, . . . (also g, h, . . .), each with an arity (∈N) (number of

parameters).
Constants are function symbols with arity 0.
• Predicate symbols : P1, P2, . . . (also Q, R, . . . , each with an arity (∈N) (number of

parameters).
Terms are inductively defined:
• Each variable is a term.
• If f is a function symbol of arity k, and if t1, . . . , tk are terms, then f(t1, . . . , tk) is a

term.
Formulas are inductively defined:
• If P is a predicate symbol of arity k, and if t1, . . . , tk are erms, then P (t1, . . . , tk) is a

formula (called atomic).
• For each formula F , ¬F is a formula.
• For all formulas F and G, (F ∧G) and (F ∨G) are formulas.
• If x is a variable and F is a formula, then ∃xF and ∀xF are formulas.

2.4 Definition
F → G (respectively, F ↔ G) is shorthand for ¬F ∨G (respectively, (F → G) ∧ (G→ F)).
We also use other notational variants from propositional logic freely.

2.5 Example
The following are formulas (s is a constant).

1. ∀x(H(x)→ ¬D(x))
2. ∀x(C(x)→ (A(x) ∨D(x)))
3. ∀x∀y(O(x, y)→ R(x, y))

13

4. ∀x(P (x)→ (∃y(O(x, y) ∧ C(y)) ∧ (∀y(R(x, y)→ H(y)))))
5. P (s)

In 1, predicate symbols are D and H, and x is a term.

Exercise 23 (no hand-in) Identify all predicate symbols and all terms in Example 2.5 3.

2.6 Example
Example 2.1 could be written as

∀n(n ∈ N→ n! ≥ n),

where (with abuse of our introduced formal notation), “∈ N” is a unary predicate symbol,
“≥” is a binary predicate symbol, and “!” is a unary function symbol, written postfix.

Exercise 24 (no hand-in) Determine all predicate symbols and all function symbols, with
arities, of the formula

∀ε∃δ∀x((ε > 0 ∧ δ > 0)→ (|x− 2| < δ → |x3 − 23| < ε)).
02/22/2011

2.7 Definition
If a formula F is part of a formula G, then it is called a subformula of G.
An occurrence of a variable x in a formula F is bound if it occurs within a subformula of F
of the form ∃xG or ∀xG. Otherwise it is free.
A formula without free variables is closed. A formula with free variables is open.
∃, ∀ are quantifiers, ∨, ∧, ¬, →, ↔ are connectives.

2.8 Example
All subformulas of ∀x(C(x)→ (A(x) ∨D(x))):
C(x), A(x), D(x), A(x) ∨D(x), C(x)→ (A(x) ∨D(x)), ∀x(C(x)→ (A(x) ∨D(x))).

2.9 Example
In the formula P (x) ∧ ∀x(P (x) → Q(f(x))), the first occurrence of x is free, the others are
bound.

Exercise 25 (no hand-in) Give all subformulas of Exercise 2.5 4. Which of them are
closed? Which of them are open?

2.2 Semantics

[Schöning, 1989, Chapter 2.1 cont.]

2.10 Definition
A structure is a pair A = (UA, IA), with UA 6= ∅ a set (ground set or universe) and IA a
mapping which maps
• each k-ary predicate symbol P to a k-ary predicate (relation) on UA (if IA is defined

for P)

14

• each k-ary function symbol f to a k-ary function on UA (if IA is defined for f)
• each variable x to an alement of UA (if IA is defined for x).

Write PA for IA(P) etc. A is suitable for a formula F if IA is defined for all predicate and
function symbols in F and for all free variables in F .

2.11 Example

F = ∀x∀y(P (a) ∧ (P (x)→ (P (s(x)) ∧Q(x, x) ∧ ((P (y) ∧Q(x, y))→ Q(x, s(y))))))

Structure (UA, IA):

UA = N
aA = 0(∈ N)

sA : n 7→ n+ 1

PA = N (= UA)

QA = {(n, k) | n ≤ k}

Another structure (UB, IB):

UB = {,,/}
aB = ,

sB : , 7→ /; / 7→ /

PB = UB

QB = {(/,/)}

Exercise 26 (hand-in) Give a structure for the formula

∀x∀y(Q(x, y)→ Q(y, x)).

2.12 Definition
F a formula. A = (UA, IA) a suitable structure for F .
Define for each term t in F its value tA:

1. If t = x is a variable, tA = xA.
2. If t = f(t1, . . . , tk), then tA = fA(tA1 , . . . , t

A
k).

Define for F its truth value A(F) as follows, where A[x/u] is identical to A except xA[x/u] = u.

1. A(P (t1, . . . , tk)) =

{
1, if (A(t1), . . . ,A(tk)) ∈ PA

0, otherwise

2. A(H ∧G) =

{
1, if A(H) = 1 and A(G) = 1

0, otherwise

15

3. A(H ∨G) =

{
1, if A(H) = 1 or A(G) = 1

0, otherwise

4. A(¬G) =

{
1, if A(G) = 0

0, otherwise

5. A(∀xG) =

{
1, if for all u ∈ UA,A[x/u](G) = 1

0, otherwise

6. A(∃xG) =

{
if there exists some u ∈ UA s.t. A[x/u](G) = 1

0, otherwise

If A(F) = 1, we write A |= F and say F is true in A or A is a model for F .
F is valid (or a tautology, written |= F) if A |= F for every suitable structure A for F . F is
satisfiable if there is A with A |= F , and otherwise it is unsatisfiable.

2.13 Example
Consider the formula F = ∃x∀yQ(x, y) under the structure A = (UA, IA) from Example
2.11. We show A(F) = 1.
First note that 0 ≤ n for all n ∈ N, i.e. A[x/0][y/n](Q(x, y)) = 1 for all n ∈ N = UA. Thus,
A[x/0](∀yQ(x, y)) = 1 and therefore A(∃x∀yQ(x, y)) = 1 as desired.

Exercise 27 (hand-in) Show that (UB, IB) as in Example 2.11 is a model for

∀x∃y(P (x) ∧Q(s(x), y)).

2.14 Remark
Many notions and results carry over directly from propositional logic: logical consequence,
equivalence of formulas, Theorem 1.16, Theorem 1.22, etc.

2.15 Remark
Predicate logic “degenerates” to propositional logic if either all predicate symbols have arity
0, or if no variables are used. For the latter, a formula like (Q(a) ∧ ¬R(f(b), c)) ∧ P (a, b)
can be written as the propositional formula (A∧¬B)∧C with A for Q(a), B for R(f(b), c),
and C for P (a, b).

02/24/2011

2.16 Remark
We deal with first-order predicate logic. Second-order predicate logic also allows to quantify
over predicate symbols.

Exercise 28 (hand-in) Sentence 1 of Example 2.2 can be written as.

∀x(Healthy(x)→ ¬Dead(x)).

Translate all other sentences from Example 2.2. Use schroedinger as a constant symbol and
use only the following predicate symbols:

16

unary: Healthy, Dead, Cat, Alive, HappyCatOwner
binary: owns, cares

Exercise 29 (no hand-in) Sketch, how you would formally prove, using Exercise 28, that
Schrödinger’s cat is alive.

2.3 Equivalence

[Schöning, 1989, Chapter 2.2]

2.17 Theorem
The following hold for arbitrary formulas F and G.

¬∀xF ≡ ∃x¬F ¬∃xF ≡ ∀x¬F
∀xF ∧ ∀xG ≡ ∀x(F ∧G) ∃xF ∨ ∃xG ≡ ∃x(F ∨G)

∀x∀yF ≡ ∀y∀xF ∃x∃yF ≡ ∃y∃xF

If x does not occur free in G, then

∀xF ∧G ≡ ∀x(F ∧G) ∀xF ∨G ≡ ∀x(F ∨G)

∃xF ∧G ≡ ∃x(F ∧G) ∃xF ∨G ≡ ∃x(F ∨G)

Proof: We show only ∀xF ∧ ∀xG ≡ ∀x(F ∧G):
A(∀xF ∧ ∀xG) = 1
iff A(∀xF) = 1 and A(∀xG) = 1
iff for all u ∈ UA, A[x/u](F) = 1 and for all v ∈ UA, A[x/v](G) = 1
iff for all u ∈ UA, A[x/u](F) = 1 and A[x/u](G) = 1
iff A(∀x(F ∧G)) = 1 �

Exercise 30 (hand-in) Show, that the first statement of Theorem 2.17, ¬∀xF ≡ ∃x¬F ,
holds.

Exercise 31 (hand-in) Show, that ∀x∃yP (x, y) 6≡ ∃u∀vP (v, u).

Exercise 32 (no hand-in) Show, that ∀x∃y(P (x) ∧Q(y)) ≡ ∃y∀x(P (x) ∧Q(y)).

Exercise 33 (no hand-in) Show, that

∀x(P (x)→ (∃y(O(x, y) ∧ C(y)) ∧ (∀z(R(x, z)→ H(z)))))

and
∀z∀x∃y((P (x)→ (O(x, y) ∧ C(y))) ∧ ((P (x) ∧R(x, z))→ H(z)))

are equivalent.

17

2.18 Definition
A substitution [x/t], where x is a variable and t a term, is a mapping which maps each
formula G to the formula G[x/t], which is obtained from G by replacing all free occurrences
of x by t.

2.19 Example
(P (x, y) ∧ ∀yQ(x, y))[x/a][y/f(x)] = P (a, f(x)) ∧ ∀yQ(a, y)

Exercise 34 (no hand-in) What is (∀x(Q(x, y, z)[y/a])[x/b]∧∀x(P (x, y)[y/x][x/a]))[z/x]?

Exercise 35 (no hand-in) Show, that, for any formula F in which y does not occur as
free variable, ∀xF ≡ ∀yF [x/y].

2.4 Normal Forms

[Schöning, 1989, Chapter 2.2 cont.]

2.20 Definition
A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal).
A formula F is in negation normal form (NNF) if the negation symbol ¬ occurs only in
literals (and →, ↔ don’t appear in it).

2.21 Theorem
For every formula F , there is a formula G ≡ F which is in NNF.

Proof: Apply de Morgan, double negation, and ¬∀xF ≡ ∃x¬F and ¬∃xF ≡ ∀x¬F exhaus-
tively. �

2.22 Example
¬(∃xP (x, y) ∨ ∀zQ(z)) ∧ ¬∃wP (f(a, w))

≡ (¬∃xP (x, y) ∧ ¬∀zQ(z)) ∧ ∀w¬P (f(a, w))
≡ (∀x¬P (x, y) ∧ ∃z¬Q(z)) ∧ ∀w¬P (f(a, w))

Exercise 36 (no hand-in) Transform all formulas from Example 2.5 into NNF.

2.5 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 5.5, strongly modified]

2.23 Definition
Let F be a formula in NNF. A tableau branch for F is a set of formulas, defined inductively
as follows.
• {F} is a tableau branch for F .

18

• If T is a tableau branch for F and G ∧ H ∈ T , then T ∪ {G,H} is a tableau branch
for F .
• If T is a tableau branch for F and G ∨H ∈ T , then T ∪ {G} is a tableau branch for
F and T ∪ {H} is a tableau branch for F .
• If T is a tableau branch for F and ∀xG ∈ T , then T ∪{G[x/t]} is a tableau branch for
F , where t is any term. 03/08/2011
• If T is a tableau branch for F and ∃xG ∈ T , then T ∪{G[x/a]} is a tableau branch for
F , where a is a constant symbol which does not occur in T (or in the tableau curently
constructed).

A tableau for F is a set of tableau branches for F .
A tableau branch is closed if it contains an atomic formula A and its negation ¬A. Otherwise,
it is open.
A tableau M for F is called closed if for each T ∈M there is a closed T ′ ∈M with T ⊆ T ′.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau
branch) for an NNF of F .

2.24 Theorem (Soundness)
If a closed formula F has a closed tableau, then F is unsatisfiable.

2.25 Theorem (Completeness)
If a closed formula F is unsatisfiable, then there is a closed tableau for F .

2.26 Example
We show ∃u∀vP (v, u) |= ∀x∃yP (x, y). I.e. we make a tableau for

∃u∀vP (v, u) ∧ ∃x∀y¬P (x, y),

see Figure 1 (left).

2.27 Remark
The (predicate logic) tableaux algorithm does not in general provide a means to find out if
a formula is satisfiable or falsifiable.

Consider ∀x∃yP (x, y)
?

|= ∃u∀vP (v, u). If we attempt to make a tableau for

∀x∃yP (x, y) ∧ ∀u∃v¬P (v, u),

see for example Figure 1, then the search for closing the tableau does not stop. The reason
for this is that the tableau cannot close, but the occurrence of the quantifiers in the formula
prompts the algorithm to ever explore new terms for the bound variables.

Exercise 37 (no hand-in) Show, using a tableau, that ∃x(P (x) ∧ Q(x)) |= ∃xP (x) ∧
∃yQ(y).

Exercise 38 (no hand-in) Show, using a tableau, that ∃x(O(s, x) ∧ A(x)) is a logical
consequence of the formulas in Exercise 2.5.

19

Figure 1: Tableaux for Example 2.26 (left) and Remark 2.27 (right).

Exercise 39 (no hand-in) Show, using a tableau, that Q(a)∧Q(b)∧ ∀x(P (x)∧ (Q(x)→
¬P (x))) is unsatisfiable.

2.28 Remark
While the propositional tableaux algorithm always terminates, this is not the case for the
predicate logic tableaux algorithm.

20

Appendix

1.6 Theoretical Aspects (Propositional Logic)

[Schöning, 1989, Part of Chapter 1.4 plus some more]

1.44 Theorem (monotonicity of propositional logic)
Let M,N be sets of formulas. If M ⊆ N then {F |M |= F} ⊆ {F | N |= F}.

Proof: Let F be such that M |= F .
Let A be a model for N . Then all formulas in N , and hence all formulas in M , are true
under A. Hence A |= F . This holds for all models of N , and hence N |= F . �

Exercise 40 (hand-in) Is the following true or false?
Let M,N be sets of formulas. If {F |M |= F} ⊆ {F | N |= F} then M ⊆ N .
Prove that your answer is correct.

1.45 Theorem (compactness of propositional logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

Proof:
⇒: Every model for M is also a model for each finite subset of M .
⇐: Assume every finite subset of M is satisfiable.
Let {A1, A2, . . . } be all propositional variables.
Define Mn to be the set of all elements of M which contains only the propositional variables
A1, . . . , An.
Mn contains at most 22n many formulas with different truth tables.
Thus, there is a set Fn = {F1, . . . , Fk} ⊆Mn (k ≤ 22n), such that for every F ∈M , F ≡ Fi

for some i.
Hence, every model for Fn is a model for Mn.
By assumption, Fn is satisfiable, say with model An.
An is also a model for M1, . . . ,Mn−1. [Mi ⊆Mi+1for all i]
For all k ∈ N, define A(Ak) = lim supn→∞An(Ak).
Note: For each k ∈ N there exists nk ∈ N s.t. for all n ≥ nk we have An(Ak) = An+1(Ak).
It remains to show: A |= M :
Let F ∈M . Then F ∈Mk for some k.
With n′ = max{n1, . . . , nk} we have that A and all An with n ≥ n′ agree on all propositional
variables in F .
We have Am |= F for all m ≥ max{k, n′}.
Hence A |= F as required. �

Exercise 41 (hand-in) Show: A set M of formulas is unsatisfiable if and only if some
finite subset of it is unsatisfiable.

21

1.46 Definition
A problem with a yes/no answer is decidable if there exists an algorithm which terminates
on any allowed input of the problem and, upon termination, outputs the correct answer.

1.47 Example
“Is n an even number?” is decidable (allowed input: any n ∈ N).
[

1. If n=1, terminate with output ’No’.

2. If n=0, terminate with output ’Yes’.

3. Set n := n-2.

4. Go to 1.

]

1.48 Theorem (decidability of finite entailment)
The problem of deciding whether a finite set M of formulas entails some other formula F is
decidable.

Proof: M contains only a finite number of propositional variables. Use truth tables to check
whether all models of M are models of F . �

1.49 Definition
A problem with a yes/no answer is semi-decidable if there exists an algorithm which, on
any allowed input of the problem, terminates if the answer is ’yes’ and outputs the correct
answer.

1.50 Theorem (semi-decidability of infinite entailment)
The problem of deciding whether a countably infinite set M of formulas entails some other
formula F is semi-decidable.

Proof: M |= F if and only if M ∪ {¬F} is unsatisfiable. [Exercise 42]
By the compactness theorem, M ∪{¬F} is unsatisfiable if and only if one of its finite subsets
is unsatisfiable. Now use an enumeration M1,M2, . . . of all these finite subsets and check
satisfiability of each of them in turn, using truth tables. If one of the sets is unsatisfiable,
terminate and output that M |= F . �

Exercise 42 (Proof by Contradiction – hand-in) Show: M |= F if and only if M ∪
{¬F} is unsatisfiable.

Exercise 43 (no hand-in) Let {F1, F2, F3, . . . } be a (countably) infinite set. Give an al-
gorithm with enumerates all its finite subsets.

1.51 Theorem (complexity of finite satisfiability)
The problem of deciding whether a finite set of formulas is satisfiable, is NP-complete.

22

Proof: See CS740 (or any book on computational complexity theory). �

1.52 Theorem (complexity of finite entailment)
The problem of deciding whether a finite set of formulas entails some other formula is NP-
complete.

Proof: Because of Exercise 42, finite entailment and finite satisfiability can be reduced to
each other, hence they have the same complexity. �

23

2.6 Theoretical Aspects (Predicate Logic)

[Schöning, 1989, Chapter 2.3 and other sources]

2.29 Theorem (monotonicity of propositional logic)
Let M,N be sets of formulas. If M ⊆ N then {F |M |= F} ⊆ {F | N |= F}.

Proof: Similar as for propositional logic. �

2.30 Theorem (compactness of propositional logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

2.31 Theorem (undecidability of predicate logic)
The problem “Given a formula F , is F valid?” is undecidable.

Exercise 44 (hand-in) Show, that the problem “Given a formula F and a finite set of
formulas M , is M |= F?” is undecidable. [use Theorem 2.31]

2.32 Theorem (semi-decidability of predicate logic)
The problem “Given a formula F , is F valid?” is semi-decidable.

Proof: We have, e.g., the tableaux calculus for this. �

2.33 Remark
The formula

F = ∀x∀y∀u∀v∀w(P (x, f(x)) ∧ ¬P (y, y) ∧ ((P (u, v) ∧ P (v, w))→ P (u,w)

is satisfiable but has no finite model (with UA finite).
A = (UA, IA) is a model, where

UA = N
PA = {(m,n) | m < n}

fA(n) = n+ 1

Assume B = (UB, IB) is a finite model for F . Let u0 ∈ UB and consider the sequence (ui)i∈N
with ui+1 = fB(ui). Since UB is finite, there exist i < j with ui = uj. F enforces transitivity
of F , hence (ui, uj) ∈ PB. But since ui = uj this contradicts ∀y¬P (y, y).

2.34 Theorem (Löwenheim-Skolem)
If a (finite or) countable set of formulas is satisfiable, then it is satisfiable in a countable
domain.

2.35 Remark
According to Theorem 2.34, it is impossible to axiomatize the real numbers in first-order
predicate logic.

24

3 Application: Knowledge Representation for the World

Wide Web

[See [Hitzler et al., 2009] for further reading.]

[Slideset 2]

25

