
Spring 2016 – CS 7220 – Pascal Hitzler

CS 7220 – Computational Complexity and
Algorithm Analysis

Spring 2016

Section 7: Computability – Part V
μ-Recursive Functions

Pascal Hitzler
Data Semantics Laboratory

Wright State University, Dayton, OH
http://www.pascal-Hitzler.de

Spring 2016 – CS 7220 – Pascal Hitzler 2

TOC: μ-Recursive Functions

Chapter 13 of [Sudkamp 2006].

1. Primitive Recursive Functions
2. μ-Recursive Functions

Spring 2016 – CS 7220 – Pascal Hitzler 3

Basic functions

• successor function s: s(x) = x+1

• zero function z: z(x) = 0

• projection functions pi
(n): pi

(n)(x1, …, xn) = xi (1 I n)

These functions are all Turing computable.

Spring 2016 – CS 7220 – Pascal Hitzler 4

Primitive recursion

Let g,h be total functions of arities n, respectively n+2.

Define the (n+1)-ary function f recursively as follows:

1. f(x1,…,xn,0) = g(x1,…,xn)
2. f(x1,…,xn,y+1) = h(x1,…,xn,y,f(x1,…,xn,y))

We say that f is obtained from g and h by primitive recursion.

Note that the definition directly gives us an algorithm for computing
f provided g and h can be computed.

Spring 2016 – CS 7220 – Pascal Hitzler 5

Primitive recursive functions

A function is called primitive recursive, if if can be obtained from
the basic functions (successor, zero, projections) by a finite
number of applications of composition and primitive recursion.

Obviously, these are all computable.

They are also all total.

How far does this definition carry?

Spring 2016 – CS 7220 – Pascal Hitzler 6

Examples

Addition:

add(x,0) = g(x) = x [g(x) = x]
add(x,y+1) = h(x,y,add(x,y)) = add(x,y)+1 [h(x,y,z) = z+1]

Multiplication:

mult(x,0) = 0 [g(x) = ?]
mult(x,y+1) = mult(x,y) + x [h(x,y,z) = ?]

[h = add (p3
(3), p1

(3))]

Spring 2016 – CS 7220 – Pascal Hitzler 7

Examples

Factorial

fact(0) = 1
fact(y+1) = fact(y) (y+1)

Predecessor, Exponentiation,
sub(x,y) = max(0,x-y), sign: s(x) = sub(x,sub(x,1))

characteristic functions of relations:
less than, equal to, greater than, not equal to

logical expressions (on 0,1):
not, and, or

Spring 2016 – CS 7220 – Pascal Hitzler 8

Examples

Function definition by cases

f(x) = eq(x,0) 2
+ eq(x,1) 5
+ eq(x,2) 4
+ gt(x,2) x

Hence:
If a primitive recursive function is altered on only a finite number of

input values, then the resulting new function is also primitive
recursive.

Spring 2016 – CS 7220 – Pascal Hitzler 9

Minimization

A n-ary predicate p is the characteristic function of an n-ary
relation.

Define μz[p(x1,…,xn,z)] to be the smallest non-negative integer z
such that p(x1,…,xn,z) = 1.

Note: functions defined using minimization are not necessarily
primitive recursive.

E.g., f(x) = μz[eq(x,zz)] is not even total.

Spring 2016 – CS 7220 – Pascal Hitzler 10

Bounded minimization

Define

z if z≤y and z is the least non-negative
μyz [p(x1,…,xn,z)] = integer with p(x1,…,xn,z) = 1

y+1 otherwise

Theorem
If p(x1,…,xn,y) is a primitive recursive predicate, then

f(x_1, …, x_n, y) = μyz [p(x1,…,xn,z)]

is primitive recursive.

Spring 2016 – CS 7220 – Pascal Hitzler 11

Examples

Quotient
quo(x,y) = sg(y) - μxz[gt((z+1)y, x)]

Remainder
rem(x,y) = sub(x,y-quo(x,y))

Divides
divides(x,y) = eq(rem(x,y),0)-sg(x)

Number of divisors
ndivisors(x,y) = divides(x,0)+…+divides(x,y)

Prime
prime(x) = eq(ndivisors(x,x),2)

Spring 2016 – CS 7220 – Pascal Hitzler 12

More general bounded
minimization

Let p be an (n+1)-ary primitive recursive predicate and let u be an n-
ary primitive recursive function.

Then the function

f(x1,…,xn) = μu(x1, …, xn)z[p(x1,…,xn,z)]

is primitive recursive.

Proof?

Spring 2016 – CS 7220 – Pascal Hitzler 13

Examples

xth prime:

pn(0) = 2
pn(x+1) = μfact(pn(x))+1z[prime(z)gt(z,pn(x))]

Spring 2016 – CS 7220 – Pascal Hitzler 14

TOC: μ-Recursive Functions

Chapter 13 of [Sudkamp 2006].

1. Primitive Recursive Functions
2. μ-Recursive Functions

Spring 2016 – CS 7220 – Pascal Hitzler 15

Computable total functions

Theorem
There are computable total functions which are not primitive

recursive.

Proof?

Spring 2016 – CS 7220 – Pascal Hitzler 16

Proof

The set of one-variable primitive recursive functions can be
enumerated (e.g., create all symbol strings and check each
whether it is the definition of a primitive recursive function):

f1, f2, f2, …

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence g is not primitive recursive.

Spring 2016 – CS 7220 – Pascal Hitzler 17

Something’s wrong here – what
is it?

Each total computable function can be represented by a TM.
Hence, we obtain a list of all total computable functions:

f1, f2, f3

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence, the set of total computable functions is uncountable.

Hence, the set of all TMs is uncountable, which is impossible!

Spring 2016 – CS 7220 – Pascal Hitzler 18

Hence

The set of all total computable functions cannot be enumerated
algorithmically.

Spring 2016 – CS 7220 – Pascal Hitzler 19

Ackermann’s function

A(0,y) = y+1
A(x+1,0) = A(x,1)
A(x+1,y+1) = A(x,A(x+1,y))

This function is effectively computable. [why?]

This function is not primitive recursive:
It can be shown that for each primitive recursive function f there is

some non-negative integer x such that f(x) < A(x,x).

Spring 2016 – CS 7220 – Pascal Hitzler 20

μ-Recursive Functions

A function is μ-recursive if and only if it can be defined using a
finite number of the following:

• any primitive recursive function
• function composition
• primitive recursion
• (unbounded) minimization using a total μ-recursive predicate

Theorem
Every μ-recursive function is Turing computable

Spring 2016 – CS 7220 – Pascal Hitzler 21

Theorem

Every Turing computable function is μ-recursive.

Proof?

Spring 2016 – CS 7220 – Pascal Hitzler 22

Proof idea

• We simulate the computations of a given TM by means of a
number-theoretic function.

• Machine computations become functions (this is called
arithmetization of TMs).

• each configuration (state, tape head position, tape content) is
uniquely encoded by a number

• A function tr maps configurations to configurations, according
to the transition function of M.
– The number encoding needs to be “smart” such that this is

relatively easy to define. The key idea here is Gödel
numbering. Furthermore, it must be done such that tr is μ-
recursive (in fact, it is primitive recursive).

• Using minimization, one can combine tr iterations to the overall
input-output function sim of M.

Spring 2016 – CS 7220 – Pascal Hitzler 23

Church-Turing Thesis Revisited

A number-theoretic function is computable if, and only if, it is
μ-recursive.

