CS 7220 - Computational Complexity and Algorithm Analysis

Spring 2016

Section 7: Computability - Part I
Introduction

Pascal Hitzler

Data Semantics Laboratory Wright State University, Dayton, OH

Models of computation

- Generally, abstract from space/memory limitations
- Assume memory is "as large as needed"
- Ignore, how long a computation takes
- as long as it terminates in finite time.
- Often, use only numbers/integers or only (finite) strings as the things which are computed/stored in memory.
- There exist many formal models of computation.

Models of Computation

- Turing Machine (in this lecture - at the beginning)
- μ-Recursive functions (in this lecture - towards the end)
- λ-calculus (see functional programming)
- Unlimited Register Machine
- WHILE-language
- ... many others ...

Unlimited Register Machine (URM)

- Registers $r_{1}, r_{2}, r_{3}, \ldots$ holding non-negative integers
- Initialization: finite number of registers \neq zero
- A program consists of a finite sequence of instructions.
- Available instructions:
- Zero $Z(n)$: set register r_{n} to 0
- Successor $S(n)$: increase r_{n} by 1
- Transfer $T(m, n)$: copy r_{m} to r_{n}
- Jump $J(m, n, p)$: If $r_{m}=r_{n}$, jump to instruction number p

WHILE-language

- Minimal programming language, essentially consisting of
- Elementary arithmetic +, -, *, /
- Boolean comparison of numbers: <, >, =, , , \neq
- Logical AND, OR, NOT
- Assignment of values to variables
- WHILE loops as only control features

Are they different?

- Not really.
- All models with certain minimal capabilities have so far been shown to be equivalent.
- This is actually quite remarkable!

Uncomputable example

- \mathbf{N} : Natural numbers (non-negative integers): $\mathbf{N}=\{0,1,2,3,4, \ldots\}$
- $P(N)$: set of all subsets of N

Examples:
$-\{0,1,2,3,4, \ldots\}$

- \{\}
$-\{0,2,4,6,8, \ldots\}$
- \{2,3,267,1011\}
$-\{0,1,2,3,5,8,13,21,34, \ldots\}$
- \{2,3,5,7,11,13,17,19,23,...\}

Uncomputable example

- We say that an algorithm (in some model of computation) computes a subset S of N if
- It outputs a stream of non-negative integers (strictly increasing).
- It needs only finite time between two outputs.
- If does not skip any number in S .
- All output numbers are in S.
- If it terminates, then it has output all integers in S.

Question: Can every set in $\mathrm{P}(\mathrm{N})$ be computed?

Uncomputable example

- Every algorithm which computes a subset of \mathbf{N} can be expressed with a finite string.
- It is easy to define a strict order on the set of all algorithms.
- E.g. lexicographic order.
- E.g. convert them to bit strings and sort by binary number.
- Hence, we can assume that $\left\{A_{0}, A_{1}, A_{2}, A_{3}, \ldots\right\}$ is the set of all algorithms computing subsets of N.

Uncomputable example

DaSe Lab

Mark the output of each A_{i} :

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	\ldots
$\mathbf{A}_{\mathbf{0}}$		\mathbf{x}			\mathbf{x}	\mathbf{x}		\mathbf{x}		
$\mathbf{A}_{\mathbf{1}}$		\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}		\mathbf{x}	
$\mathbf{A}_{\mathbf{2}}$	\mathbf{x}		\mathbf{x}	\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{3}}$		\mathbf{x}		\mathbf{x}					\mathbf{x}	
$\mathbf{A}_{\mathbf{4}}$	\mathbf{x}	\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}	\mathbf{x}		
$\mathbf{A}_{\mathbf{5}}$	\mathbf{x}			\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{6}}$		\mathbf{x}				\mathbf{x}			\mathbf{x}	

Uncomputable example

daSe Lab

Now make a new subset of N by "inverting" the diagonal:

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\boldsymbol{\ldots}$
$\mathbf{A}_{\mathbf{0}}$		\mathbf{x}			\mathbf{x}	\mathbf{x}		\mathbf{x}		
$\mathbf{A}_{\mathbf{1}}$		\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}		\mathbf{x}	
$\mathbf{A}_{\mathbf{2}}$	\mathbf{x}		\mathbf{x}	\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{3}}$		\mathbf{x}		\mathbf{x}					\mathbf{x}	
$\mathbf{A}_{\mathbf{4}}$	\mathbf{x}	\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}	\mathbf{x}		
$\mathbf{A}_{\mathbf{5}}$	\mathbf{x}			\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{6}}$		\mathbf{x}				\mathbf{x}			\mathbf{x}	
\ldots								$\mathbf{\ldots}$		

Result: x
x
x
i.e. \{ 0,
$5, \quad 6, \ldots$
\}

Uncomputable example

DaSe Lab

The resulting set is not computed by any $\mathrm{A}_{\mathbf{i}}$!

Result: X

$$
\text { i.e. }\{\quad 0,
$$

\}
A_{5} doesn't compute it!

Uncomputable example

DaSe Lab

The resulting set is not computed by any $\mathrm{A}_{\mathbf{i}}$!

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	\ldots
$\mathbf{A}_{\mathbf{0}}$		\mathbf{x}			\mathbf{x}	\mathbf{x}		\mathbf{x}		
$\mathbf{A}_{\mathbf{1}}$		\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}		\mathbf{x}	
$\mathbf{A}_{\mathbf{2}}$	\mathbf{x}		\mathbf{x}	\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{3}}$		\mathbf{x}		\mathbf{x}					\mathbf{x}	
$\mathbf{A}_{\mathbf{4}}$	\mathbf{x}	\mathbf{x}	\mathbf{x}		\mathbf{x}		\mathbf{x}	\mathbf{x}		
$\mathbf{A}_{\mathbf{5}}$	\mathbf{x}			\mathbf{x}	\mathbf{x}			\mathbf{x}		
$\mathbf{A}_{\mathbf{6}}$		\mathbf{x}				\mathbf{x}			\mathbf{x}	
\ldots								\ldots		

but we have all possible algorithms in the list!
Hence: we found a set which is not computable!

Looking a bit deeper

*DaSe Lab

- The set of all algorithms is countable.
(l.e., can be enumerated as $A_{0}, A_{1}, A_{2}, \ldots$)
- The set $P(N)$ is uncountable.
(l.e., cannot be enumerated as $S_{0}, S_{1}, S_{2}, \ldots$)
- Essentially the same proof. With a slight twist.
- This proof technique is known as "diagonalization."
- We will need the technique for the main result in this lecture.
- It is usually credited to Georg Cantor (1845-1918); at least he was the first to publish the diagonalization proof that $P(N)$ is uncountable).

Exercise C1

- Adjust the proof just given such that you prove the following:

The set of real numbers is uncountable.

Exercise C2 (hand-in)

Show that there are languages which are not recursively enumerable.

Hint: Use diagonalization. It is possible to adjust the proof given earlier, that not all sets of non-negative integers can be computed. You do not need to spell out all details, but the argument must be convincing.

