

CS 7220 – Computational Complexity and Algorithm Analysis

Spring 2016

Section 7: Computability – Part I Introduction

Pascal Hitzler

Data Semantics Laboratory Wright State University, Dayton, OH http://www.pascal-Hitzler.de

Spring 2016 – CS 7220 – Pascal Hitzler

Models of computation

- Generally, abstract from space/memory limitations
 - Assume memory is "as large as needed"
- Ignore, how long a computation takes
 - as long as it terminates in finite time.
- Often, use only numbers/integers or only (finite) strings as the things which are computed/stored in memory.
- There exist many formal models of computation.

Models of Computation

- Turing Machine (in this lecture at the beginning)
- µ-Recursive functions (in this lecture towards the end)
- λ-calculus (see functional programming)
- Unlimited Register Machine
- WHILE-language
- ... many others ...

Unlimited Register Machine (URM)

- Registers r₁, r₂, r₃, ...
 holding non-negative integers
- Initialization: finite number of registers ≠ zero
- A program consists of a finite sequence of instructions.
- Available instructions:
 - Zero Z(n): set register r_n to 0
 - Successor S(n): increase r_n by 1
 - Transfer T(m,n): copy r_m to r_n
 - Jump J(m,n,p): If $r_m = r_n$, jump to instruction number p

WHILE-language

- Minimal programming language, essentially consisting of
 - Elementary arithmetic +, -, *, /
 - Boolean comparison of numbers: <, >, =, , , \neq
 - Logical AND, OR, NOT
 - Assignment of values to variables
 - WHILE loops as only control features

Are they different?

- Not really.
- All models with certain minimal capabilities have so far been shown to be equivalent.

• This is actually quite remarkable!

- N: Natural numbers (non-negative integers): N = {0, 1, 2, 3, 4, ...}
- P(N): set of all subsets of N Examples:
 - **{0,1,2,3,4,...}**
 - {}
 - **{0,2,4,6,8,...}**
 - {2,3,267,1011}
 - {0,1,2,3,5,8,13,21,34,...}
 - {2,3,5,7,11,13,17,19,23,...}

- We say that an algorithm (in some model of computation) computes a subset S of N if
 - It outputs a stream of non-negative integers (strictly increasing).
 - It needs only finite time between two outputs.
 - If does not skip any number in S.
 - All output numbers are in S.
 - If it terminates, then it has output all integers in S.

Question: Can every set in P(N) be computed?

- Every algorithm which computes a subset of N can be expressed with a finite string.
- It is easy to define a strict order on the set of all algorithms.
 - E.g. lexicographic order.
 - E.g. convert them to bit strings and sort by binary number.
- Hence, we can assume that {A₀,A₁,A₂,A₃,...} is the set of all algorithms computing subsets of N.

Mark the output of each A_i:

	0	1	2	3	4	5	6	7	8	
A ₀		X			X	X		X		
A ₁		x	x		x		X		x	
A ₂	x		x	x	x			x		
A_3		x		x					x	
A ₄	x	x	x		x		X	x		
A_5	x			x	x			x		
A ₆		x				Х			X	

Now make a new subset of N by "inverting" the diagonal:

	0	1	2	3	4	5	6	7	8	
A ₀		X			X	X		X		
A ₁		X	X		X		x		x	
A ₂	X		X	X	X			x		
A ₃		X		x					x	
A ₄	X	X	X		x		X	x		
A ₅	X			X	X			X		
A ₆		X				X			X	
Result:	X					X	X			
i.e.	{ 0,					5,	6,			}

Spring 2016 – CS 7220 – Pascal Hitzler

The resulting set is not computed by any A_i!

The resulting set is not computed by any A_i!

	0	1	2	3	4	5	6	7	8	
A ₀		X			X	X		X		
A ₁		x	x		x		X		X	
A ₂	x		x	x	x			x		
A_3		x		x					X	
A ₄	x	x	x		х		x	x		
A ₅	x			x	x			x		
A ₆		x				Х			X	

but we have all possible algorithms in the list! Hence: we found a set which is not computable!

Looking a bit deeper

- The set of all algorithms is *countable*.
 (I.e., can be enumerated as A₀, A₁, A₂, ...)
- The set P(N) is uncountable.
 (I.e., cannot be enumerated as S₀, S₁, S₂, ...)
 - Essentially the same proof. With a slight twist.
- This proof technique is known as "diagonalization."
 - We will need the technique for the main result in this lecture.
 - It is usually credited to Georg Cantor (1845–1918); at least he was the first to publish the diagonalization proof that P(N) is uncountable).

• Adjust the proof just given such that you prove the following:

The set of real numbers is uncountable.

Exercise C2 (hand-in)

Show that there are languages which are not recursively enumerable.

Hint: Use diagonalization. It is possible to adjust the proof given earlier, that not all sets of non-negative integers can be computed. You do not need to spell out all details, but the argument must be convincing.

